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Interactions of Polarized Photons with Matter

9.1 Overview

This chapter discusses theoretical concepts underlying the description of the
interactions of polarized photons with matter. Because of the long history of
the subject in the optical wavelength regime we start with a brief summary of
terminology associated with polarization dependent scattering and absorption
effects of visible light in matter. This will allow us to clearly define a modern
terminology that is most suitable for X-rays.

We start our theoretical treatment with semiclassical concepts (i.e., classi-
cal concepts with the addition of some quantum concepts) that conveniently
build on those developed in Chap. 8. For example, the transmission of po-
larized photons through magnetic materials, the magneto-optical Faraday ef-
fect, can be understood semiclassically by assuming that polarized light is
composed of right and left circular polarized components and that one circu-
lar component is preferentially phase shifted or absorbed upon transmission
through a magnetic material. This explains the change in polarization state of
the transmitted wave. Similarly, nonresonant scattering processes are readily
understandable as a two step process where the EM wave jiggles the charge or
the spin and the motion leads to re-radiation, i.e., scattering, of an EM wave.

Such semiclassical or phenomenological treatments, however, are unsat-
isfactory if one wants to understand the interaction of the EM wave with
the material in detail or even quantitatively link measured intensities with
magnetic parameters such as magnetic moments. A key problem with semi-
classical treatments is that the processes with the largest cross-section, X-ray
absorption or resonant scattering, are true quantum phenomena. This has
historically been partially overcome by combining classical elements with the
quantum mechanical concept of oscillator strength of an electronic transition.
In analogy to the harmonic oscillator, a connection can then be established of
resonant scattering and X-ray absorption intensities or cross-sections and such
a treatment leads to the famous Kramers–Kronig relations [109,178,190,362].
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However, the Kramers–Kronig relations only allow one to connect an experi-
mental absorption spectrum with the scattered intensity or vice versa but it
does not provide a means to calculate either the absorption or scattered inten-
sity from first principles. Such a quantitative treatment requires the operator
and matrix element approach of modern quantum mechanics in conjunction
with time-dependent perturbation theory. Only this approach allows the quan-
titative analysis of resonant X-ray scattering and X-ray absorption intensities
in terms of atomic quantities such as magnetic moments and their anisotropies.
For this reason we shall present the basic concepts of this approach.

In comparison to optical dichroism measurements, X-rays offer significant
advantages. Because excitations are localized on atoms, X-rays offer specificity
to individual elements and their chemical state. In contrast to the optical
range, X-ray transition intensities represent an average over all valence states
in the Brillouin zone, the same average that determines physical quantities
like the valence shell occupation number and the spin and orbital magnetic
moments. By use of powerful sum rules the spin and orbital moments can
be separated and can be quantitatively determined from integrated peak in-
tensities. Also, because of the short wavelength of X-rays, they offer higher
spatial resolution, down to the size of the X-ray wavelength. In the era of
nanoscience this provides another significant advantage over optical methods
which are typically limited to a spatial resolution above 200 nm.

9.2 Terminology of Polarization Dependent Effects

In the past, optical effects were mainly described phenomenologically by
means of a refractive index. In general, this index is dependent on the fre-
quency and the polarization of the EM wave. For a given sample, the frequency
dependence is particularly important around specific resonant frequencies and
near such resonances the refractive index needs to be described as a complex
dimensionless quantity according to [109,149]1

n(ω) = 1 − δ(ω) + iβ(ω) . (9.1)

The real part δ(ω) is associated with refraction and the imaginary part β(ω)
with absorption of the EM wave in the medium.

The polarization dependence of the refractive index is called “birefrin-
gence” and one distinguishes linear and circular birefringence, depending on
the polarization of the incident light. The term refringence was originally used
instead of the term refraction, both deriving from the Latin word frangere,
meaning to break. The polarization dependence of the absorptive part β(ω)
is referred to as “dichroism.” The term has its origin in the fact that certain
crystals may appear dichroic or in two different colors when white light is

1For isotropic media we have the general relationship n ≡
√

εµ/ε0µ0, where ε/ε0
is the dielectric constant and µ/µ0 the relative permeability.
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incident along two different directions. This is due to the preferential absorp-
tion of polarization components and frequencies along different directions. We
may summarize these and other optical effects as follows.

– Birefringence. The existence of two different indices of refraction for po-
larized incident light. One distinguishes linear birefringence and circular
birefringence.

– Dichroism. The dependence of photon absorption on polarization. There
are four main types. Linear dichroism and (natural) circular dichroism de-
pend on the charge distribution. Magnetic linear dichroism and magnetic
circular dichroism depend on the spin and charge distribution.

– Optical activity or rotation. The rotation of the linear polarization direc-
tion by a nonmagnetic sample. Optical activity is typically associated with
a handedness of the charge distribution in space, i.e., chirality.

– Magneto-optical rotation. The rotation of the linear polarization direction
by a magnetic sample. It arises from the presence of aligned magnetic
moments, which give the sample a handedness in time through breaking
of time-reversal symmetry.

In modern theory, based on time-dependent perturbation theory and the quan-
tum mechanical operator and matrix element method, all interaction effects
of polarized photons with matter listed earlier can be cast in terms of a scat-
tering problem. The final formalism has a close resemblance with the classical
approach based on the refractive index in that the scattering is expressed in
terms of a complex atomic scattering factor

F (Q,ω) = F 0(Q) + F ′(ω) − iF ′′(ω). (9.2)

Here Q is the momentum transfer in the scattering process and F 0(Q) is the
atomic form factor. All factors F 0(Q), F ′(ω), and F ′′(ω), are real numbers in
units of number of electrons per atom. In the soft X-ray range or for scattering
in the forward direction, where the momentum transfer Q is small, we obtain
an expression similar to (9.1),

F (ω) = Z + F ′(ω) − iF ′′(ω) = f1(ω) − if2(ω). (9.3)

Here Z is the number of electrons per atom and the anomalous scattering
factors F ′(ω) and F ′′(ω) can be calculated from first principles and represent
the refractive and absorptive contributions to scattering. In practice, in the
soft X-ray region one can conveniently use the web-tabulated Henke–Gullikson
factors [362,363].

The Henke–Gullikson atomic factors are defined as

f1(ω) = Z + F ′(ω), f2(ω) = F ′′(ω) . (9.4)

They have units of [ number of electrons per atom].
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It is important to realize that f1 and f2 are atomic factors that do not
include bonding effects associated with atoms in different environments. For-
tunately, bonding effects only change the X-ray interactions near absorption
edges. In the near edge region the X-ray excitations are associated with spe-
cific transitions from core states to empty valence states of the material and
the fine structure of the resonances is therefore characteristic of the local
bonding environment of the absorbing atom. Outside the near-edge resonance
region, the photoelectron is directly excited into free-electron-like continuum
states and the excitation cross-section is atom specific and varies smoothly
with energy. The X-ray response of the material in this region is therefore
simply a superposition of all the individual atomic responses given by the
Henke–Gullikson factors. In practice, one rarely measures X-ray absorption
or scattering spectra on an absolute intensity or cross-section scale. If needed
one converts the measured spectra, including the near-edge resonance region,
to an absolute scale by fitting them outside the resonance region to the cross-
sections calculated by means of the Henke–Gullikson factors, as discussed in
Sect. 10.3.3.

The real atomic scattering factors F 0(Q), F ′(ω), F ′′(ω), f1(ω), and f2(ω)
have units of [ number of electrons/atom].

The relationship between n(ω) in (9.1) and F (ω) in (9.3) is given by [364]

1 − n(ω) =
r0λ2

2π

∑

j

ρj Fj(ω), (9.5)

where r0 = e2/4πε0mec2 = 2.818 × 10−15 m/electron is the classical electron
radius, λ is the wavelength, and ρj is the number density of atomic species
j (atoms/length3), so that the right hand side of (9.5) is dimensionless, as
required. Restricting ourselves to a sample with only one atomic species with
density ρa we obtain the simple relations

δ(ω) =
r0λ2

2π
ρa f1(ω), (9.6)

β(ω) =
r0λ2

2π
ρa f2(ω). (9.7)

δ(ω) and β(ω) are dimensionless.

Scattering and reflectivity experiments depend on both the real, f1(ω) =
Z + F ′(ω), and imaginary, f2(ω) = F ′′(ω), parts. In practice, the two scat-
tering factors F ′(ω) and F ′′(ω) are rarely determined independently but one
is obtained from the other by a Kramers–Kronig transformation, discussed



9.3 SemiClassical Treatment of X-ray Scattering by Charges and Spins 355

in Sect. 9.4.4. In particular, F ′′(ω) is typically obtained by an X-ray absorp-
tion measurement since it is directly proportional to the X-ray absorption
cross-section. Experimentally, the real part F ′(ω), is best determined from
a measurement of the polarization rotation using linearly polarized incident
radiation.2

All polarization dependent effects caused by the interaction of an EM
wave with matter discussed earlier can therefore be completely described in
terms of the scattering factors. The task then boils down to determining the
scattering factors in the resonance region where they contain information on
the electronic and magnetic structure of the material. There are two important
types of measurements to determine them.

– Polarization dependent X-ray absorption measurements completely deter-
mine F ′′(ω). This is an absolute intensity measurement3 only the incident
polarization needs to be known.

– Polarization rotation measurements completely determine F ′(ω). This is
an intensity difference measurement involving the polarizations of the in-
cident and transmitted radiation.

9.3 SemiClassical Treatment of X-ray Scattering by
Charges and Spins

9.3.1 Scattering by a Single Electron

The semiclassical treatment of magnetic dichroism starts with nonresonant
X-ray scattering by the charge and spin of a single electron and it provides
an intuitive understanding of the processes involved. Below we will review the
processes of charge and spin scattering by an electromagnetic wave. While we
will give the complete equations for charge scattering, we shall only discuss
the spin scattering channel that is of pure spin origin. Other channels arising
from the spin–orbit coupling or from the fact that charge and spin are both
tied to an electron and that charge motion naturally leads to spin motion will
not be considered here [190].

We assume an EM wave with unit polarization vector ε and fields

E(r, t) = ε E0 e−i(ωt−k·r), (9.8)

2The rotation angle which is related to F ′(ω) and δ is determined from a relative
transmission measurement as a function of polarizer orientation. The ellipticity of
the transmitted polarization, which is related to F ′′(ω) and β can also be determined
by means of polarimetry, yet absorption measurements are easier and more accurate.

3In practice, one often normalizes measured data to the Henke–Gullikson data
[362, 363] outside the resonance regions and therefore one performs only a relative
intensity measurement.
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B(r, t) =
1
c
(k0 × ε)E0 e−i(ωt−k·r). (9.9)

Following convention we have chosen ε to be along the E-vector and we shall
for simplicity assume linear polarization. When this wave is incident on a free
electron of charge −e and spin s, both the charge and the spin are set in
motion. The electron motion follows the oscillating electric field, creating an
electric dipole moment directed along the E-vector

p(t) = − e2

meω2
E0 e−iωt. (9.10)

For spin scattering we consider how the magnetic field acts on the spin. We
know from Chapt. 3 that the spin precesses around a constant magnetic field
according to the torque equation T = h̄ds(t)/dt,

ds(t)
dt

= − e

me
s(t) × B , (9.11)

For a linearly polarized EM wave the magnetic field B(t) = B0e−iωt oscillates
along an axis in space and changes sign periodically. According to (9.11) a sign
change in B(t) leads to a sign change of the torque T = h̄ds(t)/dt direction
and thus the vector s rapidly precesses back-and-forth on a cone around the
axis of B(t), as shown in Fig. 9.1. The component s0 is approximately constant
while the small perpendicular component sd oscillates with the frequency of
the EM wave and represents a magnetic dipole. With m = −2µBsd and
µB = eh̄µ0/2me we obtain for the oscillating magnetic dipole moment

m(t) = i
e2h̄µ0

ωm2
e

s × B0 e−iωt, (9.12)

where s ∼ s0 is the initial spin direction. Whereas the electric dipole oscillates
in the direction of E, the magnetic dipole oscillates in a direction that is
perpendicular to B and s. This leads to different polarization effects in the
scattering as discussed later.

We have now derived the electric and magnetic dipole moments induced
by interaction of a polarized EM wave with the charge and spin of an electron.
This is the first step in the X-ray scattering process. The second step is simply
re-radiation of EM waves by the oscillating electric and magnetic dipoles. The
scattered radiation is determined by the dipolar fields in the spatial region far
from the dipole which have a rather simple spherical wave form eik′r/r given by
Jackson [149]. For convenience we only list the scattered electric fields denoted
E′(t) since the magnetic field can be simply obtained from (5.9). The fields
radiated by an electric dipole p(t) are

E′(t) =
ω2

4πε0c2

eik′r

r
[k′

0 × p(t)] × k′
0 (9.13)
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Fig. 9.1. Precessional motion of a spin in the magnetic field B(t) of a linearly po-
larized EM wave. When the oscillating field changes direction so does the precession
direction of s. If we write s = s0 +sd the perpendicular component sd changes sign
periodically and therefore represents an oscillating magnetic dipole

and those radiated by a magnetic dipole m(t) are

E′(t) = − ω2

4πc

eik′r

r
[k′

0 × m(t)]. (9.14)

It is now simple to derive the scattered field for charge scattering by com-
bining (9.10) and (9.13) and we obtain

E′(t) = − 1
4πε0

e2

mec2

eik′r

r
[k′

0 × E(t)] × k′
0. (9.15)

Similarly we can combine (9.12) and (9.14) to obtain the spin scattering am-
plitude, remembering that c2 = 1/ε0µ0,

E′(t) = i
1

4πε0

e2

mec2

h̄ω

mec2

eik′r

r
[s × (k0 × E(t))] × k′

0. (9.16)

The two scattering processes are illustrated in Fig. 9.2. Together with the
above equations it clearly shows the dipolar nature of the electric and magnetic
scattering processes.

There are important differences in the polarization, phase, and amplitude
of charge and spin scattering. We note the following important points:
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Fig. 9.2. Mechanisms of X-ray dipole scattering from a charge and a spin. Note that
charge scattering preserves the polarization direction while spin scattering rotates
it

– Charge scattering causes a phase shift of π (minus sign in (9.15))
between the incident and scattered fields.

– Spin scattering introduces a phase shift of π/2 (factor i in (9.16))
between the incident and scattered fields.

– The spin scattering amplitude is reduced by a factor of h̄ω/mec2

relative to the charge scattering amplitude, where mec2 = 511 keV.
– Charge scattering conserves the polarization while spin scattering

causes a rotation of the polarization.

We now touch base with conventional scattering theory by defining the
scattering factor of a single electron. We assume that by a suitable analyzer
we can determine the scattered amplitude and polarization direction ε′, which
by geometry is perpendicular to the scattered wave vector k′

0. This allows us
to define the polarization dependent scattering length

f(ε, ε′) = −re−ik′r

E
E′ · ε′ (9.17)

It is in general a complex quantity with the dimension of [length].4
By use of (9.15) we obtain the electric dipole scattering length for a single

electron,
fe(ε, ε′) =

1
4πε0

e2

mec2
ε · ε′ = r0 ε · ε′. (9.18)

4In general, (9.17) should be written using the complex conjugate vector ε′∗

to account for imaginary polarization vectors as are used for circularly polarized
X-rays.
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where r0 = e2/4πε0mec2 = 2.82 × 10−6 nm is called the classical electron
radius or the Thomson scattering length. We shall see later that the area r2

0,
apart from a geometrical factor, gives the X-ray scattering cross-section of a
single electron. It is therefore a very important reference number for describing
the scattering amplitude of all multielectron systems. For magnetic dipole
scattering we obtain from (9.16)

fs(ε, ε′) = −i r0
h̄ω

mec2
s · (k0 × ε) × (k′

0 × ε′). (9.19)

We have conveniently defined the scattering length so that its square is
proportional to the intensity scattered into a solid angle Ω, i.e., the differential
scattering cross-section with dimension [length2/solid angle], given by

dσ

dΩ
= |f(ε, ε′)|2 . (9.20)

Note that by squaring the scattering factor the important phase information
that was contained in the complex form of E′ is lost. This gives rise to the
famous phase problem in X-ray crystallography.

The total scattering cross-section for a single electron is then simply ob-
tained by angular integration of the polarization dependent squared scattering
factor. The integration of the polarization factor ε · ε′ gives a factor of 8π/3
and we obtain for the charge

σe =
∫

|f(ε, ε′)|2dΩ = r2
0

∫ 2π

0

∫ π

0
sin2 θ sin θ dθ dφ =

8π

3
r2
0, (9.21)

which is called the Thomson cross-section and has the dimension [length2].

The Thomson cross-section

σe =
8π

3
r2
0 = 0.665 × 10−28 m2 = 0.665 barn (9.22)

is the total scattering cross-section from the charge of a single electron.
Cross-sections are typically listed in units of barn, where 1 b = 10−28 m2.
Hence one can conveniently remember that the X-ray scattering cross-
section for a single electron is about 1 b.

The spin cross-section is obtained by angular integration of (9.19) as

σs =
8π

3
1
4

(
h̄ω

mec2

)2

r2
0 =

σe

4

(
h̄ω

mec2

)2

. (9.23)

Equations (9.21) and (9.23) clearly show that for typical X-ray energies charge
scattering is stronger by orders of magnitude than spin scattering. For exam-
ple, assuming a photon energy of 10 keV, the factor (h̄ω/mec2)2 = (10/511)2
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is about 4×10−4 and the weak spin scattering signal will only be observable in
very special circumstances. An example is an antiferromagnetic lattice where
the spin structure has a different periodicity than the charge structure and
weak magnetic scattering peaks exist at locations in reciprocal space where
charge scattering peaks are absent [365]. When the photon energy h̄ω is equal
to twice the rest energy of the electron, i.e., h̄ω = 2mec2 = 1.022MeV, we see
that magnetic and charge scattering have the same cross-section.

9.3.2 Scattering by an Atom

It is straightforward to extend the scattering formalism for a single electron
to that for a multielectron atom. We simply assume that the total scattered
amplitude is the sum of the amplitudes of the individual electrons. However,
depending on which electron in the atom the X-ray wave scatters, there will be
a tiny length difference in the path of the incident X-ray wave to the detector.
Although the path length differences will be of the order of the size of the
atom, so is the wavelength of the X-rays. Therefore the small path lengths
differences can affect the scattered amplitude through interference effects. This
effect is taken into account by the so-called atomic form factor

F 0(Q) = − 1
e

∫
ρ(r) eiQ·rdr (9.24)

which makes the scattering process angle dependent, expressed by a wavevec-
tor or momentum transfer Q = k − k′ in the scattering process. The atomic
form factor F 0(Q) is the Fourier transform of the number density of electrons
in the atomic volume, and it is a real number.

The total charge scattering amplitude or scattering length of the atom
is then given by the Thomson scattering length r0 times the atom-specific
form factor times the polarization factor of (9.18), and we obtain for the
nonresonant atomic scattering length

fatom = f0(Q) = r0 (ε · ε′)F 0(Q) . (9.25)

By use of (9.20) this can be written as a differential scattering cross-section
and we have our final result.

The nonresonant differential atomic scattering cross-section can be ex-
pressed by means of the real atomic form factor F 0(Q) with units of
number of electrons per atom and a polarization dependent term as a
multiple of the scattering cross-section of a single electron σe = 8πr2

0/3
according to

(
dσ

dΩ

)

atom

= r2
0 |ε · ε′|2 |F 0(Q)|2 =

3
8π

σe |ε · ε′|2 |F 0(Q)|2. (9.26)
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For Q → ∞, i.e., when the wavelength λ becomes small relative to the
atomic size or when the path difference L becomes large, the waves scattered
from different parts of the atom interfere destructively and cause the form
factor to vanish, F 0(Q) = 0. In the opposite limit, Q = 0, i.e., forward
scattering or when the wavelength λ becomes large relative to the atomic
size, there is no path length difference and different volume elements scatter
in phase. Thus in the soft X-ray region where λ is of the order of 1 nm, the
form factor becomes equal to the number of electrons, f0(Q) = Z.

9.4 SemiClassical Treatment of Resonant Interactions

So far we have not considered the different binding energies of the atomic
electrons, i.e., the shell structure of the atom. In a simple model the massive
positively charged nucleus (+Ze) is surrounded by core and valence electrons
that have distinct binding energies. It is clear that some kind of “resonance
effects” will arise when the X-ray energy is close or equal to these character-
istic energies. A proper description of these effects requires quantum theory.
In a quantum mechanical one-electron picture the incident photon excites a
core electron in an atom to a higher lying empty state. This is the X-ray ab-
sorption step. When the electron decays back into the core shell by emission
of a photon of the same energy we speak of resonant X-ray scattering, more
precisely elastic resonant X-ray scattering. This simple picture shows that X-
ray absorption and resonant X-ray scattering have a lot of physics in common
and we shall connect the two now.

While the proper description and link of these processes indeed requires
a quantum theoretical treatment, historically, it was first treated semiclassi-
cally. The semiclassical formalism cannot be used to calculate X-ray absorp-
tion or resonant scattering cross-sections, but it clearly reveals the link of
absorption and scattering. The most important link comes from the so-called
Kramers–Kronig formalism. It allows measured absorption cross-sections to
be converted to scattering cross-sections and vice versa. Let us take a look at
how this comes about.

9.4.1 X-ray Absorption

The importance of X-ray absorption is evident from Röntgen’s first experi-
ments, as revealed by the image in Fig. 1.14, showing the preferential absorp-
tion in bone over that in tissue. Empirically it was soon found that when
X-rays traverse matter the X-ray intensity, given by (5.17) as I = ε0c|E|2,
decays exponentially. This fact is easily derived if we assume that each sub-
stance has a characteristic length λx which leads to an intensity attenuation
by a factor 1/e. The quantity µx = 1/λx with the dimension of [length−1] is
called the linear X-ray absorption coefficient. Using the geometry of Fig. 9.3
we see that the beam is attenuated by the amount µxdz as it traverses the thin



362 9 Interactions of Polarized Photons with Matter

dz

I0
I(z)

z
Fig. 9.3. Schematic for the derivation of the
absorption law given by (9.28)

sheet of thickness dz at a depth z from the surface. This gives the following
condition for the intensity

−dI(z) = I(z)µx dz . (9.27)
The differential equation dI(z)/dz = −µx I(z) has the solution I(z) =
A e−µxz and by choosing A = I0 as the incident intensity at the point z = 0
we have our final result.

The X-ray absorption intensity is attenuated upon transmission through
a sample with linear absorption coefficient µx, according to

I(z) = I0 e−µxz. (9.28)

The X-ray absorption cross-section σabs is defined as the number of pho-
tons absorbed per atom divided by the number of incident photons per unit
area and hence has the dimension [length2/atom]. The number of photons
absorbed in the thin sheet dz is I(z)µxdz according to (9.27) and the number
incident on the thin sheet per unit area is I(z)ρadz, where ρa [atoms/volume]
is the atomic number density. We have

µx = ρa σabs =
NA

A
ρm σabs (9.29)

where ρm [mass/volume] is the atomic mass density, NA = 6.02214 × 1023

[atoms/mol] is Avogadro’s number, and A [mass/mol] is the atomic mass
number. The quantities ρm, A, and ρa for the 3d transition metals Fe, Co, Ni
are given in Table 10.1.

The linear X-ray absorption coefficient µx = 1/λx has the dimension
[length−1], while the X-ray absorption cross-section σabs has the dimen-
sion [length2/atom].
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Fig. 9.4. Decay of the amplitude E and intensity I ∝ |E|2 of an incident wave
E0 = eikz during transmission through a homogeneous sample with refractive index
n = 1 − δ + iβ and linear X-ray absorption coefficient µx. In the text we show that
β = µx/2k

Let us now take a look what happens as an EM wave enters into a medium
described by a refractive index n = 1−δ+iβ and a linear absorption coefficient
µx. We assume that the wave is normally incident from vacuum (n = 1) onto
the sample along the z direction as shown in Fig. 9.4. For convenience we
normalize the amplitude of the incident wave to 1 and ignore the temporal
dependence, so that E0 = eikz.

Inside the sample the electric field is then given by

E = einkz = eikz
︸ ︷︷ ︸
E0

e−iδkz
︸ ︷︷ ︸
phase shift

e−βkz
︸ ︷︷ ︸
absorption

(9.30)

and we clearly see the complex refractive contribution e−iδkz leading to a
phase shift δkz and the real absorptive contribution which reduces the incident
amplitude E0 by a factor e−βkz. By comparing the intensity attenuation law
(9.28) with the attenuation law that follows from squaring (9.30), i.e.,

|E|2 = |E0|2 e−2βkz , (9.31)

we obtain
β =

µx

2k
=

ρa

2k
σabs. (9.32)

This shows the direct relationship between the X-ray absorption cross-section
and β. By use of (9.7) and k = 2π/λ, where λ is the X-ray wavelength, we
can state as follows.
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The X-ray absorption cross-section is related to the imaginary part of the
refractive index β and the Henke – Gullikson scattering factor f2 according
to

σabs =
4π

λρa
β = 2r0λ f2 . (9.33)

It is important to state the implicit assumption that went into deriving
(9.33). In general, the scattering factor given by (9.2) depends on the scatter-
ing direction or Q. In (9.33) we implicitly assume that F ′′ = f2 is independent
of Q. This is usually a good assumption in the X-ray region where absorption
and resonant scattering are due to electronic excitations of core electrons.
Because of the small core shell radius the path length difference experienced
by a wave that is scattered anywhere within the core volume, will be small.
Therefore the angular or Q dependence will be weak for core shell scattering.
More generally, the Q dependence can be neglected when the wavelength is
large relative to the atomic size since then |Q| ∼ 2π/λ → 0. The latter con-
dition is well satisfied in the soft X-ray region with wavelengths in excess of
1 nm.

9.4.2 Resonant Scattering

In the introduction to this section we have given the quantum mechanical pic-
ture of resonant scattering, consisting of resonant absorption and emission of
a photon. Such a resonant process is semiclassically treated by representing a
multielectron atom as a collection of harmonic oscillators. Each oscillator cor-
responds to a particular quantum mechanical resonant excitation–deexcitation
process of a core shell with binding energy En. Each atom has then a set of
resonance frequencies or energies En = h̄ωn and also characteristic damping
constants Γn. The damping constants describe the dissipation of energy from
the applied field and they have the dimension of frequency with Γn & ωn.
The presence of the damping term indicates that the resonating atom can
absorb energy from the EM wave and we shall see below that the imaginary
term of the scattering cross-section is indeed related to the X-ray absorption
cross-section. For a bound electron with coordinates x the equation of motion
is that of a forced harmonic oscillator,

d2x

dt2
+ Γn

dx

dt
+ ω2

nx = − eE0

me
e−iωt, (9.34)

where we have neglected the much smaller Lorentz term −(e/me)(v × B)
which is of the order v/c. Since the incident EM field E = E0e−iωt impresses
its frequency onto the charge, the displacement x and its time derivatives will
all have the same e−iωt time dependence and the time derivative simply gives
−iω. This yields
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x =
1

ω2 − ω2
n + iωΓn

eE0

me
(9.35)

and with p = − ex and use of (9.13) and (9.17) we obtain for the frequency
dependent scattering length of a bound electron n with resonance frequency
ωn

fn(ω) = r0 Fn(ω) ε · ε′ . (9.36)

The resonance factor Fn(ω) for a core electron n, given by

Fn(ω) =
ω2

ω2 − ω2
n + iωΓn

, (9.37)

is a dimensionless quantity that contains the frequency dependence of the
scattering factor. With the definition σe =

∫
|fe(ω)|2dΩ according to (9.21)

we obtain for the angle integrated cross-section

σscat
n =

8π

3
ω4

(ω2 − ω2
n)2 + (ωΓn)2

r2
0 . (9.38)

At resonance we have ω = ωn and we obtain

σscat
n =

8π

3

(
ωn

Γn

)2

r2
0 =

(
ωn

Γn

)2

σe . (9.39)

The resonant scattering cross-section is enhanced by a factor ω2
n/Γ 2

n ≈ 104

over the nonresonant Thomson cross-section σe.5
For convenience let us rewrite Fn(ω) in terms of energy variables, the

photon energy E = h̄ω, the resonance width ∆n = h̄Γn and the resonance
position En. We then obtain for the resonance factor in (9.37)

Fn(E) =
E2

E2 − E2
n + iE∆n

. (9.40)

Since ∆n & En we can rewrite (9.40) as

Fn(E) ( 1 + F ′
n(E) − iF ′′

n (E) (9.41)

with
F ′

n(E) =
E2

n(E2 − E2
n)

(E2 − E2
n)2 + (E∆n)2

. (9.42)

F ′′
n (E) can be written as a Lorentzian6 and is given by,

5In the limit ω $ ωn $ Γn we obtain Thomson’s result for the scattering factor
given by (9.18) and the scattering cross-section is independent of frequency. In the
opposite limit ω, Γn % ωn we obtain the famous Rayleigh law, where the cross-
section varies with ω4.

6This is derived by using the approximation (E2 − E2
n) = (E + En)(E − En) &

2E(E −En) which follows from the fact that resonance effects are pronounced only
over a small energy range where E ∼ En [362]. As shown in Appendix A.9, the
Lorentzian given by 9.43 is characterized by a position En, full width at half maxi-
mum (FWHM) ∆n, height En/∆n and area πEn/2.
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Fig. 9.5. (a) Resonant process in a simple one-electron picture. It consists of ab-
sorption of a photon through excitation of a core electron (filled circle) to an empty
excited state (open circle), followed by a de-excitation process with photon emission.
The process involves an energy difference En, yielding a single resonance. (b) Energy
dependent resonance factors F ′(E) and F ′′(E) corresponding to an excitation of a
core electron of binding energy En = 1, 000 eV and resonance width ∆n = 10 eV,
according to (9.42) and (9.43)

F ′′
n (E) =

En

∆n

(∆n/2)2

(E − En)2 + (∆n/2)2
. (9.43)

The functions F ′
n(E) and F ′′

n (E) are plotted in Fig. 9.5b for typical soft X-ray
parameters En = 1, 000 eV and ∆n = 10 eV. Because of its lineshape, F ′

n(E)
is often called the dispersion term.

Let us briefly estimate the relative size of the X-ray absorption and reso-
nant X-ray scattering cross-sections. Using the relationship between σabs(E)
and the scattering factor F ′′(E) = f2(E) given by (9.33) we can write for the
case that the photon energy E = h̄ω is near an atomic resonance energy En

σabs
n (E) = 2r0λF ′′

n (E) =
C∗

E
F ′′

n (E) =
C∗

E

En

∆n

(∆n/2)2

(E − En)2 + (∆n/2)2
. (9.44)

Here C∗ = 2h c r0 = 0.70 × 108 b eV. The absorption cross-section for a core
electron in (9.44) has a peak value C∗/∆n. In the soft X-ray region ∆n ( 10 eV
so that the resonant X-ray absorption cross-section is about 107 b. This is to be
compared to the scattering cross-section which according to (9.21) is obtained
as

σscat
n (E) = σe

{
[1 + F ′

n(E)]2 + [F ′′
n (E)]2

}
= σe

E4

(E2 − E2
n)2 + (E∆n)2

.

(9.45)
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with a peak value of σe(En/∆n)2 ∼ 104 b. The resonant X-ray absorption
cross-section is seen to be a factor of ∼103 larger that the resonant X-ray
scattering cross-section.

In our discussion above we have only considered a resonant process asso-
ciated with one particular core shell of binding energy En. When the incident
photon energy is near En the atomic response will be dominated by the shell
n which “resonates.” The other shells will not resonate and simply produce
a constant “background” contribution due to nonresonant scattering. This
background contribution is given by the atomic form factor F 0(Q), defined
in (9.24), which is the first term in the general expression of the scattering
factor given by (9.2). The Q-dependent general formulation of resonant scat-
tering can be written in analogy to the nonresonant case given by (9.26). In
particular, the differential atomic resonant scattering cross-section is given by

(
dσ

dΩ

)scat

= |f(Q, E)|2 = |f0(Q) + f ′(E) − i f ′′(E)|2

= r2
0 |ε · ε′|2 |F 0(Q) + F ′(E) − iF ′′(E)|2 . (9.46)

In the limit of forward scattering we have Q = 0 and ε = ε′ and the form
factor is simply given by the number of atomic electrons Z, i.e., F 0(Q =
0) = F 0 = Z. This is reflected by replacing the factor 1 for one electron in
(9.41) and (9.45) by the factor Z for all electrons in an atom, as assumed in
(9.3). This yields the following expression for the resonant forward scattering
cross-section
(

dσ

dΩ

)scat

Q=0

= r2
0

{
[Z + F ′(E)]2 + [F ′′(E)]2

}
= r2

0

{
[f1(E)]2 + [f2(E)]2

}
.

(9.47)
At the end of this section let us summarize the meaning of the different

quantities used to describe the resonant scattering amplitude.

– The resonant scattering factor F (Q, E) = F 0(Q) + F ′(E) − iF ′′(E)
has the dimension [number of electrons per atom].

– The resonant scattering length f(Q, E) = r0 ε ·ε′F (Q, E) depends on
polarization and has the dimension [length × number of electrons per
atom].

– The Henke–Gullikson factors f1(E) = Z +F ′(E) and f2(E) = F ′′(E)
describe the case of small |Q| and have the dimension [number of
electrons per atom].
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9.4.3 Correspondence between Resonant Scattering and
Absorption

Expression (9.47) gives the resonant forward scattering cross-section in terms
of the real and imaginary parts of the resonant X-ray scattering factor F (E) =
f1(E)− if2(E). This link is particularly useful at long wavelengths where |Q|
is small and the Q-dependence may be neglected, in general. This case applies
for photon energies below a few keV where the wavelength is much larger than
the atomic size and in this “small atom” or “long-wavelength” limit one may
conveniently define an angle-integrated atomic scattering cross-section similar
to that for the single electron case (see (9.21) and (9.22)) by integration of
(9.46) with |Q| = 0 over the polarization factor. In the long-wavelength limit
the total atomic scattering cross-section is given by

σscat(E) =
∫ (

dσ

dΩ

)scat

|Q|=0

dΩ = σe

{
[f1(E)]2 + [f2(E)]2

}
. (9.48)

We have also seen above in (9.33) that the X-ray absorption cross-section
σabs(E) is directly linked to the imaginary part of the X-ray scattering factor
F ′′(E) = f2(E). This important result is usually referred to as the optical
theorem.

The optical theorem states that at long wavelengths (small |Q|) the imag-
inary part of the scattering factor is directly related to the absorption
cross-section according to

σabs(E) = 2 r0 λ Im[F (Q, E)]Q→0 =
C∗

E
f2(E) , (9.49)

where C∗ = 2h c r0 = 0.70 × 108 b eV.

The scattering factors and cross-sections for Fe metal, taken from the work
of Kortright and Kim [353], are plotted in Fig. 9.6 in the vicinity of the L3 and
L2 edges. Note the strong similarity of the lineshape of the scattering factors
with those in Fig. 9.5.

9.4.4 The Kramers–Kronig Relations

The idea is to have a formalism that links both F ′
n(E) and F ′′

n (E) to the X-ray
absorption cross-section σabs

n which is easily measured. While this formalism
naturally emerges from quantum mechanics, which allows transitions to both
bound and continuum states, we shall nevertheless continue with our semi-
classical model. It will yield the same results and lead us to the famous and
important Kramers–Kronig relations.



9.4 SemiClassical Treatment of Resonant Interactions 369

f1

f2

Fe metal

−60

−40

−20

0

20

40

60

80
f

an
d

f
1

2
(N

um
be

ro
f e

le
ct

ro
ns

)

Photon energy (eV)

1

101

102

103

104

105

106

107

Ab
so

rp
tio

n
an

d
Sc

at
te

rin
g

C
ro

ss
Se

ct
io

ns
(b

ar
n/

at
om

)

σscat

σabs

Fe metal

680 690 700 710 720 730 740 680 690 700 710 720 730 740

Fig. 9.6. Left : Measured energy dependent resonance factors f1 and f2 for the L3,2-
edges of Fe metal (2p3/2, 2p1/2 → 3d transitions) [353]. Right : Energy dependent
cross-sections for X-ray absorption (top) and scattering (bottom) calculated from
the scattering factors according to (9.49) and (9.48), respectively

The Kramers–Kronig relation allows the determination of F ′
n(E) from

the measured absorption cross-section σabs
n (ε) according to

F ′
n(E) =

1
C

P

∫ ∞

0

ε2 σabs
n (ε)

(E2 − ε2)
dε . (9.50)

Here C = C∗π/2 = π h c r0 = 1.098 × 108 b eV. In (9.50) we have replaced
the lower integration limit by zero because the cross-section σabs

n (ε) and hence
the integral is zero for ε < En. In practice, the integration is tricky because
of the singularity for ε = E and at a given photon energy E the integral
has to be evaluated by integrating from 0 to E − δ and from E + δ to ∞
and then taking the limit δ → 0. This is indicated by the “P

∫
” symbol,

meaning “principal value” integral. Today this task is readily accomplished
with modern mathematical software packages. In text books two Kramers–
Kronig relations are typically found that relate the two resonance factors. The
first one is obtained from (9.50) by use of the relation σabs

n (ε) = C∗F ′′
n (ε)/ε

in (9.49)

F ′
n(E) =

2
π

P

∫ ∞

0

εF ′′
n (ε)

(E2 − ε2)
dε , (9.51)

and the second one allows the opposite transformation
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F ′′
n (E) =

2E

π
P

∫ ∞

0

F ′
n(ε)

(E2 − ε2)
dε . (9.52)

Again, the “P
∫

” symbol means principal value integral.

9.5 Quantum-Theoretical Concepts

9.5.1 One-Electron and Configuration Pictures of X-ray
Absorption

In the simplest picture of resonant X-ray absorption a photon transfers its en-
ergy to a core electron and the electron is excited into an unoccupied electronic
state. In this so-called one-electron picture we simply follow what happens to
the photoelectron. This is also referred to as the active electron approxima-
tion [189] since we ignore what happens to all other “passive” electrons in
the atom during the excitation process. Although this picture is not entirely
correct since the “passive” electrons are not passive, it is quite intuitive, and
because of its simplicity the picture is often used in the X-ray absorption
literature.

Let us illustrate the one-electron picture for the L-edge X-ray absorption
spectrum of a 3d transition metal atom, as shown in Fig. 9.7a. In the “initial
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Fig. 9.7. Description of resonant L-edge X-ray absorption in two pictures, (a)
one electron picture and (b) d9 configuration picture. Each energy level is labeled
by its quantum numbers n, l, j = l ± s. In (a) the quantum numbers label one-
electron states, in (b) they label hole states for the special case of a 3d9 electronic
ground state, containing nine electrons or equivalently one hole. The two pictures
are equivalent for the description of the electronic transitions
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state” or 2p core state, the active electron has an angular momentum l = 1 and
spin s = 1/2, so that the spin–orbit coupling, discussed in Sect. 6.4, produces
two energy states with j = l ± s. The four substates of 2p3/2 with j+ = 3/2
experience an energy shift Ej+ = ζl/2 and the two substates of 2p1/2 with
j− = 1/2 are shifted by Ej− = −ζl, with the separation given by the Landé
interval rule Ej+ − Ej− = ζl j+. In the “final state” the active electron is
located in the 3d shell with angular momentum l = 2 and spin s = 1/2. The
spin–orbit coupling again produces two energy states with j = l ± s, i.e., the
states 3d5/2 with j = 5/2 and 3d3/2 with j = 3/2, as shown in Fig. 9.7a.
Because the core shell is more compact its spin–orbit coupling constant ζ2p

is considerably larger (of order 15 eV) than that of the valence shell ζ3d (of
order 50 meV), and the 2p3/2 − 2p1/2(L3 −L2) splitting dominates, as seen in
the experimental spectrum of Fe metal in Fig. 9.6.

The one-electron picture of Fig. 9.7a is misleading, however, especially to
the photoemission community, in that it depicts the spin–orbit splitting of the
p core shell as an “initial state” effect. It is clear that in reality the p shell is
filled in the ground state and there is therefore no observable effect of the spin–
orbit interaction. In the proper description of the X-ray absorption process,
based on a configuration picture, an atom is excited from a ground or initial
state configuration to an excited or final state configuration. In discussing
transitions between configurations one typically omits all closed subshells since
they are spherically symmetrical and their net angular momentum is zero
[182]. Listing only the active shells, resonant L-edge absorption is described
by an initial state electron configuration 2p6dn and a final state configuration
2p5dn+1.

For transition metal atoms with configurations 1 ≤ n ≤ 9 it is particu-
larly easy to deal with the configuration d9 in X-ray absorption, which is the
configuration for Cu2+ (see Fig. 10.1a). In this case the initial state contains
a filled p6 shell and nine electrons in the d shell. A d9 electron configuration
is equivalent to a d1 hole configuration and by taking proper care of signs it
is often more convenient to carry out calculations in the corresponding hole
rather than the electron picture. We shall do so in the following. Because of
the cancellation of angular momenta in a filled shell we can simply describe
the initial state as a d1 hole configuration. The final state p5d10 has a closed
d-shell and a p5 electron or p1 hole configuration. Hence for a d9 ground state,
L-edge spectra in a configuration hole picture are described by a transition
from the configuration d1 to p1. The spin–orbit splitting of the p shell is
therefore properly described as a final state effect, as shown in Fig. 9.7b. We
see that the two pictures in Fig. 9.7 are completely equivalent in describing
the electronic transitions. Note that the energy order of the j states is inverted
in the two schemes because electrons and holes have opposite spin.7

7This is expressed by Hund’s third rule stating that the electronic ground state
has the minimum possible j value for a less than half filled shell and the maximum
possible j value for a more than half full shell.
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In general, the one electron and configuration pictures are not equivalent.
Differences arise when open shells with two or more holes or electrons need
to be considered. In such cases exchange and correlation effects between the
particles may be large as discussed in Chap. 7. Such effects lead to multiplet
structure in the ground state, i.e., between the d electrons, as well as in the
excited state, between the core p and valence d electrons. The simplest two-
particle case is that of a p6d8 ground state configuration leading to a p5d9

excited state. This situation, which is encountered in NiO, can also be de-
scribed (taking proper care of signs) by the equivalent case of a ground state
d2 hole configuration and an excited state pd hole configuration. Hence in
both the ground state and excited states we have to consider the exchange
and correlation between two holes. We shall discuss multiplet effects in more
detail in Sect. 9.7.8.

Next we shall discuss how to calculate transition probabilities associated
with X-ray excitation and de-excitation processes.

9.5.2 Fermi’s Golden Rule and Kramers–Heisenberg Relation

The X-ray absorption and X-ray scattering cross-sections are both calculated
by consideration of the time-dependent perturbation of the sample by the
EM field. The time-dependent EM field induces transitions between an initial
state |i〉 and final state |f〉, where both states contain an electronic and a
photon part. If the system evolves directly from state |i〉 to |f〉 we speak of
a first-order process, if some intermediate states |n〉 are involved we call it a
second-order process. As illustrated schematically in Fig. 9.8, X-ray absorption
is a first order and resonant X-ray scattering a second-order process.

The associated formalism was derived by Kramers and Heisenberg [366]
and by Dirac [367]and the transition probability up to second order can be
written as follows.

The transition probability per unit time, Tif , from a state i to a state f
is given up to second order by,

Tif =
2π

h̄

∣∣∣∣∣ 〈f |Hint|i〉 +
∑

n

〈f |Hint|n〉〈n|Hint|i〉
εi − εn

∣∣∣∣∣

2

δ(εi−εf )ρ(εf ). (9.53)

The sum is over all possible states of energy εn. The dimension of Tif is
[time−1].

For X-ray absorption and resonant elastic scattering (including magnetic
resonant scattering) the interaction Hamiltonian consists of the product of
the momentum operator p and the vector potential A according to [147,178,
368,369]
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Fig. 9.8. Description of X-ray absorption and resonant elastic X-ray scattering as
transitions between quantum mechanical states which are products of electronic and
photon states. The X-ray absorption process corresponds to a first-order transition
process between an initial state |i〉 and an excited state |f〉. The resonant scattering
process is a second-order process that involves intermediate states |n〉. The system
can pass through the intermediate states in a virtual sense that does not require
energy conservation until the final state |f〉 is reached

Hint
e =

e

me
p · A . (9.54)

Since in free space E = −∂A/∂t this expression means that the electronic
transition is driven by the electric field E of the EM wave. The states and
energies in (9.53) reflect those of the combined photon plus atom system. The
wave functions |i〉 and |f〉 are products of electronic and photon states and
the energies are sums of electronic and photon energies. The quantity ρ(εf )
is the density of final states per unit energy.

The first-order term in (9.53) was originally derived by Dirac [367] and
called by Fermi the “Golden Rule No. 2” [370]. It is therefore often called by
the somewhat misleading name Fermi’s golden rule. The second-order term,
referred to by Fermi as “Golden Rule No. 1” [370], was originally derived
by Kramers and Heisenberg [366] and today is usually called the Kramers–
Heisenberg relation. It gives the transition probability from |i〉 to |f〉 via a
range of virtual intermediate states |n〉. The system can pass through the in-
termediate states in a virtual sense that does not require energy conservation
until the final state is reached. This energy conservation is reflected by the
delta function that involves only the initial and final states. With the dimen-
sions of h̄ [energy × time], ρ(εf ) [1/energy] and |Hint|2 [energy2], we obtain
the dimension of Tif as [1/time].

The total cross-section is obtained from the transition probability per unit
time Tif by normalization to the incident photon flux Φ0.

σ =
Tif

Φ0
. (9.55)
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The numerator has the dimension [1/time] and the incident photon flux Φ0,
given by (5.18), has the dimension [1/(time × area)], so that σ has the di-
mension [area].

The differential cross-section dσ/dΩ reflects the number of transitions per
unit time into the solid angle dΩ and is given by

dσ

dΩ
=

Tif

Φ0 dΩ
. (9.56)

9.5.3 Resonant Processes in the Electric Dipole Approximation

We now want to give the basic quantum mechanical expressions used for the
calculation of polarization dependent X-ray absorption and resonant scatter-
ing processes. We would like to calculate the intensities of strong resonances
like those associated with 2p3/2, 2p1/2 → 3d transitions in Fig. 9.6, commonly
called “white lines” for historical reasons. In the early days, when photo-
graphic plates were used as detectors, the strong absorption resonances ap-
peared etched into the black detector emulsion as white lines. In the following
we shall adopt this terminology and often speak of the “white line intensity.”

By quantizing the electromagnetic field [371] one can separate the matrix
elements in (9.53) into electronic and photon parts, evaluate the photon part,
and obtain the matrix elements in terms of transitions between two electronic
states |a〉 and |b〉. The relevant matrix elements have the general form

M = 〈 b|p · ε eik·r|a〉 , (9.57)

where p is the electron momentum vector, ε the unit photon polarization vec-
tor, and k the photon wave vector. For the purpose of the present book it
is sufficient to stay within the dipole approximation. Within this approxima-
tion one eliminates the k-dependence of the matrix element and rewrites the
electron momentum operator p in terms of the length operator r according to

M = 〈 b|p · ε (1 + ik · r + ...)|a〉 ( 〈 b|p · ε|a〉 = imeω〈 b| r · ε|a〉 (9.58)

As before, me is the electron rest mass and ω = ωb −ωa the photon frequency
associated with the transition from state |a〉 to state |b〉. The dipole approx-
imation assumes that the size of the absorbing atomic shell is small relative
to the X-ray wavelength, i.e., |r| & 1/|k| = λ/2π, so that the electric field
which drives the electronic transition is constant over the atomic volume. In
our case we are interested mostly in the photon energy range h̄ω ≤ 1, 000 eV
corresponding to a wavelength λ ≥ 1.2 nm and transitions from the 2p core
shell of radius |r| ( 0.01 nm so that we have |r| ( 0.01 nm & λ/2π ( 0.2 nm,
and it is reasonable to use the dipole approximation.

In the dipole approximation the X-ray absorption cross-section is given by

σabs = 4π2 e2

4πε0h̄c
h̄ω |〈b| ε · r|a〉|2 δ[h̄ω − (Eb − Ea)] ρ(Eb) , (9.59)
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where the density of final states per unit energy, ρ(Eb), depends on the nor-
malization of the electronic wavefunctions |a〉 and |b〉. The X-ray absorption
resonance intensity, Ires, is the energy integral over the cross-section and if
we assume that the functions |a〉 and |b〉 have been volume normalized to
unity one obtains the following expression that will be used throughout this
chapter [190,372].

The polarization dependent X-ray absorption resonance intensity in the
dipole approximation is given by

Ires = A |〈b| ε · r|a〉|2 . (9.60)

The proportionality factor, given by

A = 4π2 e2

4πε0h̄c
h̄ω (9.61)

contains the dimensionless fine structure constant αf

αf =
e2

4πε0h̄c
=

1
137.04

. (9.62)

The intensity Ires has the dimension [length2× energy] and is usually
expressed in units of [Mb eV], where 1Mb = 10−22 m2.

If there are more than one discrete final state we need to sum the intensities
associated with different final states. This is often expressed as a separate
density of final state factor in the equation for the transition intensity, but we
have included it in (9.60) into our final state description.

We see that the calculation of Ires boils down to the evaluation of the
polarization dependent transition matrix element 〈b| ε · r|a〉. In the following
we may therefore loosely refer to the squared matrix element with dimension
[length2] as the “transition intensity.” The true intensity given by (9.60) has
the dimension [energy × length2].

Similarly, one can also evaluate the second-order term in (9.53) to ob-
tain an expression for the resonantly scattered X-ray intensity. In the dipole
approximation one again neglects the k dependence in the transition ma-
trix elements.8 By using the short hand notation for the resonant energies
En

R = En − Ea and denoting the finite full width at half maximum (FWHM)
of the intermediate state energy distributions as ∆n one obtains the following
differential resonant scattering cross-section.

8The same result is also obtained by assuming forward scattering, i.e., k1 = k2.
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The polarization dependent differential resonant X-ray scattering cross-
section in the dipole approximation is given by

(
dσ

dΩ

)scat

= |f(h̄ω)|2 =
h̄2ω4

c2
α2

f

∣∣∣∣∣
∑

n

〈a|r · ε∗2|n〉〈n|r · ε1|a〉
(h̄ω − En

R) + i(∆n/2)

∣∣∣∣∣

2

. (9.63)

Here αf is the dimensionless fine structure constant and ε1 and ε2 are the
unit polarization vectors of the incident and scattered radiation.

In the following we shall establish the form of the polarization dependent
dipole operator ε · r and the form of the wavefunctions |a〉 and |b〉.

9.5.4 The Polarization Dependent Dipole Operator

According to (9.60) the polarization dependent dipole operator is given by the
dot product ε · r. Here r is the electron position vector, given in Cartesian
coordinates by

r = xex + yey + zez . (9.64)

We are particularly interested in the X-ray absorption intensity for pure lin-
ear or circular polarization since we have seen in Sect. 4.4.1 that such pure
polarization states can be produced today by suitable undulators. We have
also discussed their mathematical description in Sect. 5.4. Here we want to
distinguish cases of different polarization and different X-ray incidence direc-
tions in the (x, y, z) coordinate system of the sample. We express the angular
momentum as qh̄ so that q = 0 refers to linearly polarized light and q = ±1,
or q = ± for short, to circularly polarized light.

For linearly polarized X-rays, the direction of the E vector determines the
X-ray absorption intensity, and for the three extreme cases where E is aligned
along x, y, and z we have the corresponding real unit polarization vectors

ε0
x = εx = ex ε0

y = εy = ey ε0
z = εz = ez . (9.65)

For circularly polarized X-rays we consider the cases where the angular
momenta, which are parallel to the X-ray wavevector k, are aligned along
x, y, and z. For circularly polarized X-rays with k ‖ z we write the unit
polarization vector in accordance with (5.35) and (5.36) as

ε±z = ∓ 1√
2
(εx ± i εy), (9.66)

and for propagation along x or y we use a similar notation according to a
right handed coordinate system, e.g., for k ‖ x

ε±x = ∓ 1√
2
(εy ± i εz). (9.67)
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The dipole operators P q
α = ε · r = εq

α · r in (9.60) can then be rewritten in
terms of the familiar spherical harmonics Yl,m(θ,φ) [181, 182], and for α = z
we have

P±
z = ε±z · r = ∓ 1√

2
(x ± iy) = r

√
4π

3
Y1,±1, (9.68)

P 0
z = εz · r = z = r

√
4π

3
Y1,0. (9.69)

Because of the prefactors of the spherical harmonics, it is more convenient to
express the dipole operators in terms of Racah’s spherical tensor operators.

Racah’s spherical tensor operators are defined as [181],

C(l)
m =

√
4π

2l + 1
Yl,m(θ,φ) ,

(
C(l)

m

)∗
= (−1)mC(l)

−m . (9.70)

We have listed these spherical tensors for 0 ≤ l ≤ 4 in Table A.3. The
polarization dependent electric dipole operators are related to Racah’s tensor
operators of rank l = 1, and we have for example

P 0
z = r C(1)

0 = r cos θ = z, (9.71)

P±
z = r C(1)

±1 = ∓ r
1√
2

sin θ e±iφ = ∓ 1√
2

(x ± iy). (9.72)

The dipole operators for all polarization cases (q = 0,±1) and orientations of
the principal axes α = x, y, z of our sample coordinate system are listed in
Table A.4. They can be written in the general form

P q
α/r =

∑

p=0,±1

eq
α,pC

(1)
p = eq

α,1C
(1)
1 + eq

α,0C
(1)
0 + eq

α,−1C
(1)
−1 , (9.73)

where the coefficients aq
α,p may be imaginary with

∑
p |eq

α,p|2 = 1. The above
discussion leads to the following form of the matrix element in (9.60) in terms
of the polarization dependent dipole operators P q

α,

〈 b|ε · r|a〉 = 〈b|P q
α|a〉. (9.74)

We can then rewrite (9.60) in its final form, to be used from now on.

The X-ray absorption resonance intensity for different X-ray propagation
directions α and polarization states q can be written as

Ires = A |〈b|P q
α|a〉|2, (9.75)

where A is given by (9.61) and the polarization dependent dipole oper-
ators P q

α with α = x, y, or z and q = +1, 0, or −1 are listed in Table
A.4.
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9.5.5 The Atomic Transition Matrix Element

The calculation of the transition matrix element depends on the wavefunctions
|a〉 and |b〉. In a one-electron picture, the “initial state” |a〉 is given by the core
electron wavefunction. The “final state” |b〉 consists of the valence electron
wavefunctions.

The simplest wave functions are the atomic spin orbitals of the central
field form given by (6.12) or

Rn,l(r)Yl,ml χs,ms = |Rn,l(r); l,ml, s,ms〉, (9.76)

where the Dirac bra–ket notation is given on the right. Rn,l(r) is the radial
component of a shell n with angular momentum l, the spherical harmonics
Yl,ml characterize the angular part and χs,ms is the spin part. We shall see
below that a general wavefunction appropriate for an atom in a solid, i.e.,
a ligand field or band state that includes bonding, exchange and spin–orbit
effects, can in fact be written as a linear combination of atomic basis functions
of the form (9.76). The atomic functions (9.76) are therefore of paramount
importance and we shall first take a look at the calculation of transition matrix
elements with such functions.

In a one-electron picture a “initial” state wavefunction for a core shell n
with angular momentum c is given by

|a〉 = |Rn,c(r); c,mc, s,ms〉 , (9.77)

where Rn,c(r) is the radial component of the core shell with principal quantum
numbers n and orbital quantum number c, and |s = 1/2,ms〉 describes the
spin state of the electron.

The “final” state will be of the form

|b〉 = |Rn′,l(r); l,ml, s,m
′
s〉 , (9.78)

where Rn′,l is the radial component of the valence state of shell n′ with angular
momentum l. The exclusion principle does not allow electrons to be excited
into occupied states, and hence the final states are determined by the empty
states in the l subshell. The task before us is then to calculate the transition
matrix element

〈b|P q
α |a〉 = 〈Rn′,l(r); l,ml, s,m

′
s|P q

α |Rn,c(r); c,mc, s,ms〉, (9.79)

with the direction and polarization dependent dipole operators P q
α given in

Table A.4. We see from (9.73) that the matrix element in (9.79), in general,
involves a sum over matrix elements of the Racah operators C(1)

q . For a tran-
sition from a core shell with angular momentum c to an unfilled valence shell
with angular momentum l we obtain
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〈b|P q
α |a〉 = δ(m′

s,ms)︸ ︷︷ ︸
spin

〈Rn′,l(r)|r|Rn,c(r)〉︸ ︷︷ ︸
radial

∑

mc,ml,p

eq
α,p 〈 l,ml|C(1)

p |c,mc〉,

︸ ︷︷ ︸
angular

(9.80)

where the coefficients eq
α,p are those in Table A.4. The matrix elements

factors into spin, radial, and angular parts. We see that the dipole operator
does not act on the spin and only transitions are allowed that preserve the
spin. The polarization dependence is entirely contained in the angular part of
the wavefunctions. The radial part determines the angle integrated transition
strength.

The Radial Part of the Atomic Transition Matrix Element

The radial dipole matrix element is given by

R = 〈Rn′,l(r)|r|Rn,c(r)〉 =
∫ ∞

0
R∗

n′,l(r)Rn,c(r) r3dr , (9.81)

where {n, c} and {n′, l} describe the shell and subshell quantum numbers of
the initial and final states, respectively.

The radial parts of the wavefunctions Rnl(r) obey the normalization con-
dition ∫ ∞

0
|Rnl(r)|2 r2 dr = 1 . (9.82)

In order to picture the radial extent of the transition matrix element R given
by (9.81) we compare in Fig. 9.9 the function r3R2p(r)R3d(r) for a 2p → 3d
transition to the functions r2R2

nl(r) for nl = 1s, 2p, 3d, using parameterized
radial functions given by Griffith [228] for the Mn2+ ion.

The localization of R in the core region of the atom leads to some fun-
damental differences between X-ray absorption spectroscopy (XAS) and op-
tical spectroscopy. Because of the small energy (of order of 1 eV) of optical
transitions, electronic excitations occur only between filled and empty valence
states. In many systems the probed valence states are extended states which
are not localized on a specific atom and the intensity of optical transitions
is determined by the group theoretical symmetry of the valence states, dic-
tated by the molecule or crystal. In contrast, XAS is based on transitions
involving core electrons which are localized on specific atoms. The function
Rcore Rvalence r3 which determines the integral R has its major contribution
close to the atomic core, as shown in Fig. 9.9. It gives X-ray absorption spec-
troscopy its elemental specificity and local character. XAS may be viewed
as an inverted linear combination of atomic orbitals (LCAO) scheme. The
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Fig. 9.9. Top: Radial functions r2 R2(r) for the 1s, 2p, and 3d orbitals of the Mn2+

ion, representing the probability of finding the electron at a distance r from the
nucleus. Their maxima are often associated with the Bohr radii. Also plotted is
the function R2p(r) R3d(r) r3 (thick solid line), describing the localization of the
2p → 3d transition matrix element, according to (9.81). All functions are plotted for
the distance r from the atomic center and the amplitudes have been normalized to
1. The plotted Slater type functions are taken from Griffith [228]

LCAO scheme composes molecular functions from atomic functions, XAS de-
composes the molecular functions into its atomic constituents. This is often
referred to as the one center approximation.

The strong localization of the core shell makes X-ray absorption spec-
troscopy element-specific and sensitive to the valence shell properties
within the atomic volume.

The Angular Part of the Atomic Transition Matrix Element

The angular part of the transition matrix element (9.80) is determined by
matrix elements of the form 〈 l,ml|C(1)

q |c,mc〉. For convenience, we have tab-
ulated the nonzero matrix elements in Table 9.1.

By inspection of the nonvanishing matrix elements we can read off the
dipole selection rules.
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Table 9.1. Nonvanishing angular momentum dipole matrix elements 〈L, M |C(1)
q |

l, m〉. The matrix elements are real, so that 〈L, M |C(1)
q |l, m〉∗ = 〈L, M |C(1)

q |l, m〉
= (−1)q〈l, m|C(1)

−q |L, M〉. Nonlisted matrix elements are zero.a

〈 l + 1, m|C(1)
0 |l, m〉 =

√
(l + 1)2 − m2

(2l + 3)(2l + 1)

〈 l − 1, m|C(1)
0 |l, m〉 =

√
l2 − m2

(2l − 1)(2l + 1)

〈 l + 1, m + 1|C(1)
1 |l, m〉 =

√
(l + m + 2)(l + m + 1)

2(2l + 3)(2l + 1)

〈 l − 1, m + 1|C(1)
1 |l, m〉 = −

√
(l − m)(l − m − 1)

2(2l − 1)(2l + 1)

〈 l + 1, m − 1|C(1)
−1 |l, m〉 =

√
(l − m + 2)(l − m + 1)

2(2l + 3)(2l + 1)

〈 l − 1, m − 1|C(1)
−1 |l, m〉 = −

√
(l + m)(l + m − 1)

2(2l − 1)(2l + 1)

aThe matrix elements 〈 l′, m′|C(1)
q |l, m〉 = ck=1(l′m′; lm) are tabulated by Condon

and Shortley and by Slater [373]. Care has to be taken with the direction of the tran-

sition because it affects the sign according to ck(l′m′; lm) = (−1)m−m′
ck(lm; l′m′).

The dipole selection rules for transitions between states of the form
|n, l,ml, s,ms〉 are:
∆l= l′ − l=±1,
∆ml =m′

l− ml =q=0,±1,
∆s=s′−s=0,
∆ms =m′

s−ms=0.
where qh̄ is the X-ray angular momentum.

9.5.6 Transition Matrix Element for Atoms in Solids

Since solids, not atomic systems, are of main interest in magnetism research
we need to discuss the calculation of the transition matrix element with more
realistic initial and final state wavefunctions. Fortunately, within reasonable
approximations, the wavefunctions of bonded atoms can be linked to the form
of the atomic matrix element (9.80) because all wavefunctions can be written
as linear combinations of the atomic functions, as seen from the form of the
LF wavefunctions (7.30) and the k-dependent band functions (7.22) or (7.23).
If we use a tight binding band function written as
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|ψi(k, r)〉 = |Rn,L(r)〉 |φi(k)〉

= |Rn,L(r)〉
+L∑

M=−L

ai,M (k) |LM χ+〉 + bi,M (k) |LM χ−〉, (9.83)

with energy Ei(k), the X-ray absorption transition intensity is given by

Iq
α = A

∑

Ei>EF
i,k,m,j

|〈ψi(k, r)|P q
α |ϕj

m(r)〉|2

= AR2
∑

Ei>EF
i,k,m,j

∣∣∣∣∣

〈
φi(k)

∣∣∣∣∣
∑

p=0,±1

eq
α,pC

(1)
p

∣∣∣∣∣ cmχj

〉∣∣∣∣∣

2

. (9.84)

By making use of the fact that the dipole operator does not act on spin we can
separately sum over the orthogonal spin states χ+ and χ− and the resonance
intensity takes the form

Iq
α = AR2

∑

Ei>EF
i,k,m

∣∣∣∣∣∣

∑

p,M

ai,M (k) eq
α,p 〈LM |C(1)

p |cm〉

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

∑

p,M

bi,M (k) eq
α,p 〈LM |C(1)

p |cm〉

∣∣∣∣∣∣

2

. (9.85)

Although the band states contain wavevector-dependent expansion coef-
ficients, the matrix elements involve only atomic orbitals. We shall see later
that the summation over k, which in general is done by computer, can be
done analytically for the case that one averages over all polarization states q
or over three X-ray incidence angles α = x, y, z. This yields an important sum
rule that allows the determination of the number of unoccupied states.

Another important form of the wavefunctions are the spin–orbit basis func-
tions |Rn,l(r); l, s, j,mj〉. For example, as shown in Fig. 9.6, the L-edge spectra
of the transition metals have 2p core spin–orbit splitting of about 15 eV, and
one therefore needs to carry out the evaluation of the transition matrix ele-
ment with the 2p3/2 and 2p1/2 eigenfunctions of the spin–orbit Hamiltonian
(see Sect. 6.4.3 and 6.6.1). The angular parts of the spin–orbit coupled func-
tions |l, s, j,mj〉 can be expressed as a linear combination of the uncoupled
functions |l, s,ml,ms〉 according to

|l, s, j,mj〉 =
∑

ml,ms

Cml,ms;j,mj |l, s,ml,ms〉, (9.86)

where the Cml,ms;j,mj are the famous Clebsch–Gordon coefficients,9 writ-
ten in Slater’s notation [225]. The radial parts are the same as before. For

9They are readily calculated by computer programs, e.g., Mathematica.
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convenience, we given the s, p, and d functions in the bases |l, s, j,mj〉 and
|l, s,ml,ms〉 in Table A.5. We see that the calculation of the transition matrix
element with spin–orbit coupled functions is just a little more complicated
but follows the form (9.80).

Some Important General Rules

The X-ray absorption process for an atom in different environments and the
states involved are illustrated Fig. 9.10. We have the following important rules:

– The sum over all basis states of a shell with angular momentum 6 is spher-
ically symmetric. Examples of basis states are the spherical harmonics,
valence orbitals or spin–orbit states shown in Fig. 9.10.

– The one-electron j = 6±s manifolds created by the spin–orbit interaction
are each spherically symmetric.

– The t2g and eg manifolds (see Fig. 9.10) of the d orbitals are each spheri-
cally symmetric.

– For a spherically symmetric shell the associated transition intensity does
not depend on the choice of the basis states.

– If at least two of the three parts of the dipole matrix element 〈 b |P q
α | a 〉 are

spherically symmetric, the squared matrix element or intensity becomes
independent of the direction α and polarization q.

In general, the measured X-ray absorption spectra of atoms in magnetic solids
depend on three key parameters:

– The sample orientation
– The X-ray polarization
– The external magnetic field

From a pedagogical point of view it is best to distinguish and consecutively
discuss two general cases. The first case corresponds to measurements that
average over all sample orientations relative to the X-ray beam. In practice,
this is simply accomplished by averaging over three orthogonal measurements.
The significance of this procedure, discussed later, is that the so-determined
spectral intensities are directly related by simple sum rules to important phys-
ical quantities per atom, like the number of empty valence states, the spin
magnetic moment and the orbital magnetic moment.

The second case is more complicated and corresponds to a single mea-
surement that depends on the orientation of the sample. Now the measured
spectral intensities no longer correspond to quantities that are integrated over
the atomic volume but they may also contain anisotropic, i.e., direction de-
pendent, contributions. For example, if the spin density in the atomic volume
is not spherical, the XMCD intensity measured for different sample orienta-
tions will not simply determine the (isotropic) spin moment but rather the
anisotropic spin density.



384 9 Interactions of Polarized Photons with Matter

Fig. 9.10. Schematic of electronic core and valence states, and dipole transitions
between them in a one-electron model. (a) Atomic case, illustrating a transition from
a filled core state |φi

c〉 in shell n, given by (9.77), to an empty valence state |φj
L〉 in

shell n′, described by (9.78). Both states are labeled by their angular momenta l = c
and l = L and there are 2(2l + 1) substates or spin orbitals within each manifold
l. The electric dipole operator P q

α is one of the operators given in Table A.4, where
q = +1, 0,−1 labels the possible angular momentum transfer and α = x, y, z the
direction. (b) Ligand field case for the case of p → d transitions (L-edge). The filled
core shell is spherically symmetric and can be described either in a basis of spherical
harmonics or p orbitals given in TableA.2. The valence states are linear combinations
of the atomic states (9.77) and (9.78) and correspond to the d orbitals in Table A.2.
The upper two d orbitals are the eg, while the lower three are the t2g orbitals. Each
set is spherically symmetric. (c) States for a transition metal. The valence shell
is represented by spin-up and spin-down d states with a total number of empty d
states above the Fermi energy EF, called the number of valence holes, Nh, (“up”
plus “down” spins). The core state is assumed to be spin–orbit split into 2p3/2 and
2p1/2 states, giving rise to the L3 and L2 edges in experimental spectra, respectively.
Note that each core manifold j = 3/2 and j = 1/2 is spherically symmetric

For these reasons we shall separately discuss the two cases later. We will
apply the theoretical concepts developed above for the calculation of angle
integrated and polarization dependent transition intensities. In the process the
link between the transition intensities and physical parameters will emerge.
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9.6 The Orientation-Averaged Intensity: Charge and
Magnetic Moment Sum Rules

In understanding the significance of the resonance intensity in X-ray absorp-
tion spectra it is best to first discuss measurements that eliminate magnetic
effects, if present, and give charge-related information only. In the following
we shall specifically discuss the important case of the L-edge spectra of transi-
tion metals. We will show that such spectra, properly averaged over all sample
orientations yield the total number of unoccupied valence states or holes.

9.6.1 The Orientation-Averaged Resonance Intensity

For our discussion it is useful to start by defining an X-ray absorption res-
onance or white-line intensity that is independent of sample orientation. We
shall assume that our sample has higher than monoclinic symmetry so that
the unit cell axes are orthogonal. One can then define an orientation averaged
absorption intensity as the average over three orthogonal measurements. If
we use the notation (9.73) (also see Table A.4) for our polarization (q) and
X-ray propagation (α) dependent dipole operator P q

α, one can show as done in
Sect. 9.6.2, that the average may involve either a sum over q or α according to

〈I〉 =
1
3
(
Iq
x + Iq

y + Iq
z

)
=

1
3
(
I−1
α + I0

α + I+1
α

)
. (9.87)

Let us illustrate this average for different cases. The simplest case is a
nonmagnetic polycrystalline sample. In this case the polarization of the in-
cident X-rays does not matter since the electric field vector E that drives
the electronic transition is oriented at random relative to the crystallographic
directions of the sample. The recorded spectrum therefore corresponds to a
true angular average.

For nonmagnetic single crystals with higher than monoclinic symmetry
the same angle-averaged intensity can be obtained by averaging over three
orthogonal measurements according to (9.87). For the special case of cubic
symmetry the measured spectral intensity is isotropic and a single measure-
ment suffices. For lower symmetry, the required average over α depends on
the polarization labelled by q. For linear polarized X-rays (q = 0) one averages
over spectra for E along the x, y, and z axes of the crystal. For natural light
or circularly polarized light (q = ±1)10 one averages over three measurements
with k along x, y, and z. For a fixed crystalline direction α the average over
q (0,±1) ensures that the E-vector can equally drive the transition along
the x, y, and z axes of the crystal (see Table A.4), and therefore an effective
average is performed.

10 For circularly polarized X-rays the photon spin does not matter for nonmagnetic
samples. To the absorbing charge the light looks naturally polarized with E lying
somewhere in the plane perpendicular to k.
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For magnetic single crystals one can use the same method as for nonmag-
netic single crystals if one uses linearly polarized light. For circularly polarized
X-rays one must eliminate magnetic effects by saturating the sample with the
field parallel and antiparallel to the direction α and summing over the two in-
tensities. The angle-averaged resonance intensity obeys an important intensity
sum rule that can be stated as follows.

The angle-averaged intensity of the combined L3 and L2 resonances is
directly proportional to the total number of d states above the Fermi
level, i.e., the number of holes in the d band.

This is demonstrated in Fig. 9.11a for the L3,2 white-line intensity of the
absorption spectra of the pure metals Fe, Co, Ni, and Cu. The shown spectra
were recorded for polycrystalline and magnetically not aligned samples so that
polarization dependent effects are automatically averaged out. Of interest is
the white-line resonant intensity associated with 2p → 3d transitions, shown
shaded in the inset of Fig. 9.11a, which sits on a step-like background due to
nonresonant excitation channels. The nonresonant channels produce steps at
the L3 and L2 positions with a step ratio of 2 to 1 reflecting the number of
core electrons in the p3/2 and p1/2 core states.

The white line intensity near threshold dramatically decreases along the
series. This is due to filling of the 3d band with increasing number of electrons
or atomic number Z, in accordance with the densities of states shown in
Fig. 12.1. In total, the d shell can hold 10 electrons and by going from Fe
to Cu one adds approximately one electron per atom. By summing for each
energy the number of d states over the Brillouin zone one obtains the d band
density of states, ρ(E3d), as schematically shown in Fig. 9.11b. By energy
integration Nh =

∫∞
EF

ρ(E)dE from the Fermi level up one obtains the total
number of empty d band states or d holes. When the resonance intensity
is plotted against the theoretically obtained number of 3d holes one obtains
a linear relationship as shown in Fig. 9.11c. The resonance intensity of the
spectrum, defined as the shaded peak area in the inset of Fig. 9.11a, is the
energy integral over the cross-section and has the dimension [area × energy],
and in Fig. 9.11 is given in units of Mb eV.

9.6.2 Derivation of the Intensity Sum Rule for the Charge

Figure 9.11b shows the electronic states appropriate for a transition metal. The
total number of empty d states above the Fermi energy EF, called the number
of valence holes, Nh, is simply the number of spin up plus down states. In the
one-electron model the core state is assumed to be spin–orbit split into 2p3/2

and 2p1/2 states, giving rise to the L3 and L2 edges in experimental spectra,
respectively. The sum rule states that the transition intensity is proportional
to the total number of empty d states Nh when we sum over the 2p3/2 and 2p1/2

contributions. This is intuitively correct since the intensity should increase if
we make more empty final states available for the transition.
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Fig. 9.11. (a) L-edge X-ray absorption spectra, plotted on an absolute cross-section
scale, for the 3d transition metals Fe, Co, Ni, and Cu. When the sum of the L3 and
L2 intensities, defined as the area shown shaded in the inset, is plotted against
the calculated number of 3d holes a linear relationship is obtained within experi-
mental error as shown in (c). We have used the following values for the number
of holes: 1.5–1.78 for Ni, 2.5–2.80 for Co and 3.4–3.93 for Fe (also see Sect. 12.2.2
and Fig. 12.16). The correlation follows from a sum rule, discussed in the text, that
links the integrated resonance cross-section or resonance intensity to the number of
empty valence states in the electronic ground state. The number of empty states is
obtained from the integrated density of states (DOS), as shown in (b)
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Let us derive the sum rule using a tight binding band picture for the 3d
valence states of the transition metals. The intensity of an electronic transition
between core states of angular momentum c and valence states of angular
momentum L = c + 1 is given by (9.85). By separating off the diagonal and
cross terms we have

Iq
α = AR2

∑

Ei>EF
i,k,m

∑

p,M

[
|ai,M (k)|2 + |bi,M (k)|2

]
|eq

α,p|2|〈LM |C(1)
p |cm〉|2

+ AR2
∑

Ei>EF
i,k,m

∑

p#=p′
M &=M ′

eq
α,p(e

q
α,p′)∗ 〈LM |C(1)

p |cm〉〈LM ′|C(1)
p′ |cm〉∗

× [ ai,M (k)(ai,M ′(k))∗ + bi,M (k)(bi,M ′(k))∗ ] . (9.88)

We can now perform an orientation average according to (9.87) by either
summing of the three orthogonal polarization states q = 0,±1 or over crystal
directions α = x, y, z. In both cases the cross term in (9.88) vanishes because∑

q eq
α,p(e

q
α,p′)∗ =

∑
α eq

α,p(e
q
α,p′)∗ = 0 for all p, p′ combinations (see Appen-

dix A.6), and the polarization averaged transition intensity is given by

〈I〉 =
1
3
AR2

∑

Ei>EF
i,k,M

(
|ai,M (k)|2 + |bi,M (k)|2

)

︸ ︷︷ ︸
Nh

∑

p,m

|〈LM |C(1)
p |cm〉|2

∑

q or α

|eq
α,p|2

︸ ︷︷ ︸
= 1︸ ︷︷ ︸

= L/2L + 1

= AR2 L

3(2L + 1)
Nh. (9.89)

Here we have used (A.25) and (A.27) and the sum rule (A.21), and Nh is the
total number of holes according to (7.25). This is an important result and we
need to put a box around it. For the L-edge of the 3d transition metals the
sum rule reads as follows.

The orientation averaged “white line” intensity of a core to valence nc →
n′L transition with c = L − 1 is directly related to the total number of
valence holes Nh in the electronic ground state according to

〈I〉 = C Nh . (9.90)

where

C = AR2 L

3(2L + 1)
, (9.91)

A = 4π2h̄ω/137 and R is the radial nc → n′L matrix element.
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Note that according to (9.87), we have defined the angle-averaged intensity
〈I〉 to be equivalent to that obtained for a randomly oriented sample in a
single measurement. It is of great importance, as stated above, that Nh is the
total number of valence holes in the electronic ground state, not the excited
electronic state. This is not obvious from our one-electron model calculation
but can be proven in a more general configuration based model of the X-ray
absorption process [100, 101]. For the special case of a p → d transition we
have

〈I〉 =
2AR2

15
Nh . (9.92)

9.6.3 Origin of the XMCD Effect

The important intensity sum rule for the number of holes suggests that if
we could make the absorption process spin dependent we could measure an
intensity difference that corresponds to the difference between the number
of spin-up and spin-down holes, i.e., the magnetic moment. This can indeed
be done by using circularly polarized photons and is the basis of XMCD
spectroscopy.

Before we proceed we need to specifically state our assumptions. In using
the important concept of proportionality of the white line intensity and the
number of valence holes from the previous sections we implicitly assume that
the measured white line intensity is independent of the sample crystallography.
In the following we shall therefore assume that the sample is either polycrys-
talline or that we average three dichroism measurements along orthogonal
crystalline directions.11

In order to understand the essence of the XMCD effect we assume a one-
electron picture where the valence states exhibit a Stoner splitting as discussed
in Sect. 7.4.2, and shown on the left side of Fig. 9.12. The shown density of
states actually correspond to that calculated for Fe metal by band theory (see
Fig. 12.1).

For maximum XMCD effect the magnetization direction M of the sample
and the photon spin or angular momentum Lph are chosen to be collinear. As
illustrated on the left side of Fig. 9.12, the dichroism effect is then given by
the difference of the p → d transition (X-ray absorption) intensities, measured
for photons with positive angular momentum (q = +1, Lph points in direction
of wavevector k) and negative angular momentum (q = −1, Lph points in
direction of −k) aligned along the fixed magnetization direction M of the
sample. An equivalent way is to fix the X-ray photon spin direction and switch
the magnetization directions [374].

On the right of Fig. 9.12 we show experimental L-edge XMCD spectra for
Fe metal [96, 375] that have been corrected to correspond to 100% circularly

11More specifically, we also assume that the sample symmetry is higher than
monoclinic so that the unit cell axes are orthogonal.
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Fig. 9.12. The XMCD effect illustrated for the L-edge absorption in Fe metal. The
shown density of spin-up and spin-down states closely resembles that calculated for
Fe metal (compare Fig. 12.1). The experimental data on the right are from Chen
et al. [96] and have been corrected to correspond to 100% circular polarization. We
show the case of circularly polarized X-rays with positive angular momentum (he-
licity), and the color coded spectra correspond to the shown sample magnetization
directions

polarized X-rays and parallel alignment of the photon spin and the magne-
tization. The dichroism effect is seen to be very large. If the photon spin is
aligned perpendicular to the magnetization the cases of perpendicular “up”
and “down” magnetization directions cannot be distinguished.

Denoting the magnetization M and photon angular momentum Lph di-
rections by arrows, the dichroism effect is only dependent on the relative
alignment of the two arrows. The convention adopted by the XMCD com-
munity is to plot the dichroism intensity of the 3d transition metals Fe, Co,
and Ni so that the L3 dichroism is negative (also see Fig. 10.12). According
to Fig. 9.12 this corresponds to the definition,

∆I = I↑↓ − I↑↑. (9.93)

Note that the minority electron spin direction (= majority hole spin direction)
is the same as that of the sample magnetization. The importance of the so
defined XMCD intensity can be expressed as follows.

The XMCD difference intensity, defined as the white-line intensity differ-
ence between antiparallel and parallel orientations of the sample magneti-
zation and the incident photon spin is directly proportional to the atomic
magnetic moment.
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Fig. 9.13. Illustration of the L-edge X-ray absorption processes of circularly polar-
ized photons with angular momentum q = ±1 (in units of h̄). For the d valence shell
we show the correspondence between the Stoner band picture of a magnetic material
and an atomic one-hole d shell model. We have chosen our magnetization direction
such that the “down-spins” are filled and the “up-spins” partially unfilled. In the
atomic model we assume one “spin-up” hole and show the possible 2p core to 3d
valence transitions assuming circularly polarized light with angular momentum q.
The fraction of “up-spin” electrons excited from the p core shell through absorption
of X-rays with angular momentum q = ±1 is listed for the L3 and L2 edges. Here
we have assumed the X-rays to be incident parallel to the atomic magnetic moment
m. In the inset we show the XMCD difference spectrum calculated with the atomic
model according to (9.95) and assuming the shown resonant peak shapes

The quantum mechanical origin of the XMCD effect at the L-edge is ex-
plained in more detail by the simple atomic model of Fig. 9.13. Here we have
assumed the case of a “strong” ferromagnet with one filled spin channel. With
the sample magnetized in the “up” direction, the spin-down states are filled
and the spin-up states are only partially filled as shown in Fig. 9.13. For sim-
plicity we ignore the weak spin–orbit interaction among the d electrons so
that our sample has only a spin magnetic moment and the orbital moment
is zero. We also show the correspondence between the Stoner band picture
of a magnetic material and an atomic d shell model. In both cases the five
spin-down d states are filled and the spin-up states are assumed to be par-
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tially filled. For an empty spin-up shell the magnetic moment is 5µB in our
simple atomic model and as we fill in more electrons it decreases by 1 µB per
(spin-up) electron.

For the special situation of a completely filled majority band shown in
Fig. 9.13, the charge sum rule of Sect. 9.6.1 would actually be sufficient to
give us the magnetic moment since it is equal to the total number of holes.
In general, of course, we have to allow for partially filled majority and mi-
nority bands and therefore we need to make the X-ray absorption process
spin dependent in order to determine the difference in majority and minority
population.

For our quantum mechanical calculation we use the atomic model shown
on the right side of Fig. 9.13 and calculate the dichroism effect by considering
the angular part of the squared transition matrix element from the p3/2 and
p1/2 states to the empty spin-up states of the d-band. We write the p3/2 and
p1/2 wave functions in the basis |l = 1,ml, s,ms〉, as is done in Table A.5.
For the spin-up 3d hole states we use the five d orbitals listed in Table A.2
with spin up |χ+〉 = |ms = +1/2〉. They are linear combinations of basis
functions |l=2,ml, s,ms〉 so that all matrix elements can be calculated from
the expressions in Table 9.1 under the assumption of spin conservation. The
individual transition intensities (angular part only) are given by

|〈dn,χ+| P q
z

r
|pj ,mj〉|2 (9.94)

with index values n = 1, . . . , 5, j = 3/2, 1/2, mj = ±3/2,±1/2 and q = 0,±1.
The individual squared transition matrix elements are given in Fig. 9.14.

From the individual transition intensities in Fig. 9.14 we can now derive
the XMCD effect. With the definition of (9.93) it is given by the difference of
the p → d transition intensities with negative (q = −1) and positive (q = +1)
photon spin,

∆I = I↑↓ − I↑↑ = I− − I+. (9.95)

By summing the appropriate intensities and differences in Fig. 9.14 we obtain
for the L3 and L2 dichroism effects:

∆IL3 = AR2
∑

n,mj

|〈dn,χ+|C(1)
−1 |p3/2,mj〉|2 − |〈dn,χ+|C(1)

+1 |p3/2,mj〉|2

= −2
9
AR2 , (9.96)

and

∆IL2 = AR2
∑

n,mj

|〈dn,χ+|C(1)
−1 |p1/2,mj〉|2 − |〈dn,χ+|C(1)

+1 |p1/2,mj〉|2

= +
2
9
AR2 . (9.97)
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Fig. 9.14. Polarization dependent transition intensities in a one-electron model from
spin–orbit and exchange split p core states |j, mj〉 to spin-up (ms = +1/2) d valence
orbitals (TableA.2), assumed to be split by the exchange interaction. The listed
intensities each need to be divided by 90 to get the proper absolute values in units
of AR2. We have chosen the z-axis as the spin quantization axis and the transition
intensities are for circular polarization with k ‖ z and angular momenta q = +1
(labeled +) and q = −1 (labeled −) and for linear polarization with E ‖ z (labeled
q = 0). We have assumed a splitting of the p states by the exchange interaction,
lifting the degeneracy in mj . Note that this causes an opposite order of mj states
for p3/2, l + s and p1/2, l − s because of the opposite sign of s

The relevant XMCD intensities are summarized in Fig. 9.13. The dichroism
signal at the L3 and L2 edges are identical in magnitude but of opposite sign.
At the L3 edge, X-rays with positive (q = 1) photon spin excite more spin-
up electrons than X-rays with negative (q = −1) photon spin, and at the
L2 edge the opposite is found. It is easy to show that for the calculation
of the dichroism effect it is equivalent to fix the X-ray spin and switch the
magnetization direction [374]. In principle, L-edge X-ray absorption spectra
contain contributions from both p → d and p → s transitions, but in practice
the p → d channel dominates by a factor > 20. [376]

9.6.4 Two-Step Model for the XMCD Intensity

The model calculations in Figs. 9.13 and 9.14 suggest a particularly simple
two-step model.



394 9 Interactions of Polarized Photons with Matter

In the first X-ray absorption step, conservation of angular momentum re-
quires a transfer of the angular momentum of the incident circularly polarized
X-rays to the excited photoelectrons. If the photoelectron is excited from a
spin–orbit split level, e.g., the 2p3/2 level (L3 edge), the angular momentum of
the photon can be transferred in part to the spin through the spin–orbit cou-
pling and the excited photoelectrons are spin polarized. The spin polarization
is opposite for incident X-rays with positive (+h̄) and negative (−h̄) photon
spin. Also, since the 2p3/2 (L3) and 2p1/2 (L2) levels have opposite spin–orbit
coupling (l + s and l − s, respectively) the spin polarization will be opposite
at the two edges. The photoelectron spin quantization axis is identical to that
of the photon spin, i.e., it is parallel or antiparallel to the X-ray propagation
direction.

In the second step the exchange split valence shell with unequal spin-
up and spin-down populations acts as the detector for the spin of the excited
photoelectrons. For optimum detection the valence shell spin quantization axis
(the “detector” axis) has to be aligned with the photon spin or photoelectron
spin quantization axis.

For the specific case shown in Fig. 9.13 only spin-up electrons can be ex-
cited from the 2p core to the partially unfilled spin-up 3d valence shell because
the dipole operator does not act on spin and therefore does not allow spin-flips
during excitation. At the L3-edge, X-rays with positive spin (q = +1) excite
62.5% spin-up electrons and negative spin X-rays (q = −1) excite 37.5% spin-
up electrons, while for the L2 edge the numbers are 25% spin-up electrons
for q = +1 and 75% spin-up electrons for q = −1. Taking into account the
two times higher population of the 2p3/2 state, one finds the dichroic intensity
differences at the L3 and L2 edges calculated according to (9.96) and (9.97)
where ∆IL3 = A and ∆IL2 = B, to be identical in magnitude but of opposite
sign, as shown in the inset of Fig. 9.13.

The results of Fig. 9.13 are readily extended to the general case where both
majority and minority bands are partially empty since for transitions to spin-
down (majority) states the same excitation percentages given in Fig. 9.13 are
found, except with q = +1 and q = −1 interchanged. Thus the minority and
majority band contributions to the dichroism intensity have opposite signs.
If both contribute equally the dichroism signal vanishes, as required for a
nonmagnetic material.

Note that the pure photon spin configurations with angular momenta ±h̄
are not converted into pure (100%) electron spin configurations. Some of
the photon angular momentum is converted into electron orbital momentum
which is also carried by the photoelectron. The photoelectron thus carries the
angular momentum absorbed from the photon as spin and orbital momentum
degrees of freedom. The orbital momentum of the photoelectron is detected
if the valence shell has an orbital moment. A particularly interesting case is
that of K-shell excitations.
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K-shell Dichroism

For K-shell excitation the 1s core shell has zero angular momentum and hence
no spin–orbit coupling. It may, however, exhibit a small splitting into ms =
±1/2 states due to the exchange field or an external magnetic field. In Fig. 9.15
we give the polarization dependent transition intensities for two cases.

On the left side of Fig. 9.15 we show transitions from the spin-split 1s shell
to empty exchange split 2p orbitals with ms =+1/2 given by

|〈pn,ms =+1/2| P q
z

r
|s,ms〉|2 (9.98)

for n = 1 . . . 3 and q = 0,±1. On the right we show transitions from the
spin–split 1s shell to empty spin–orbit coupled 2pj (j = 3/2, 1/2) orbitals,
further split by an external magnetic field into −3/2 ≤ mj ≤ +3/2 Zeeman
components,

|〈pj ,mj |
P q

z

r
|s,ms〉|2 (9.99)

for j = 3/2, 1/2 , mj = ±3/2,±1/2, ms =±1/2, and q = 0,±1. Note that our
results for this case confirm those given earlier in Fig. 8.1.
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Fig. 9.15. (a) Polarization dependent transition intensities in a one-electron model
between exchange (or Zeeman) split s core states and empty spin-up (sz = +1/2)
p valence orbitals, assumed to be separated from the full spin-down shell by the
exchange interaction. The listed intensities each need to be divided by 6 to get
the proper absolute values in units of AR2. We have chosen the z-axis as the spin
quantization axis and the transition intensities are for circular polarization with
k ‖ z and angular momenta q = +1 (labeled +) and q = −1 (labeled −) and for linear
polarization (labeled q = 0) and E ‖ z. (b) Transition intensities between exchange
(or Zeeman) split s core states and spin-orbit coupled and Zeeman split pj valence
states denoted by quantum numbers mj (see TableA.5). The listed intensities each
need to be divided by 9 to get the proper absolute values. The coordinate system is
the same as in (a).
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For the K-edge excitation the 1s state has only a spin and no orbital angu-
lar momentum. Since the spin does not interact directly with the electric field,
the photon spin is transferred to the photoelectron as an orbital angular mo-
mentum, either h̄ or −h̄. The orbital angular momentum of the photoelectron
can only be detected by the valence shell if it possesses an orbital magnetic
moment itself, that means if the valence band empty density of states has an
imbalance of states with quantum numbers +ml and −ml. If the valence shell
does not possess an orbital moment, photoelectrons with orbital momenta h̄
and −h̄ cannot be distinguished and no dichroism effect will be observable.
This is true even if the valence shell has a net spin polarization as in the
Stoner model. Therefore, for K-shell excitation a dichroism effect exists only
if the p valence shell possesses an orbital moment [377]. Sensitivity to the spin
magnetic moment of the p shell arises only indirectly through the spin–orbit
interaction.

Summary for the XMCD Intensity

We can summarize the models shown in Figs. 9.13–9.15 by the following two-
step model of XMCD [374].

The two-step model of XMCD:
• In the first step, circularly polarized X-rays generate photoelectrons with
a spin and/or orbital momentum from a localized atomic inner shell.
• In the second step, the 3d shell serves as the detector of the spin or
orbital momentum of the photoelectron. For maximum effect, the photon
spin needs to be aligned with the magnetization direction.

The size of the dichroism effect depends on three important parameters:

– The degree of circular photon polarization Pcirc,
– The expectation value of the magnetic moment of the 3d shell 〈m〉
– The angle θ between the directions of the photon angular momentum Lph

and the magnetic moment m

This can be cast into the following dependence of the XMCD intensity,

IXMCD ∝ Pcirc m · Lph ∝ Pcirc 〈m〉 cos θ . (9.100)

In theory we define the XMCD difference intensity according to (9.95), as-
suming Pcirc = 1. For our later discussion of the resonant magnetic scattering
intensity is useful to write the XMCD absorption intensity in a form that
involves matrix elements of Racah’s spherical tensors, as done for the L3 and
L2 signals in (9.96) and (9.97). By use of the short form

〈C(1)
q 〉 = 〈dn,χ+|C(1)

q |pj ,mj〉, (9.101)

we can state as follows.
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The XMCD difference intensity for X-ray propagation and magnetiza-
tion direction aligned along z may be written in terms of angular matrix
elements of the Racah spherical tensors according to,

∆IXMCD = AR2
∑

states

|〈C(1)
−1 〉|2 − |〈C(1)

+1 〉|2. (9.102)

The factor A is given by (9.61) and R is the radial transition matrix
element given by (9.81).

9.6.5 The Orientation Averaged Sum Rules

In this section we want to formally state three important sum rules for ori-
entation averaged intensities [100–102, 240, 241, 378–383]. The sum rules link
the measured polarization dependent resonance intensities with valence band
properties, in particular the number of empty states or “holes” Nh per atom,
the spin magnetic moment ms per atom and the orbital magnetic moment
mo per atom. Since these latter atomic quantities are defined by integration
over the atomic volume and are therefore isotropic quantities, one needs to be
sure that the measurement eliminates anisotropic effects caused by anisotropic
charge and spin densities in the crystallographic unit cell. It is therefore nec-
essary, in general, to first define a coordinate system for the crystallographic
axes, so that one can properly average out anisotropies by suitable measure-
ments.

In the following we shall assume that the crystal symmetry is higher than
monoclinic so that we can chose the unit cell axes along the x, y, and z di-
rections of a cartesian coordinate system. For a measurement we then specify
the X-ray polarization and the magnetization direction in this frame and de-
fine a suitable intensity average according to (9.87). With this definition we
can now use intensity averages of three measurements to determine physical
quantities.

First we can determine the number of empty valence states per atom by
measuring the transition intensity of core electrons into the empty valence
states, as illustrated schematically in Fig. 9.16a for the L-edge in the magnetic
3d transition metals. We then have the first of three important sum rules,
which we shall call the charge sum rule. It relates the measured averaged
peak intensity to the number of empty states Nh. We can state it as follows.

The charge sum rule links the measured averaged X-ray absorption res-
onance intensity of a core to valence transition to the number of empty
valence states Nh per atom

〈I〉 = C Nh, (9.103)

where C is the proportionality constant given by (9.91).



398 9 Interactions of Polarized Photons with Matter

Fig. 9.16. Schematic of processes, spectra, and intensities underlying the quantita-
tive determination of valence band properties such as the number of empty d states
Nh, and the spin moment ms = µB(N↑

h − N↓
h ) = µB(N+ms

h − N−ms
h ) and orbital

moment mo = µB(N+m!
h − N−m!

h ). At the bottom we indicate the relationship be-
tween measured spectral intensities and the valence band properties. Note the sign
of the dichroism difference intensities. In the shown cases we have A < 0 and B > 0

For the special case of the transition metal L-edges one needs to determine
the total core to valence intensity given by the sum of the two spin–orbit split
components as shown in Fig. 9.16a and (9.103) takes the form [102]

〈IL3 + IL2〉 = CNh . (9.104)

If the X-ray absorption spectrum is determined in terms of the absolute cross-
section (with the dimension [area]) then the measured intensity I, given by
the energy integration of the cross-section, has the dimension [area × energy],
and therefore C is typically given in conventional units of [Mb eV]. For the
3d transition metals it has a value of about 10 Mb eV (see Fig. 9.17) [384].

In order to derive the magnetic spin moment for the 3d transition metals
according to a sum rule due to Carra et al. [101] we also need to carry out an
average as proposed by Stöhr and König [102]. One uses circularly polarized
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light and measures XMCD spectra for k along the three crystallographic di-
rections x, y, z. For each measurement one magnetically saturates the sample
along the direction of k and determines the dichroic (difference) intensities A
and B at the L3 and L2 edges as shown in Fig. 9.16b by either switching the
photon spin for a given magnetization direction or by switching the magneti-
zation direction for a given photon spin. Note that large fields of several Tesla
may be needed for full magnetic alignment of the sample. One then performs
the average of the difference intensities according to (9.87). This leads to the
so-called spin sum rule. Note that in the case shown in Fig. 9.16 the areas A
and B have opposite signs.

The spin sum rule links the angle averaged dichroism intensities with the
size of the spin moment per atom according to

〈−A + 2B〉 =
C

µB
ms . (9.105)

where the constant C is the same as in the charge sum rule.

For Fe, Co, and Ni the orbital, mo, and spin, ms, moments are parallel
because the d shell is more than half full. While the spin moment becomes
anisotropic only in higher order through the spin–orbit coupling which is sig-
nificantly smaller than the dominant isotropic exchange interaction, the or-
bital moment may be strongly anisotropic. The origin of this anisotropy lies
in the ligand field which may preferentially destroy the orbital motion of the
electrons about certain crystal axes as discussed in Sect. 7.9. One therefore
also needs to average over three directions to determine the average orbital
moment. The three measurements are identical to those for the spin moment
yet for the sum rule analysis one takes a different linear combination of the
dichroism intensities. The orbital moment is determined by use of the orbital
moment sum rule due to Thole et al. [100]

The orbital moment sum rule links the angle averaged dichroism inten-
sities with the size of the average orbital moment per atom according
to

−〈A + B〉 =
3C

2µB
mo . (9.106)

The constant C is the same as in the charge and spin sum rules.

In practice, the determination of mo requires high quality data and careful
data analysis since A+B is typically a small number, obtained by subtraction
of two large numbers since A < 0 and B > 0. If the two intensities have the
same size but opposite signs the orbital moment is zero.
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C

Fig. 9.17. Values for the constant C in the X-ray absorption sum rules determined
by use of (9.103)–(9.106) from experimentally measured intensities and literature
values for Nh, ms, and mo [384]. In (a) we used the values Nh, ms, and mo obtained
by density functional theory including orbital polarization [385,386] and in (b) the
spin and orbital moments determined from the gyromagnetic ratio [387]

Figure 9.17 shows results for the constant C determined for Fe, Co, and Ni
from experimental data and “known” values for the magnetic moments and
the d shell occupation. A true determination of C is more difficult than first
imagined since even for the elemental transition metals, there are some dis-
crepancies between experimental and theoretical values for the moments. Fur-
thermore, XMCD only measures the d electron contribution to the moments
because 2p → 4p transitions are not allowed by the dipole selection rule and
2p → 4s transitions have much smaller cross-sections [376] than 2p → 3d
transitions.

If the intensities are not angle averaged, additional terms arise for the
charge and spin moment sum rules that can be written in terms of a intra-
atomic quadrupolar charge contribution and a nonspherical intraatomic spin
distribution. These terms average to zero when an angular average is per-
formed as assumed earlier [102]. We shall come back to these anisotropic
terms in Sect. 9.7.9.
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9.7 The Orientation-Dependent Intensity: Charge and
Magnetic Moment Anisotropies

In Sect. 9.6 we have treated the case of angle averaged X-ray absorption inten-
sities. We assumed that the sample is either polycrystalline, of cubic symmetry
or that a suitable angular average of three orthogonal crystalline directions is
performed. In modern magnetism research, one often encounters single crystal
samples or thin films with anisotropic bonding. We shall now discuss the X-
ray absorption spectra of such samples, which may be magnetically oriented,
for the cases of linearly and circularly polarized X-rays. In the process we
shall encounter the generalization of the three orientation averaged sum rules
discussed in Sect. 9.6.5.

The discussion of the orientation-dependent intensities naturally leads to
the distinction between spectra recorded with linearly polarized X-rays and
circularly polarized X-rays and we shall discuss the two cases in turn.

9.7.1 Concepts of Linear Dichroism

The term “linear dichroism” describes angle dependent effects when the di-
rection of the linear polarized E vector is changed relative to the sample.12 In
nonmagnetic systems the anisotropy arises from an anisotropic charge distrib-
ution about the absorbing atom caused by bonding. For magnetic samples an
additional anisotropy may exist relative to the magnetization direction of the
sample. It is important to realize that in all cases the measured anisotropy
arises from a nonspherical charge distribution. If the origin of the charge
anisotropy is due to bonding alone we speak of “natural” linear dichroism,
when it has a magnetic origin we use the term “magnetic” linear dichroism.
Both may co-exist and in this case they can be separated either by temperature
dependent studies or, for ferromagnets, by rotation of the magnetic alignment
field relative to the fixed X-ray polarization .

Because of the close connection between the “natural” and “magnetic”
dichroism effects we need to discuss both. We start with the case of non-
magnetic systems and present the physical origin of natural linear dichroism.

9.7.2 X-ray Natural Linear Dichroism

The easiest way to visualize the polarization dependence underlying X-ray
natural linear dichroism or XNLD is the “search light effect” [189]. It can be
stated as follows.

12Note that natural or circular polarized light defines a polarization plane perpen-
dicular to the propagation direction k and therefore both also give rise to an angular
polarization effect when the sample is turned in the beam. For nonmagnetic samples
this case can be treated by assuming that one has two orthogonal linearly polarized
E-vector components perpendicular to k, and the intensities ∝ |Ei|2 (i = 1, 2) asso-
ciated with the two components are added incoherently, i.e., there is no interference
term.
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Fig. 9.18. Spatial orientation of p and d orbitals. All individual orbitals are
anisotropic but the sums of the eg and t2g d orbitals or the sum of the p orbitals is
spherically symmetric as shown

In an X-ray absorption experiment electrons are excited from a selected
core shell to empty valence states. For linear polarized X-rays the electric
field vector E acts like a search light for the direction of the maximum
and minimum number of empty valence states. The transition intensity
is directly proportional to the number of empty valence states in the
direction of E.

In an X-ray absorption measurement we sum over all degenerate levels of
the core state. In accordance with Fig. 9.18 this leads to a spherically sym-
metric core contribution. This is obvious for K-edge spectra where the 1s
core state is spherically symmetric. For L-edge spectra we also get a spherical
core contribution if we sum over the p3/2(L3) and p1/2(L2) intensities. The
dependence of the X-ray absorption intensity on E-vector orientation is then
entirely determined by the spatial distribution of the empty valence states.

The search light effect can be readily demonstrated for the case of K- and
L-edges, where the electronic transitions involve 1s → 2p and 2p → 3d core-
to-valence excitations. All we have to look for is the spatial charge distribution
of the empty valence states involved in the transitions. For convenience we
can do this by picturing the valence states by the familiar real p and d or-
bitals, as illustrated in Fig. 9.18. In a cubic ligand field the d orbitals form the
eg and t2g irreducible representations. The sum of the orbitals within each
representation is spherically symmetric. The p orbitals are not split in cubic
symmetry and their sum is also spherically symmetric. In cubic symmetry the
X-ray absorption intensity in nonmagnetic materials is therefore independent
of E-vector orientation relative to the sample.
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It is clear that the charge distribution of the individual p and d orbitals is
asymmetric in space, and therefore as the symmetry is lowered below cubic,
transitions to individual p and d orbitals will depend on the orientation of
the E-vector relative to the x, y, z coordinate system of the crystal. This is
the origin of the natural linear dichroism effect. Some of the most beautiful
examples of this effect are found for small molecules or organic molecules
with directional covalent bonds as discussed in detail in the book NEXAFS
Spectroscopy [189].

For the K-edge we readily recognize the foundation of the search light
effect, since the p orbitals have directions of maximum charge density and
perpendicular nodal planes where the charge density is zero. The X-ray ab-
sorption intensity is maximum when E is aligned along the orbital and is zero
when E lies in the nodal plane. One can remember the search light effect by
the following simple picture. The photoelectron is ejected from the spheri-
cally symmetric core state along the direction of the E-vector. The E-vector
“search light” then senses the hole density of the valence orbital. If the den-
sity in the direction of E is zero the transition intensity vanishes. In general,
the transition intensity scales directly with the orbital density along E. For
L-edges the transition intensity is zero if the E-vector lies along the d orbital
nodal axis, which is the intersection of two nodal planes (see Fig. 9.19).

9.7.3 Theory of X-ray Natural Linear Dichroism

The “search light effect” follows from a quantum mechanical calculation of
the angle dependent transition matrix element which we shall outline now.

In order to facilitate our discussion we shall assume that we are dealing
with a nonmagnetic sample. Since XNLD does not depend on spin we can
use the same formalism as above but only consider one spin. Inclusion of the
other spin would simply give a factor 2 higher intensity. We therefore start
with (9.85), written for one spin, and take care of the other spins by a factor
of 2. We have,

Iq
α = 2AR2

∑

Ei>EF
i,k,m

∣∣∣∣∣∣

∑

p,M

ai,M (k) eq
α,p 〈LM |C(1)

p |cm〉

∣∣∣∣∣∣

2

. (9.107)

This equation is valid for an atom in a solid described by a band-like valence
electron wavefunction

|ψi(k, r)〉 = |Rn′,L(r)〉 |φi(k)〉

= |Rn′,L(r)〉
∑

M

ai,M (k) |LM〉 . (9.108)

There are 2L + 1 such states for a given L-manifold. If we drop the k depen-
dence, the state (9.108) also describes a ligand field state. For the d orbitals,



404 9 Interactions of Polarized Photons with Matter

−

−

− −
− − −

−p p d d d d

z z

x
x

dp

yy

zyxyzxzxyzyx r

Fig. 9.19. Polarization dependent core to valance transition intensities (square of
the transition matrix elements) for E along the principal coordinate axes. Listed
are the intensities for the four basic symmetry cases, s → pi (i = x, y, z), p → dij

(i ,= j = x, y, z), p → dx2−y2 and p → d3z2−r2 . All intensities are per orbital per
spin in units of AR2

for example, the coefficients ai,M would be the coefficients in Table A.2. Equa-
tion (9.107) is valid for transitions from a spherically symmetric core manifold
|cm〉 and the sum is over all 2c + 1 orbital substates. In the measurement of
XNLD we therefore assume that we sum over any spin–orbit split states in
the core. This is automatically fulfilled for K-edge spectra, and for L-edge
spectra we add the L3 and L2 intensities. Because in XNLD one wants to
learn about the anisotropy of the valence charge around the absorbing atom
one best uses linearly polarized light since the directional E-vector acts like
a search light, as discussed later. We shall therefore restrict our discussion to
linearly polarized X-rays.

The search light effect is most clearly seen by considering transitions from
a core manifold to specific molecular orbitals. Results for the squared tran-
sition matrix elements are summarized in Fig. 9.19. In particular, we list the
polarization-dependent transition intensities

|〈2pn|
P 0

α

r
|1s〉|2 (9.109)

from a s core state to the px, py, and pz valence orbitals, assuming linearly
polarized light with E ‖ x, y, z, and similarly the intensities

|〈3dn|
P 0

α

r
|2p〉|2 (9.110)

from a p core state to the five dn orbitals, assuming linearly polarized light
with E ‖ x, y, z.

For all s → pi, (i = x, y, z) transitions (e.g., K-edge) we have a transition
intensity 1/3 when the E-vector is along the pi orbital lobe and zero other-
wise. The polarization averaged intensity per pi orbital is 〈I〉 = 1/9. For all
transitions from p core states to the clover-leaf-shaped d orbitals, shown in
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the middle of Fig. 9.19, we have a transition intensity 3/15 for E along the
two axes that lie in the plane of the orbital and zero along the perpendicu-
lar nodal direction. The transition intensity to the d3z2−r2 orbital is different
as illustrated in Fig. 9.19. For p → di transitions (e.g., L-edge) we have the
polarization-averaged intensity per di orbital 〈I〉 = 2/15.

In practice, one often encounters the case where the sample has cylindrical
symmetry about an axis. Let us consider a nonmagnetic system with cylin-
drical symmetry about z. For E along z the X-ray absorption intensity for a
transition between states |a〉 and |b〉 is obtained with the dipole operator P 0

z

in Table A.4 as,

I0
z = AR2

∣∣∣〈b|C(1)
0 |a〉

∣∣∣
2
. (9.111)

Similarly we obtain the intensities for E along x and y as

I0
x = I0

y =
1
2
AR2

[ ∣∣∣〈b|C(1)
−1 |a〉

∣∣∣
2

+
∣∣∣〈b|C(1)

1 |a〉
∣∣∣
2
]

. (9.112)

The cross terms vanish because only one of the operators C(1)
q couples a given

pair of substates |cm〉 and |LM〉 with L = c + 1 and M − m = q = 0,±1,
according to the dipole selection rule. For later reference it is important to
state that one obtains the same intensity as in (9.112) for circularly or natural
light incident along z (operators P±

z in Table A.4), i.e.,

I+1
z = I−1

z =
1
2
AR2

[ ∣∣∣〈b|C(1)
−1 |a〉

∣∣∣
2

+
∣∣∣〈b|C(1)

1 |a〉
∣∣∣
2
]

. (9.113)

For a spherically symmetric charge distribution we have Iq
α = Iq

α′ = Iq′

α .

The Angle-Dependent XNLD Intensity

More generally, the measured intensity can be written as a function of the
angle θ of the E-vector with the symmetry axis (labeled ‖) and the intensity
has the form [388]

I(θ) = I‖ cos2 θ + I⊥ sin2 θ . (9.114)

This expression is valid for higher than three fold symmetry about the axis
labeled ‖. The intensities I‖ and I⊥ are determined by the projection of the
charge distribution along the symmetry axis and a direction perpendicular
to it.13 If the charge distribution has a node perpendicular to the symmetry
axis, we have I⊥ = 0, and the linear dichroism intensity has the famous cosine
squared polarization dependence.

13The charge distribution function itself cannot be determined by XNLD but only
its projections along the cartesian coordinate axes. The projections f‖ = I‖/(I‖ +
2I⊥) and f⊥ = I⊥/(I‖ + 2I⊥) are called orientation factors [388].
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For a uniaxially aligned system the X-ray linear dichroism intensity varies
as

I(θ) = I‖ cos2 θ = 3〈I〉 cos2 θ, (9.115)

where θ is the angle of the E-vector with the symmetry axis and 〈I〉 is
the angle averaged intensity (9.103).

9.7.4 XNLD and Quadrupole Moment of the Charge

We have seen that polarized X-ray absorption spectroscopy can probe the
local anisotropy of the charge density, in particular the hole density, around
the absorbing atom. Because the core shell is so localized, XNLD is very
sensitive to deviations of the local valence charge in the atomic volume from
spherical symmetry. In a picture based on the search light effect the measured
X-ray absorption intensity is proportional to the projection of the number
of holes in the direction of E. By measuring X-ray absorption along three
orthogonal directions, i.e., E ‖ x, y, z, we can determine the projection of the
number of holes along the three directions, as illustrated in Fig. 9.19.

Sometimes it is useful to describe the origin of polarization dependent
X-ray absorption in another way. Starting from the fact that the polarization-
averaged intensity is a constant according to (9.103), i.e.,

〈I〉 = C Nh, (9.116)

one may write the intensity for a given direction α as a deviation from the
constant. For a given polarization direction, say along z, we write Iz = 〈I〉 −
f(z2). The general formalism given in Appendix A.8 yields the expression

I0
α = CNh ( 1 − B 〈Qαα〉) , (9.117)

where 〈Qαα〉 is the quadrupole moment of the charge distribution. The other
factors are

C = AR2 L

3(2L + 1)
, B =

2L + 3
2L

, (9.118)

with A = 4π2 h̄ω (e2/4πε0h̄c) and R being the radial transition matrix ele-
ment. One can make the following general statement.

The angle-dependent XNLD intensity is proportional to the sum of the
total number of valence holes and the quadrupole moment of the spatial
hole density.
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Fig. 9.20. Illustration how a spherical charge density
may be modified in the presence of a magnetic align-
ment of the spins in the sample. The charge distortion
arises from the spin–orbit coupling and an asymmetry
is induced relative to the spin axis (not direction!). The
effect exists in both collinear ferromagnets and antifer-
romagnets

This formalism appears rather complicated but it is very powerful. We shall
see later that it also describes the angle dependent XMCD intensity for the
important 3d transition metals. In that case the isotropic term proportional to
Nh in (9.117) is replaced by the isotropic spin moment ms and the quadrupolar
charge distribution by a quadrupolar spin distribution.14

9.7.5 X-ray Magnetic Linear Dichroism

In order to differentiate magnetic from natural linear dichroism let us assume
a sample of cubic symmetry where no XNLD is present. We also assume that
the sample becomes magnetically aligned, either ferromagnetic or antiferro-
magnetic, below the magnetic transition temperature. In the paramagnetic
state above the transition temperature the core and valence charge density is
then spherically symmetric according to Sect. 9.7.2. As the sample is cooled
into a magnetic state with collinear spin alignment, the spin–orbit coupling
may lead to a deformation of the charge. This charge distortion is of uniaxial
symmetry about the spin direction as shown schematically in Fig. 9.20. Now
the X-ray absorption intensity will be different for E aligned parallel and
perpendicular to the spin direction.

The XMLD effect arises from a nonspherical distortion of the atomic
charge by the spin–orbit interaction when the atomic spins are axially
aligned by the exchange interaction.

In order to illustrate the effect of the spin–orbit coupling on the charge
density we plot in Fig. 9.21 the charge densities of the individual |j,mj〉 com-
ponents of the spin–orbit split p1/2 and p3/2 manifolds. This is readily done
by use of the wavefunctions listed in Table A.2. We see that all individual
densities (squares of wavefunctions) are anisotropic in space relative to the
z alignment axis of the spin. In contrast, the sum over all mj substates of
each j manifold are spherically symmetric. We can therefore conclude that a
linear magnetic dichroism effect will only exist if somehow the mj substates in

14The latter term is the infamous Tz term derived by Carra et al. [101].
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Fig. 9.21. Orbital densities for the p1/2 and p3/2 manifolds calculated with the
functions given in Table A.5. The substates |l, s, j, mj〉, for j = 1/2 and j = 3/2 are
labelled for brevity by the quantum numbers mj . In all cases the spin quantization
axis is taken to be the z axis. The charge distributions are seen to be asymmetric in
space and they give rise to different X-ray absorption intensities when the E-vector
is aligned along z and perpendicular to z. One inset shows the spherically symmetric
charge density obtained when summing over all mj states and also when for a given
j the mj states are summed. The upper right inset shows a plot of the charge density
|Yl,m|2 for l = 1, m = 0,±1, associated with the spherical harmonic basis functions
for the p states. They are important when the |j, mj〉 states are expressed as a
function of spin-up and spin-down functions as given in Table A.5

either the initial or final states of the electronic transition are split and do not
contribute equally to the X-ray absorption intensity. In magnetic materials a
splitting between mj substates in the valence and core shells naturally arises
in the presence of the exchange interaction below the magnetic transition
temperature, as discussed in Sect. 6.6.2.

An unequal spectral contribution of such energetically split mj substates
may arise via two effects. First, if at low temperature the substates have
an unequal population [389]. Second, if the energetic splitting between the
substates can be observed experimentally.

The XMLD effect for the ferromagnetic transition metals predominantly
arises from the second mechanism, as shown by Kuneš and Oppeneer [390].
We shall discuss their model in Sect. 9.7.6.

9.7.6 Simple Theory of X-ray Magnetic Linear Dichroism

The XMLD model of Kuneš and Oppeneer [390] is illustrated in Fig. 9.22.
To illustrate the origin of the XMLD effect for the 3d transition metals we

start with a Stoner-like band model as previously used for the explanation of
the XMCD effect in Fig. 9.13. Again we simplify the description of the d states
in an atomic model assuming that the (“down”) majority spins are filled. We
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Fig. 9.22. Illustration of the L-edge X-ray absorption processes of linearly polarized
photons with angular momentum q = ±1. For the d valence shell we show the
correspondence between the Stoner band picture of a magnetic material and an
atomic one-hole d shell model. We have chosen our magnetization direction such that
the “down-spins” are filled and the “up-spins” partially unfilled. In the atomic model
we assume one “spin-up” hole and show the possible 2p core to 3d valence transitions
assuming circularly polarized light with angular momentum q. The fraction of “up-
spin” electrons excited from the p core shell through absorption of X-rays with
angular momentum q = ±1 is listed for the L3 and L2 edges. Here we have assumed
the X-rays to be incident parallel to the atomic magnetic moment m. We have
assumed a splitting of the p states by the exchange interaction, lifting the degeneracy
in mj . Note that this causes an opposite order of mj states for p3/2, l+s and p1/2, l−s
because of the opposite sign of s. Listed are the relative difference intensities which
can be obtained from Fig. 9.14 according to I‖−I⊥ = I0−(I++I−)/2. The absolute
difference intensities in units of AR2 are obtained by dividing the listed values by
a factor of 90

then consider electronic transitions from the spin–orbit split p core states to
the d minority spin states, as shown in Fig. 9.22. From our earlier discussion
we know that a magnetic linear dichroism can only exist if we can differentiate
transitions between states that are not spherically symmetric.

In our simple model we assume that the empty 3d density of minority
spin states is spherically symmetric, so that we describe the d shell simply
by an equal weighting of all spin-up di orbitals. Our assumption is reasonable
for band-like systems with cubic symmetry like Fe and Ni where an effec-
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tive averaging of the k-dependent states over the Brillouin zone leads to an
equal contribution of the di orbitals. In addition the spin–orbit interaction in
the 3d valence shell is small (∼ 50meV) compared to the exchange interac-
tion (1–2 eV) and for the moment we shall neglect it altogether. We shall see
later that the spin–orbit interaction in the valence shell actually leads to the
distinction of two kinds of magnetic linear dichroism.

From Fig. 9.21 we know that the total 2p core state is also spherically sym-
metric, and so are the two individual spin–orbit components 2p3/2 and 2p1/2.
However, the charge density of the individual mj substates are anisotropic.
Indeed, in a ferromagnet the exchange field (which only acts on the spin)
leads to a small exchange splitting of the mj substates of the 2p3/2 and 2p1/2

states, as discussed in Sect. 6.6.2 and shown in Fig. 9.22. For the 3d metals
the splitting between the individual mj states is rather small, of order 0.2
eV [390–392]. The spin enters in our model since only spin-conserving core-
to-valence transitions are allowed by the dipole transition operator.15

The XMLD difference intensity is obtained from two measurements with
E-vector parallel and perpendicular to the sample magnetization direction
M ,

∆IXMLD = I‖ − I⊥. (9.119)

A simple atomic-like model calculation which is similar to that carried
out in conjunction with Fig. 9.14, shows that an XMLD effect exists for the
various individual transition intensities as illustrated in Fig. 9.22. The XMLD
difference spectrum then consists of the sum of all the individual difference
intensities. Assuming magnetic alignment along the z-axis, the energy depen-
dent XMLD difference intensity is given by the difference of the intensities
measured for E ‖ z and E ⊥ z. With the dipole operators in Table A.4 we
obtain for example, for E along z and x,

∆IXMCD = AR2
∑

n,j,mj

∣∣∣〈dn,χ+|C(1)
0 |pj ,mj〉

∣∣∣
2

−1
2

∣∣∣〈dn,χ+|C(1)
−1 − C(1)

+1 |pj ,mj〉
∣∣∣
2
. (9.120)

The cross terms can be shown to vanish and by use of the short form (9.101)
we obtain the following expression for the XMLD difference intensity,

∆IXMLD =
1
2
AR2

∑

states

2|〈C(1)
0 〉|2 − |〈C(1)

−1 〉|2 − |〈C(1)
+1 〉|2 . (9.121)

15The effective charge asymmetry that enters into the transition matrix element
is actually not that of the j, mj core functions but that of their spherical harmonic
components. This comes about because the dipole operator only links the minority
(up-spin) projections of the p functions given by Y1,mχ+ (see Table A.5) to the
minority d valence states of the form Y2,Mχ+. However, the “spherical” harmonics
Y1,m with m = −1, 0, +1 are actually very anisotropic as shown in the upper right
inset of Fig. 9.21 (also see TableA.2).
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Fig. 9.23. The two methods to record XMLD spectra, called XMLD of the first and
second kind. XMLD of the first kind is measured with a fixed sample orientation rel-
ative to the linearly polarized X-rays, and the magnetization of the sample is rotated
between the easy and the hard directions by a sufficiently strong magnetic field. The
measured effect is a pure magnetic effect. XMLD of the second kind corresponds to
saturating the sample along the easy axis and measuring the absorption with the
easy axis either parallel or perpendicular to the E-vector. This can be done either
by rotating the E-vector relative to the sample, as shown, or the sample relative to
the E-vector. In all cases shown the measured intensities are labeled ‖ and ⊥, as
shown, with the XMLD signal defined by (9.119)

We shall come back to this expression later in conjunction with the resonant
magnetic scattering intensity in Sect. 9.8.

9.7.7 XMLD of the First and Second Kind

In the above discussion we have assumed that we have a sample of cubic
symmetry that is magnetically aligned. The assumption of cubic symmetry
eliminates any XNLD effect. This would also be true for a polycrystalline sam-
ple. In such cases the linear dichroism signal will only be due to a magnetic
effect, namely the charge deformation about the magnetic axis. In single crys-
tal samples with lower than cubic symmetry both XNLD and XMLD effects
can be present. The expressions for the general case when both natural and
magnetic dichroism effects are present are more complicated and have been
discussed by Carra et al. [378].

In principle we can eliminate any XNLD effect by performing a different
type of measurement as illustrated in Fig. 9.23. The two depicted types of
measurements explained in the figure caption are often referred to XMLD of
the first and second type, following Guo et al. [380].
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Although experimentally more demanding, the XMLD effect of the first
kind has the advantage that it eliminates the XNLD effect.16 It also contains
useful information on the magnetocrystalline anisotropy (MCA) as discussed
below. If the MCA of the sample is negligible and the sample has either cubic
symmetry or is polycrystalline the two types of XMLD measurements give
the same result. For example, polycrystalline films of the elemental ferromag-
nets typically have an in-plane easy axis and a weak in-plane anisotropy. In
lowest order it then does not matter whether we measure the XMLD effect
by either rotating the magnetization direction M with a field relative to the
fixed E-vector or whether we rotate E relative to the fixed magnetization
M . Therefore, our theory developed above should describe the experimental
XMLD spectra.

The lineshape predicted by our simple model is indeed observed as shown
in Fig. 9.24 [393, 394]. The measurements actually correspond to the XMLD
effect of the first kind.17 The size of the XMLD effect plotted in Fig. 9.24
corresponds to a per-atom normalization of the original spectra, with the edge
jump set to unity. The XMLD difference intensity is seen to be significantly
smaller than the corresponding XMCD effect in Fig. 9.12. This confirms the
expectations from our model calculation.

Despite the larger linewidth (∼1 eV) of the individual transitions than the
core exchange splitting (∼0.2 eV) the small energy shifts of the individual
components still have a pronounced effect on the measured XMLD line shape.
As shown in the bottom left inset of Fig. 9.22, the small energetic shifts of the
individual transitions leads to a pronounced differential resonance line shape
at both the L3 and L2. It arises from shifted positive and negative compo-
nents which, when added, give a similar differential lineshape from negative
to positive intensity for both edges. The same lineshape at the two edges is
a consequence of the fact that for the p3/2, (l + s) and p1/2, (l − s) levels
the signs of both s and mj are inverted as discussed already in Sect. 6.6.2 in
conjunction with Fig. 6.18. The intensity of the largest peak in the XMLD
(difference) spectrum in the inset of Fig. 9.22 is (4/90)AR2. This compares
to the value (2/9)AR2 for the XMCD difference, given by (9.96) or (9.97),
and indicates that the XMLD effect should be considerably smaller than the
XMCD effect. XMLD spectra can also be measured by analyzing the polariza-
tion of the X-rays rather than measurement of the absorption. Such magneto-
optical polarization spectroscopy, discussed in Sect. 8.7.4, can be performed in
several different geometries [395], and is complementary to X-ray absorption
spectroscopy.

16In antiferromagnets one can, in principle also “flop” the magnetization axis from
the easy into the hard direction, but typically very large fields are required.

17Note that the geometry used in reference [393] is opposite to the one shown
in Fig. 9.23 and therefore the measured difference denoted α⊥ − α‖ by the authors
actually agrees with our definition in (9.119).
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Fig. 9.24. X-ray absorption spectra and XMLD difference spectra for Co and Fe
metal [393]. The plotted intensities of the difference spectra correspond to I‖ − I⊥,
with the original spectra normalized to an edge jump of 1, far above the edges. The
measurements actually correspond to XMLD of the first kind, but because of the
weak magnetocrystalline anisotropy and the polycrystalline nature of the samples,
the difference between spectra of the first and second kind is negligibly small

XMLD of the first kind, which is measured by fixing the X-ray polar-
ization vector E along either the hard axis or easy axis and then rotating
the magnetic axis by 90◦ using a sufficiently strong external magnetic field,
avoids any natural linear dichroism contribution because only the magneti-
cally induced change in charge distribution is measured. In addition, we know
from Sect. 7.9.3 that the energy associated with the rotation of the magnetic
axis is the magnetocrystalline anisotropy ∆Eso. It is therefore not surprising
that XMLD measurements of the first kind can indeed measure the magneto-
crystalline anisotropy. This was first pointed out by van der Laan [396] who
also established a sum rule that links the magnetocrystalline anisotropy with
a linear combination of the XMLD intensity measured at the L3 and L2 edges,
according to

∆IL3 − 2∆IL2

〈IL3 + IL2〉
=

16
√

3
5 ζ3d

∆Eso

Nh
. (9.122)

Here ∆Eso is the magnetocrystalline anisotropy energy given by (7.50), ζ3d

the spin–orbit parameter defined in (6.87), Nh is the number of 3d holes, and
〈IL3 + IL2〉 is the white line intensity defined in (9.104). The sum rule was
experimentally verified by Dhesi et al. [394].

It is interesting to note that the magnetocrystalline anisotropy energy val-
ues derived from XMLD are significantly larger than the energies measured
with conventional methods. This is similar to the determination of the magne-



414 9 Interactions of Polarized Photons with Matter

tocrystalline anisotropy energies from the angular dependence of the orbital
moment, as discussed in Sect. 7.9.3. The origin for these discrepancies are not
understood [333,394].

Summary for the XMLD Intensity

We can summarize as follows.

X-ray magnetic linear dichroism, XMLD, arises from charge anisotropies
induced by the exchange and spin–orbit interactions relative to the easy
magnetic axis of the sample. The effect arises from uniaxial spin align-
ment and exists for both ferromagnets and antiferromagnets.

In practice, the measured magnitude of the XMLD intensity depends on
three important parameters,

– The degree of linear polarization Plin

– The expectation value of the square of the magnetic moment 〈m2〉
– The angle θ between the E-vector and the magnetic axis

This can be cast into the following general dependence of the XMLD intensity,

IXMLD ∝ Plin |m · E|2 ∝ Pcirc 〈m2〉 cos2 θ . (9.123)

In theory, one calculates the maximum linear dichroism effect by assuming
Plin = 1 and assuming two perpendicular measurements with E parallel and
perpendicular to m. In this case one obtains (9.121) for the XMLD difference
intensity. We can state as follows.

The XMLD difference intensity for a system with its magnetic axis along z
may be written in terms of angular matrix elements of the Racah spherical
tensors according to,

∆IXMLD =
AR2

2

∑

states

2|〈C(1)
0 〉|2 − |〈C(1)

−1 〉|2 − |〈C(1)
+1 〉|2 . (9.124)

The factor A is given by (9.61), and R is the radial transition matrix
element given by (9.81).

It is important to note the difference between the expectation value 〈m2〉
measured by XMLD and the quantity 〈m〉2 which can be determined by
XMCD [93]. The difference between the two quantities plays an important
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role in the temperature dependence of the XMLD intensity [93, 105, 106], as
discussed by Regan [284].18

9.7.8 Enhanced XMLD through Multiplet Effects

In our discussion above we have used a simple one-electron model which de-
scribes the electronic excitation of an “active” electron and ignores its coupling
to the other atomic electrons, which are therefore assumed to be “passive”. In
practice, such a model only works if correlation effects are small. The success
of our simple treatment of the XMLD effect in the magnetic transition metals
is largely based on the fact that they can be reasonably well described by
density functional theory which is largely based on an independent-electron
picture as discussed in Chapter 7.

For strongly correlated systems such as the transition metal oxides, we
have seen in Chapter 7 that multiplet effects have to be taken into account.
In particular we have discussed multiplet effects that arise from the coupling
between the electrons within the 3d valence shell. Such coupling leads to 2S+1L
ionic terms that are furthermore split by the ligand field and the exchange
and spin-orbit interactions. The electronic ground state is the lowest-energy
state. For such systems one can no longer describe X-ray absorption in a
one-electron model but one needs to use a configuration based approach, as
discussed in Sect. 9.5.1.

For 3d transition metals, the configuration picture calculates the X-ray
absorption spectrum as transitions from the electronic ground to an excited
configuration [266,267,397,398]. The electronic ground configuration consists
of a filled 2p6 core shell and a 3dN shell with N electrons. In the final config-
uration one electron has been removed from the core shell and added to the
3d shell. We have the electron excitation scheme,

Electron excitation picture: 2p6 3dN → 2p5 3dN+1. (9.127)

If the 3d shell is more than half full it simplifies things to use the concept of
holes instead of electrons. This is possible because we have learned in Sect. 6.5
that for a given shell the Coulomb and exchange interactions can be equiva-
lently treated in either an electron or hole picture if we take care of signs. For

18The two quantities, 〈m2〉 and 〈m〉2 are related by the magnetic susceptibility
χ and temperature T according to

〈m2〉
µ0

=
〈m〉2

µ0
+ kBTχ. (9.125)

If the susceptibility χ is not known one may use a molecular field expression to relate
the two expectation values according to [93]

〈m2〉 = g2
Jµ2

BJ(J + 1) − gJµB〈m〉 coth
(

gJµBHext

2kBT

)
. (9.126)
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example, Hund’s third rule states that the spin–orbit interaction changes sign
and the LF splitting is upside down as shown in Fig. 7.16. With these rules
we can use instead of (9.127) the following hole excitation scheme,

Hole excitation picture: 2p0 3d10−N → 2p1 3d9−N . (9.128)

We can state as follows.

L-edge spectra for multielectron 3dN valence systems may be derived by
considering either electron or hole configurations. The two schemes give
the same 2S+1L free ion multiplets but the sign of the spin–orbit and LF
splittings have to be inverted.

The simplest case involves initial (ground) and final (excited) configura-
tions with only two particles. It is encountered for NiO which has a (predom-
inantly) 2p6 3d8 ground state and a 2p5 3d9 excited state configuration. The
hole picture involves a p0 d2 ≡ d2 ground and 2p1 3d1 ≡ 2p 3d final configura-
tion. Hence we see that in this case the hole picture is simpler and involves
the interactions between two-holes, both in the initial and final configurations.
The X-ray absorption spectrum then corresponds to transitions between these
two configurations. Let us take a look at the electronic states involved in the
corresponding L-edge X-ray absorption spectrum.

The energy states involved in the L-edge transitions for Ni2+ in an octa-
hedral ligand field (e.g., NiO) are shown in Fig. 9.25. The electronic ground
configuration 2p63d8 (p0 d2 ≡ d2 hole state) consists of a filled 2p core shell
and 8 electrons in the 3d shell which are coupled by the strong Coulomb
and exchange interactions (total splitting about ∼5 eV), resulting in a 3F
free ion ground state which lies below the next higher states (1D,3 P ) by
about 2 eV [266]. The 3F state is split by the LF as shown in Fig. 7.16
(10Dq ( 1.5 eV) with a lowest energy 3A2g orbital singlet state with a spin
S = 1, corresponding to a spin moment of 2µB and a quenched orbital mo-
ment. From Table 7.7 we see that the d8(3A2g, t62ge

2
g) ground state can be

thought of as two holes of the same spin in the two eg orbitals d3z2−r2 and
dx2−y2 . According to Table A.2 these d orbitals correspond to the spherical
harmonics Y2,0 and Y2,±2, respectively. Thus the 3A2g state can be written as
products of the two one-electron functions Â(Y2,0 Y2,±2), where Â means that
the product has been properly antisymmetrized, i.e., is a Slater determinant.
With the angular momentum addition rules ML = m1

' +m2
' , where mi

' = 0,±1
are the magnetic quantum numbers of the two electrons, one can then see that
the state 3A2g has the form

|3A2g〉 ∼ |Â(Y2,0 Y2,±2)〉 ∼ |3F ,ML =±2,MS〉. (9.129)

The 3A2g state is further split by the superexchange interaction. The exchange
field felt by the Ni2+ ion consists of the sum over the six nearest neighbors [399]
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Fig. 9.25. Illustration of the electron states involved in the L-edge transitions for
Ni2+ in an octahedral ligand field (e.g., NiO) as discussed in the text. The 2p6 3d8

electronic ground state configuration, corresponding to a 2p0 3d2 ≡ 3d2 hole config-
uration, is coupled by the strong Coulomb and exchange interactions to a 3F free
ion ground state which is split in an octahedral LF, resulting in a lowest energy
3A2g ground state. The 2p5 3d9 electronic final state configuration (2p 3d hole con-
figuration) is dominated by the strong 2p core spin–orbit interaction, as shown on
the right. In practice, the two-hole final states are described by an “intermediate”
coupling scheme, indicated by the dotted vertical line. These states may be written
as linear combinations of L−S coupling (left) or j − j coupling states (second from
right), whose correspondence may be seen by means of the common J states (second
from left) [182]. We have also listed the dipole selection rules in L–S–J coupling

and is about 0.15 eV. It aligns the atomic moments into an antiferromagnetic
arrangement, as shown in Fig. 7.25. Together with the even weaker spin–orbit
interaction (ζ3d ∼ 50meV) it leads to a magnetic splitting of the 3A2g state,
where the lowest energy state may be written in the form19

19The 3d spin–orbit interaction also mixes the 3A2g LF ground state with the
higher energy 3T2g and 3T1g LF states, resulting in a small orbital moment.
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|GS〉 =
∑

J=4,3,2
MJ

aJ,MJ |3FJ ,MJ 〉 . (9.130)

The 2p 3d hole final configuration of the electronic excitation cannot sim-
ply be treated in L–S coupling because the largest interaction is the spin–
orbit coupling for the 2p hole, which leads to a 2p3/2−2p1/2 splitting of about
15 eV, and is larger than the 2p 3d Coulomb and exchange interaction (∼5 eV).
Hence the final state corresponds to a coupling scheme [182] that is “interme-
diate” between that where the Coulomb and exchange interaction is turned
off, schematically shown on the right side of Fig. 9.25 and the L–S scheme
shown on the left side. For reference we also show a j–j coupling scheme,
assuming a small spin–orbit interaction in the 3d shell. In general, there are
n energetically different final states which form two separate spin-orbit split
groups and within each group exhibit multiplet structure. They can also be
written as linear combinations of |L, S, J,MJ 〉 states according to20

|FS〉n =
∑

J=4,3,2
MJ

bn
J,MJ

|3FJ ,MJ 〉 +
∑

J=3,2,1
MJ

cn
J,MJ

|3DJ ,MJ 〉 . (9.131)

The fine structure of the L-edge absorption spectrum calculated by van der
Laan and Thole [402] for a 3d8 electronic ground state and different strengths
of the spin–orbit and Coulomb interactions in the 2p53d9 final state is shown in
Fig. 9.26a. Here the evolution of the spectrum is shown between two extreme
cases. If the Coulomb and exchange interactions are zero, the spectrum (top
trace) shows one-electron like behavior with two peaks separated by the 2p
spin–orbit splitting. In the other extreme of zero 2p core spin–orbit splitting
but strong Coulomb and exchange splitting, the spectrum (bottom trace) is
that calculated in pure L–S coupling. It consists of two peaks, corresponding
to the allowed (∆S =0,∆L=0,±1) transitions 3F → 3D and 3F → 3F . In the
intermediate region, where both the 2p core spin–orbit and 2p–3d Coulomb
and exchange splitting are present, a more complicated L-edge spectrum is
found. The situation encountered in practice for Ni2+ in octahedral symmetry
is indicated by an arrow on the left, and the calculated spectrum is shown in
Fig. 9.26b [402]. The agreement with experiment demonstrates the power of
multiplet calculations.

The enhancement of the XMLD effect in the presence of multiplet splitting
arises from the same physical principle as in the one-electron case. An XMLD
effect will only exist if the exchange and spin–orbit interactions break the
spherical symmetry in either or both of the initial and final states involved
in the electronic transitions. The origin of the magnetically induced charge

20In general, one can always express functions written in one coupling scheme as
a linear combination of functions written in another coupling scheme. In practice,
this is done today by use of the elegant scheme developed by Racah [400] and
Wigner [401], which is treated in detail by Cowan [182] and Shore and Menzel [181].



9.7 The Orientation-Dependent Intensity 419

Energy

U(p,d)

 ζp

850 870860

C
ro

ss
-s

ec
tio

n

Photon energy (eV)

Ni L-edge spectrum
...... Exp. Ni oxalate

Theory

2p 3d 2p 3d6 8 5 9
(a)

(b)

P3/2

P1/2

Fig. 9.26. (a) Calculated L-edge transition probability from a 2p6 3d8 configura-
tion with a 3F free ion ground state to the 2p5 3d9 electronic final state configura-
tion [402]. The horizontal scale corresponds to excitation energy, while the 2p–3d
Coulomb and exchange interaction U(p, d) and the 2p spin–orbit coupling ζp are var-
ied vertically. The top trace correspond to pure 2p spin–orbit coupling (U(p, d) = 0)
and the lowest trace to pure L–S coupling (ζp = 0). The case corresponding to
experiment is marked with an arrow on the left side. (b) Experimental (dotted line)
and calculated L-edge spectra (data points) for Ni oxalate [402]

asymmetry in the ground state (9.130) and the excited states (9.131) is best
seen by realizing that any multiplet state |2S+1LJ〉 = |L, S, J〉 is spherically
symmetric, similar to the one-electron case shown in Fig. 9.21. Only when the
MJ -degeneracy is lifted through magnetic interactions do the |L, S, J,MJ 〉
substates exhibit a charge asymmetry.

Both the ground state (9.130) and the excited states (9.131) are seen
to consist of a linear combination of MJ substates, weighted by coefficients
aJ,MJ , bn

J,MJ
, and cn

J,MJ
and are therefore, in general, not spherically symmet-

ric. In addition, the dipole operator couples the MJ -states in the ground state
and the M ′

J states in the excited states differently for linearly polarized light
along z, namely M ′

J − MJ = 0, and for linearly polarized light perpendicu-
lar to z, namely M ′

J − MJ = ±1. One may summarize the reasons for the
enhanced XMLD effect in spectra with multiplet effects as follows.
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The XMLD effect is enhanced in the presence of multiplet effects for the
following reasons:

– The X-ray absorption spectrum for a sample with a 2p63dN , 1<N <9,
ground configuration consists of several resonances that are due to the
multiplet structure of the final configuration 2p53dN+1.

– In general, for magnetically aligned samples both the electronic
ground state of the 2p63dN ground configuration and the excited
states of the final configuration 2p53dN+1 are not spherically sym-
metric.

– The dipole operator selects and weights the various resonant transi-
tions depending on the light polarization, often with opposite intensity
changes for energetically separated resonances.

The XMLD effect measured for a thin epitaxial NiO film grown on
MgO(100) is shown in Fig. 9.27 [403]. In this case the XMLD effect arises
from the preferential alignment of the antiferromagnetically coupled spins
perpendicular to the film surface. In comparison, the results of a multiplet
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Fig. 9.27. Experimental (dotted line) polarization dependent Ni L-edge spectra
for a 20 monolayer (ML) thick epitaxial NiO(100) film grown on MgO(100) [403],
measured at room temperature. The angle θ = 90◦ corresponds to normal incidence
with E in the plane of the film and θ = 15◦ to grazing incidence with E nearly
along the surface normal. The theoretical spectra (solid line) were calculated with a
multiplet theory including an octahedral LF and assuming an exchange interaction
along a magnetic axis that lies nearly perpendicular to the surface along 〈±2±1±1〉
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calculation are also shown. They are found to be in good agreement with the
data. Particularly important is the strong change of the two peaks A and B
associated with the L2-edge. By comparison of experiment and theory one can
establish the following rule: when the E-vector is aligned along the magnetic
axis the higher energy peak B has maximum intensity. The peak intensity
ratio is often used to determine changes in the orientation of the magnetic
axis [105,403–405].

The magnetic origin of the observed linear dichroism effect may be proven
by heating the sample above the Curie temperature, as illustrated for stron-
tium doped LaFeO3 in Fig. 9.28. If about 40% of the La atoms are replaced by
Sr, the high Néel temperature of LaFeO3 (1013 K) is reduced to around 200 K.
The Fe L2,3 NEXAFS spectra of such a La0.6Sr0.4FeO3 sample recorded below
and above the Néel temperature are plotted in Fig. 9.28a, b, respectively. The
spectra recorded at 100 K, well below the expected Néel temperature, reveal
the presence of a strong polarization dependence, which completely vanishes
in case of the room temperature spectra. This clearly demonstrates the purely
magnetic origin of the linear dichroism observed for La0.6Sr0.4FeO3 below its
Néel temperature.

Both LaFeO3 (see Fig. 10.9) and La0.6Sr0.4FeO3 have the same crystal
structure with six oxygen atoms surrounding each Fe atom. Since the oxy-
gens have a higher electronegativity than Fe, LaFeO3 is an ionic compound in
which Fe has a valency of 3+ and a d5 high spin ground state. Correspond-
ingly, the rich fine structure of the spectra can be explained by a multiplet
calculation performed for an Fe3+ ion in a high-spin ground state [407], which
considers the multiplet coupling of the five Fe 3d valence electrons (or holes)
in the ground state, and the multiplet coupling of the four 3d holes and the
2p core hole in the final state. The oxygen ligands surrounding the Fe3+ ion
give rise to an octahedral crystal field, which is taken into account via the
cubic 10Dq crystal field parameter. In general, more than one multiplet state
contributes to each of the peaks in the absorption spectrum. Since these dif-
ferent states typically differ in their polarization dependence, the intensities
of the absorption structures typically vary between two finite extreme values
and do not vanish completely for any orientation of the electric field vector
relative to the AFM axis.

9.7.9 The Orientation-Dependent Sum Rules

In Sect. 9.6.5 we established relationships between orientation-averaged X-
ray absorption resonance intensities and physical quantities which represent
averages over the atomic volume, like the number of valence holes per atom
and the atomic spin and orbital moments. It turns out that these orienta-
tion averaged sum rules are integrated versions of more general orientation-
dependent sum rules. The latter link the intensities of orientation-dependent
XNLD, XMLD, and XMCD spectra to the same atomic-volume integrated
physical quantities plus an orientation-dependent term related to the quadru-
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Fig. 9.28. Saturation corrected electron yield spectra at the Fe L2,3-edge of
La0.6Sr0.4FeO3, grown as a 40 nm thin La0.4Sr0.6FeO3 film on a SrTiO3(110) sub-
strate, for the two indicated geometries, (a) below and (b) above the Néel temper-
ature. The absence of any dichroism above the Néel temperature demonstrates the
magnetic origin of the linear dichroism effect observed below the Néel temperature.
Spectra taken from Lüning et al. [406]

pole moment. The orientation-dependent term simply integrates to zero when
an orientational average is performed.

In the context of this book we restrict our discussion to the generalized
form of three sum rules of Sect. 9.6.5. In particular, we simply state their
form since a more detailed discussion has been given elsewhere [102,333,384,
408]. Also, there are other sum rules for the case of XMLD, and we refer the
interested reader to the original papers [378,382,383].
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When generalized, the charge sum rule (9.103) takes the form (9.117) or
A.31 which we can write in simplified form as (see Appendix A.8),

[ IL3 + IL2 ]α = C(Nh + Nα
Q). (9.132)

We have characterized the anisotropy by an index α that specifies the orien-
tation of E (linear polarization) or k (circular polarization). The sum rule
correlates the polarization dependent white line intensity with the total num-
ber of d holes Nh and a quadrupole term Nα

Q which expresses the anisotropy
of the charge density in the atomic volume as discussed in Sect. 9.7.4 and
Appendix A.8. The term Nα

Q vanishes when an angular average is performed,∑
α Nα

Q = Nx
Q + Ny

Q + Nz
Q = 0 yielding the isotropic sum rule (9.103).

For 3d compounds the spin sum rule (9.105) originally derived by Carra
et al. [101] takes the general form [102,408]

[−A + 2B]α =
C

µB
(ms + mα

D) . (9.133)

We see that its form closely resembles the charge sum rule, and in fact its
derivation in a one-electron model proceeds along the same lines as that of
(9.132). In general, the term mα

D arises from the anisotropic spin density in the
atomic volume. It is given by mα

D = −7〈Tα〉µB/h̄ [408] where T = S−3r̂(r̂·S)
is the intra-atomic magnetic dipole operator [101]. In general we have Tα =∑

β QαβSβ , so that the charge (expressed by the quadruple operator Q, see
Appendix A.8) and spin (S) components of T are coupled. If the atomic spin–
orbit coupling is comparable to the ligand field effects experienced by the
magnetic atom, the charge distribution is no longer decoupled from the spin
distribution and in this case the term mα

D is always present in addition to
the spin moment. This provides a problem since the spin moment cannot be
independently determined. We shall not discuss this difficult case here but
refer the reader to references [409–411].

If the spin–orbit coupling is weak relative to the ligand field effects, the
atomic spin density closely follows the atomic charge density. The term mα

D is
then mainly determined by the anisotropy of the charge due to bonding and
it may be eliminated by three orthogonal measurements, provided the ligand
field symmetry is not too low [102,333].

Many 3d compounds fall in this category since the spin–orbit coupling is
small. In this case there is more than a formal similarity between the charge
sum rule (9.132) and the spin sum rule (9.133). In this case the total number of
holes, Nh, and the charge density term, Nα

Q in (9.132), are simply replaced by
the isotropic spin moment, ms, and a spin density term mα

D = (7/2)
∑

i Qi
αmi

s

in (9.133), respectively. The latter consists of a sum over the di-orbital pro-
jected spin moments mi

s and the quadrupole matrix elements Qi
α of the di-

orbitals defined in (A.32). This term is nonzero in anisotropic bonding envi-
ronments and reflects the fact that the number of spins in the atomic volume
differs along different crystallographic (bonding) directions. Polarized X-rays
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therefore offer the capability of probing the angular distribution of the spins
in the atomic volume, whereas conventional magnetometry only probes the
integrated number of spins, i.e., the essentially isotropic spin moment per
atom. For small spin–orbit coupling, the term mα

D vanishes when an angular
average is performed because of its link to the quadrupole moment. We then
have (1/3)

∑
α mα

D = 0, and the isotropic sum rule (9.105) is obtained. The
angular average requires that in all measurements the sample is magnetically
saturated by a strong external magnetic field along the X-ray propagation
direction.

Finally, we discuss the general orbital moment sum rule. When an XMCD
measurement is performed for a given sample orientation in the presence of
an external magnetic field which is sufficiently large to magnetically saturate
the sample along the X-ray propagation direction k, the orbital moment mα

o

along the field direction α can be directly determined by use of the sum rule

−[A + B]α =
3C

2µB
mα

o . (9.134)

Note that in contrast to the quantities Nh and ms which by definition cor-
respond to isotropic atomic quantities, the orbital moment mα

o is in general
anisotropic, as discussed in Sect. 7.9.3. We have also seen in that section that
the difference between the orbital moments measured along the easy and hard
magnetization directions is related to the magnetocrystalline anisotropy.

9.8 Magnetic Dichroism in X-ray Absorption and
Scattering

We conclude this chapter by connecting the magnetic dichroism effects ob-
served in X-ray absorption and resonant scattering. We have seen in Sect. 9.4.2
that the X-ray absorption cross-section is given by the imaginary part f2(E) =
F ′′(E) of the resonant forward scattering factor F (E), according to the optical
theorem (9.49) or

σabs(E) = 2 r0 λ Im[F (Q, E)]Q=0 =
C∗

E
f2(E) , (9.135)

where C∗ = 2h c r0 = 0.70× 108 b eV. This general relationship also holds for
dichroic absorption and scattering. For example, if we measure the XMCD
absorption cross-section σabs(E) we can use the Kramers–Kronig transfor-
mation to obtain the dichroic scattering factors, and by their use we obtain
the resonant scattering cross-section in the long-wavelength limit according
to (9.48) or

σscat = σe

(
[f1(E)]2 + [f2(E)]2

)
. (9.136)

As an example we show in Fig. 9.29 the L-edge dichroic absorption and scat-
tering cross-sections for Fe metal, using the data of Kortright and Kim [353].



9.8 Magnetic Dichroism in X-ray Absorption and Scattering 425

1

101

102

103

104

105

106

107

680 690 700 710 720 730 740

Abs. −
Abs. +
Scat −
Scat +

Ab
so

rp
tio

n 
an

d 
sc

at
te

rin
g

cr
os

s-
se

ct
io

ns
 (b

ar
n/

at
om

)

Photon energy (eV)
Fig. 9.29. Fe L-edge XMCD cross-sections for the absorbed and elastically scattered
intensity [353]. The shown cross-sections are the polarization-dependent versions of
those in Fig. 9.6 in the presence of magnetic alignment

The plot is the dichroic version of that in Fig. 9.6. The figure shows that mag-
netic effects are prominent both in X-ray absorption and resonant scattering.

In Sect. 9.5.3 we have stated the quantum mechanical results for the X-ray
absorption cross-section, given by (9.59), and the resonant scattering cross-
section in the long-wavelength limit, given by (9.63). We now want to establish
the link between these expressions, which in essence constitutes the proof of
dichroic version of the optical theorem (9.49).

9.8.1 The Resonant Magnetic Scattering Intensity

We start with expression (9.63) for the differential cross-section for the reso-
nantly scattered intensity in the dipole approximation, i.e.,

(
dσ

dΩ

)scat

= r2
0 |F (h̄ω)|2 =

h̄2ω4

c2
α2

f

∣∣∣∣∣
∑

n

〈a|r · ε∗2|n〉〈n|r · ε1|a〉
(h̄ω − En

R) + i(∆n/2)

∣∣∣∣∣

2

. (9.137)

For a magnetic sample, we define the z quantization axis to lie along the
magnetization direction. One can then express the double matrix element in
terms of matrix elements of spherical tensors C(1)

q (q = 0,±1) and products
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involving the unit polarization vectors and the unit vector m̂ = ez according
to [412]

〈a|r · ε∗2|n〉〈n|r · ε1|a〉 =
R2

2
[
(ε∗2 · ε1)

{
|C+1|2 + |C−1|2

}

+ i(ε∗2 × ε1) · m̂
{
|C−1|2 − |C+1|2

}

+ (ε∗2 · m̂)(ε1 · m̂)
{
2|C0|2 − |C−1|2 − |C+1|2

}]
,

(9.138)

where R = 〈a|r|n〉 is the radial transition matrix element and the factors
|Cq|2 are dipole matrix elements of the Racah spherical tensors given by

|Cq|2 = |〈a|C(1)
q |n〉|2. (9.139)

This gives the following key result for the resonant magnetic scattering factor,
defined in (9.20) [365,412].

The elastic resonant magnetic scattering factor in units [number of elec-
trons] is given by

F (h̄ω) =
h̄ω2αfR2

2cr0



(ε∗2 · ε1)G0︸ ︷︷ ︸
charge

+ i(ε∗2 × ε1) · m̂ G1︸ ︷︷ ︸
XMCD

+ (ε∗2 · m̂)(ε1 · m̂)G2︸ ︷︷ ︸
XMLD



 ,

(9.140)

where αf is the dimensionless fine structure constant given by (9.62), R2

the radial transition matric element, r0 the classical electron radius, and

G0 =
∑

n

|〈a|C(1)
+1 |n〉|2 + |〈a|C(1)

−1 |n〉|2

(h̄ω − En
R) + i(∆n/2)

, (9.141)

G1 =
∑

n

|〈a|C(1)
−1 |n〉|2 − |〈a|C(1)

+1 |n〉|2

(h̄ω − En
R) + i(∆n/2)

, (9.142)

and

G2 =
∑

n

2|〈a|C(1)
0 |n〉|2 − |〈a|C(1)

−1 |n〉|2 − |〈a|C(1)
+1 |n〉|2

(h̄ω − En
R) + i(∆n/2)

. (9.143)

The first term in (9.140) is independent of the magnetic moment. The
numerator of G0 has the form of the natural linear dichroism intensity given
by (9.112) for linear polarization and (9.113) for circular polarization. As in-
dicated in (9.140) it describes the resonant scattering from a spherical charge
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distribution. The polarization dependence (ε2 · ε1) is the same as for Thom-
son scattering. The scalar product is finite only if the incident and scattered
polarizations are collinear, that is the photon polarization is not rotated upon
scattering.

The second term has a linear dependence on the magnetic moment and the
numerator of the matrix element G1 has the same form as (9.102), describing
XMCD. It therefore describes magnetic circular dichroism. The polarization
dependence is (ε2 × ε1) so that the polarization is rotated on scattering.

The third term is quadratic in the magnetic moment and the matrix ele-
ments in G2 are of the same form as those for XMLD given by (9.124). Hence
the term describes magnetic linear dichroism. The polarization dependence is
more complicated and in general the polarization is partially rotated in the
scattering process.

9.8.2 Link of Magnetic Resonant Scattering and Absorption

In order to establish the link between the imaginary part f2(h̄ω) of the
magnetic resonant scattering factor and the X-ray absorption cross-section
σabs(h̄ω), we start from F (h̄ω) given by (9.137). For simplicity we restrict
ourselves to one well-defined resonant transition via a state |n〉 = |b〉 so that
we can drop the sum. This gives

F (h̄ω) =
h̄ω2

cr0
αf

〈a|r · ε∗2|b〉〈b|r · ε1|a〉
(h̄ω − Eba) + i(∆b/2)

. (9.144)

where Eba = Eb − Ea is the resonant energy and ∆b is the FWHM of the
intermediate state.

We now want to prove the relationship (9.135). Without dealing with the
different polarization cases, which we shall do later, let us quickly see how the
scattering factor transforms into the absorption cross-section. If we assume
that the unit polarization vectors are real and consider forward scattering so
that ε1 = ε2 = ε we get 〈a|r · ε|b〉〈b|r · ε|a〉 = |〈b|r · ε|a〉|2. Next we rewrite
the denominator in (9.144) as a real and imaginary part

1
(h̄ω− Eba)+i(∆b/2)

=
h̄ω−Eba

(h̄ω−Eba)2+(∆b/2)2
−iπ

2
π∆b

(∆b/2)2

(h̄ω−Eba)2+(∆b/2)2︸ ︷︷ ︸
ρ(Eb)

.

(9.145)

The imaginary term denoted by an under-bracket represents a normalized
Lorentzian of unit area and dimension [1/energy] according to Appendix A.9.
As indicated we can use this function to represent the density of states ρ(Eb)
associated with the intermediate state |b〉. By substituting into (9.144) and
with h̄ω = E we obtain the desired result
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Im[F (h̄ω)] = f2(h̄ω) =
πω

cr0
αf h̄ω |〈b| ε · r|a〉|2 ρ(Eb) .

=
ω

4πcr0
σabs(h̄ω) =

h̄ω

2h c r0
σabs(h̄ω) =

E

C∗ σabs(h̄ω) . (9.146)

Here we have used (9.59), with implicit requirement of the energy conserving
δ-function. Our result (9.146) constitutes a quantum mechanical proof of the
optical theorem (9.49), extended to magnetic systems. Let us now take a closer
look at the detailed polarization-dependent terms in the resonant magnetic
scattering factor given by (9.140).

Linear Polarization

For linearly polarized incident X-rays, ε is real and only the first and third
terms are nonzero. By use of (9.145) we obtain from (9.140)

f2(h̄ω) =
h̄ω

2hcr0︸ ︷︷ ︸
E/C∗

4π2αf h̄ω︸ ︷︷ ︸
A

R2 ρ(Eb)




1
2
{
|C+1|2 + |C−1|2

}

︸ ︷︷ ︸
charge

+
1
2
|ε · m̂|2

{
2|C0|2−|C−1|2−|C+1|2

}

︸ ︷︷ ︸
XMLD



 .

(9.147)

In comparing the terms labelled “charge” and “XMLD” to the relevant ex-
pressions for the X-ray absorption intensities we need to ignore the conversion
factor E/C∗ and integrate the density of states factor ρ(Eb) over energy which
per our definition gives unity (see Appendix A.9). Our result for the charge
term is then found to be identical to the X-ray absorption intensity for linear
polarized X-rays given by (9.112). Since the result does not depend on the
orientation of the polarization vector ε in space, we see that this term reflects
absorption by a spherically symmetric charge density.

The XMLD term is identical to our previous result given by (9.124) if we
take the difference of the intensities for ε ‖ m̂ and ε ⊥ m̂ according to (9.119).
This establishes the link between the resonant scattering factor in the forward
scattering geometry and the XMLD absorption intensity.

Circular Polarization

For incidence along the z quantization axis, circularly polarized X-rays with
positive and negative helicity are described by (5.35) and (5.36) or
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ε± = ∓ 1√
2

(εx ± iεy) , (9.148)

Defining εx × εy = εz = k0, where k0 is the unit vector in the direction of
X-ray propagation, we have

i
[
(ε±)∗× ε±

]
= ∓k0 , (9.149)

meaning that for positive helicity light the cross product gives −k0 and for
negative helicity light +k0. We obtain from (9.140),

f2(E) =
E

C∗AR2 ρ(Eb)




1
2
{
|C+1|2 + |C−1|2

}

︸ ︷︷ ︸
charge

∓(k0 · m̂)
1
2
{
|C−1|2−|C+1|2

}

︸ ︷︷ ︸
XMCD




.

(9.150)

The charge term is equivalent to the natural linear dichroism intensity given
by (9.112) for linear polarization and (9.113) for circular polarization. Since
it does not depend on the orientation of the polarization vector ε in space it
represents the resonant scattering from a spherical charge distribution.

If we form the difference between intensities measured with left and right
circular polarization according to our XMCD definition (9.95), the charge
term drops out and we obtain

∆f2(E) = f−
2 (E) − f+

2 (E) =
E

C∗AR2 ρ(Eb)
{
|C−1|2−|C+1|2

}
. (9.151)

Without the conversion factor E/C∗ and after energy integration this result
is identical to that derived earlier in (9.102).

In Chap. 10 we shall explore through experiments the theoretical concepts
developed earlier.
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X-rays and Magnetism: Spectroscopy and
Microscopy

10.1 Introduction

The goal of the present chapter is to give an overview of experimental X-ray
techniques for the determination of the magnetic properties of matter. While
it will be advantageous for the reader to have worked through the theoreti-
cal concepts developed in Chap. 9, the present chapter is mostly written from
an experimentalist’s point of view. The chapter may therefore be understood
without having mastered the detailed theory of Chap. 9. To facilitate this task,
we will present a short summary of the concepts underlying the various X-ray
dichroism effects in Sect. 10.2. We will then focus on experimental procedures,
data analysis techniques, and the relation of X-ray resonance intensities with
magnetic quantities, for example the link between X-ray absorption intensities
and magnetic moments. In all cases we illustrate the concepts by experimen-
tal results. Our treatment reflects the fact that polarized X-ray techniques
have become of considerable importance for the study of magnetic phenomena
and materials, owing to their elemental, chemical, and magnetic specificity.
We will show here that spectroscopic and microscopic results may be linked
to magnetic properties of interest by simple analysis procedures.

We highlight X-ray absorption techniques, both spectroscopy and spectro-
microscopy, because of their simplicity and direct link to magnetic properties.
We also touch on X-ray scattering, in particular, the use of resonant coher-
ent techniques for magnetic imaging. Absorption and scattering are related
as discussed in Sect. 9.8. In practice, the resonantly scattered intensity can
always be obtained by the Kramers–Kronig transformations as discussed in
Sect. 9.4.4. We shall not specifically discuss reflectivity experiments, which are
closely related to scattering experiments and, like the magneto-optical Kerr
technique, may conveniently be used for magnetic characterization [358–361].
In contrast to X-ray absorption, however, scattering and reflectivity experi-
ments contain information on both the absorptive and refractive part of the
refractive index n(ω) (see (9.1), (9.6), and (9.7)) and the analysis is there-
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fore more complicated. In particular, care has to be exercised regarding the
measured sign of the dichroism signal [358,361].

Two types of X-ray absorption spectroscopy are often distinguished. The
first is concerned with the study of resonances near the absorption edges, often
called near edge X-ray absorption fine structure (NEXAFS) [189] or X-ray
absorption near edge structure (XANES) [413]. The near edge fine structure
originates from transitions between a core state and localized valence states.
For the transition metals, for example, we are mostly interested in dipole
transitions from 2p core to 3d valence states. The intensity of such transitions
provides direct information on the magnetic properties of the important d
valence electrons and represents the most powerful use of X-ray absorption
spectroscopy for the study of magnetic materials.

The second type of spectroscopy deals with nonresonant absorption and is
typically called the extended X-ray absorption fine structure (EXAFS) [413].
Magnetic EXAFS, which exists in the region starting tens of eV above the
absorption edge, originates from spin-dependent scattering of the excited pho-
toelectron off the magnetic neighbors and may be useful for studies of the local
magnetic structure [414, 415]. We shall not treat it here because we believe
resonant effects to be more important.

The structure of the chapter is as follows. We first give a quick overview
over the four most important dichroism effects and how they manifest them-
selves in measured spectra. The rest of the chapter consists of two major parts,
dealing with spectroscopy and microscopy. We first discuss experimental pro-
cedures for polarization dependent X-ray absorption spectroscopy, data analy-
sis methods and present selected results. We concentrate on spectroscopic
studies of the 3d transition metals, using their L absorption edges. We then
turn to magnetic microscopy with X-rays, better called “spectro-microscopy”,
because the method combines the principles of spectroscopy such as changes
of X-ray energy and polarization with imaging methods. Both real space imag-
ing methods and reciprocal space methods such as holography are discussed
and illustrated by examples.

10.2 Overview of Different Types of X-ray Dichroism

The term “dichroism” needs a short explanation. We have learned in Chap. 9
that historically, the term dichroism specifically referred to polarization depen-
dent absorption of light. On a microscopic level the origin of dichroic behavior
of a material originates from the spatial anisotropy of the charge or the spin.
In cases where the spins are not aligned and the effect depends on charge,
only, one speaks of charge or “natural” dichroism.
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X-ray “natural” dichroism refers to the absence of spin alignment.

– X-ray natural linear dichroism – XNLD – is due to an anisotropic
charge distribution. The effect is parity even and time even.

– X-ray natural circular dichroism – XNCD – may be present for
anisotropic charge distributions that lack a center of inversion. The
effect is parity odd and time even.

If the origin of dichroism is due to preferential spin alignment or magnetic
order one speaks of magnetic dichroism. We distinguish directional spin align-
ment, as in a ferromagnet or ferrimagnet, from axial spin alignment as in a
collinear antiferromagnet. The term “directional” is more restrictive since a
directional alignment is also axial, but not vice versa. There are two important
types of magnetic dichroism.

X-ray “magnetic” dichroism is due to spin alignment and the spin–orbit
coupling.

– X-ray magnetic linear dichroism – XMLD – arises from a charge
anisotropy induced by axial spin alignment. The effect is parity even
and time even.

– X-ray magnetic circular dichroism – XMCD – arises from directional
spin alignment. The effect is parity even and time odd.

There are other more complicated types of “magnetic” dichroism where
charge and spin effects are both present [88,416]. For example, X-ray magne-
tochiral dichroism arises from axial spin alignment and a chiral charge distri-
bution and the effect is parity odd and time odd [417]. X-ray nonreciprocal
linear dichroism arises from charge chirality that is induced by an axial spin
alignment and the effect is parity odd and time odd [418]. We shall not dis-
cuss these cases here. Rather we shall first give a summary of the four kinds
of natural and magnetic dichroism highlighted by the boxes above and then
specifically treat the three cases of XNLD, XMLD, and XMCD. It turns out
that these three types of dichroism are connected and in contrast to XNCD
they all arise within the dipole approximation.

The simplest case of dichroism which has been extensively discussed in the
book NEXAFS Spectroscopy [189] is X-ray natural linear dichroism, XNLD,
due to anisotropic bonding. The most beautiful examples of XNLD are found
in covalently bonded systems, such as organic molecules and polymers, where
the bonding is directional. Often a simple picture, called the “search light
effect”, can be used to predict the angle-dependent intensity associated with
a transition of a core electron to an empty molecular (valence) orbital. If the E
vector points into the direction of maximum density of the empty molecular
orbital (one could say “hole” density), the transition is strongest, and it is
weakest for E perpendicular to the orbital density. An example is shown in
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Fig. 10.1. Four important types of dichroism. (a) X-ray natural linear dichroism
spectra of La1.85Sr0.15CuO4 near the Cu L-edge [419]. The resonances are due to
transitions to the highest energy unfilled dx2−y2 orbital. (b) X-ray absorption spec-
trum (red) of single crystal LiIO3 and the difference spectrum (gray), the X-ray
natural circular dichroism spectrum, obtained from absorption spectra with left and
right circularly polarized X-rays, incident along a special crystalline axis [420]. (c)
Magnetic linear dichroism spectrum of an epitaxial thin film of antiferromagnetic
LaFeO3 with the E vector aligned parallel and perpendicular to the antiferromag-
netic axis [406]. The splitting of the L2 resonance is due to multiplet effects. (d) X-ray
magnetic circular dichroism spectrum around the L3 and L2 edges of Fe metal. The
photon angular momentum was aligned parallel or antiparallel to the magnetization
direction of the sample [96]

Fig. 10.1a for the Cu L-edge of La1.85Sr0.15CuO4 [419]. The single crystal
sample has a layered structure. The Cu atom shown in black is surrounded by
4 in-plane O atoms and two out-of-plane O atoms. If we define the x, y plane
of our coordinate system to lie in the plane of the layers (shown in gray) the
in-plane dx2−y2 orbital is unfilled and when the E lies in the x, y plane a large
peak-like transition is observed to this orbital. This resonance is absent when
E is oriented perpendicular to the plane, as shown, since there are no empty
states in the perpendicular direction. XNLD is used to probe the anisotropy
of the valence charge. It is a powerful technique for the determination of
the orientation of molecules and functional groups on surfaces and in organic
materials [189], the direction and the nature of local bonds in materials [372],
and even the orientational order in amorphous materials, that is materials
without translational order [388,421].

X-ray natural circular dichroism, XNCD, may be observed if the bonding
around the absorbing atom lacks a center of inversion. The origin of XNCD
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may be visualized by picturing the bonding around the absorbing atom as pos-
sessing a handedness in space. When the handed circular light is also pictured
in space, as shown in Fig. 5.3, it is then intuitively plausible that the X-ray
absorption depends on whether the handedness of the charge and that of the
EM wave are the same or opposite. This model also conveys the important
fact that the EM wave must contain a k dependence, since only then will it
have a “twist” over the atomic volume. This intuitive picture is theoretically
reflected by the fact that XNCD vanishes in the dipole approximation.1 An
example of XNCD is shown in Fig. 10.1b for the Iodine L1-edge X-ray absorp-
tion spectrum (red) of single crystal LiIO3. The XNCD spectrum, defined as
the difference of two absorption spectra obtained with left and right circularly
polarized X-rays, is shown in gray [420,422,423]. It was obtained by aligning
the single crystal sample along a special crystalline axis. The effect is seen to
be remarkably large of the order of several per cent. Within the context of
this book we shall not discuss XNCD any further.

Next we give a brief introduction to X-ray magnetic linear dichroism,
XMLD. We have seen above that both natural and magnetic linear dichro-
ism effects are parity even and time even. They are therefore related and
their separation is sometimes tricky. The principal difference is that XMLD
only exists in the presence of magnetic alignment and hence it vanishes at
temperatures above the Neél or Curie temperature, or for paramagnets in the
absence of an external magnetic field. There are two important prerequisites
for the existence of XMLD: the existence of atomic magnetic moments and
the spin–orbit interaction. For example, in ferro- and antiferromagnets, the
exchange interaction creates a spin magnetic moment. The spin–orbit inter-
action creates an orbital magnetic moment which is locked to both the spin
moment and the lattice. The result is the creation of a macroscopic “easy” axis
along which the spins lie. Ferro- or ferri-magnets are directional since there
is a net moment direction while collinear antiferromagnets are axial since all
spins lie along a particular axis of the crystal but there is no net moment.
Both can be studied with XMLD.

1The dipole approximation neglects the k dependence of the EM wave. It assumes
Eeik·r = E(1+ik · r+· · · ) = E (see Sect. 9.5.3) and thus neglects the spatial ”twist”
of the wave over the atomic volume. XNCD arises from keeping the first order term
in k in the transition matrix element M = 〈 b| (p · E) (1 + ik · r) |a〉, so that

M = 〈 b|p · E|a〉
︸ ︷︷ ︸

A

+
i
2
〈 b|(r × p) · (k × E)|a〉

︸ ︷︷ ︸
B

+
i
2
〈 b|(k · r)(p · E) + (k · p)(r · E)|a〉

︸ ︷︷ ︸
C

.

Term A is the electric dipole term, B the electric dipole/magnetic dipole interference
term, and C the electric dipole/electric quadrupole interference term. NCD in the
optical range arises from term B, whereas XNCD is mostly due to term C. XNCD
vanishes for samples without orientational order, and single crystal samples are
required. Also, not all samples that lack inversion symmetry exhibit XNCD but
only a subgroup, as discussed in more detail by Natoli et al. [422].
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The existence of a macroscopic magnetic axis leads to a difference in X-ray
absorption intensity when the polarization vector is either parallel or perpen-
dicular to the magnetic axis. This can happen in different ways. The most
obvious case is when in the presence of magnetic order the lattice lowers its
symmetry. For example, a cubic lattice may experience a contraction along
the magnetic axis. The charge becomes anisotropic and this causes a nat-
ural linear dichroism effect that is magnetically induced. Another prominent
origin of XMLD is the presence of coupled electronic (multiplet) states that
are formed under the influence of the exchange and spin–orbit interactions.
Such states typically have a nonspherical charge distribution and when tran-
sitions between pairs of such states are energetically separated there can be
a large polarization dependence of individual transitions. This is the origin
of the large XMLD effect in the multiplet-split Fe L2 resonance in LaFeO3

shown in Fig. 10.1c. The spectra show the difference in absorption when the
E vector is aligned parallel and perpendicular to the antiferromagnetic axis in
LaFeO3 [406]. XMLD is extensively used today for the study of antiferromag-
nets, in particular, the determination of the orientation of the antiferromag-
netic axis in thin films and near surfaces, and the imaging of antiferromagnetic
domains.

We conclude the overview of dichroism effects with X-ray magnetic circular
dichroism, XMCD. It is used to measure the size and direction of magnetic
moments. Both the magnetic moments and the XMCD effect are time odd
and parity even. As illustrated in Fig. 10.1d for the Fe L-edge in Fe metal, the
XMCD effect is maximum when the X-ray angular momentum is parallel and
antiparallel to the magnetic moment of the sample. The effect is seen to be
very large at the resonance positions and is opposite at the L3 and L2 edges.
This directly reflects the opposite sign of the spin component at the two edges,
j = l + s at the L3 edge and j = l − s at the L2 edge. Like magnetic linear
dichroism, XMCD requires the presence of a magnetic alignment, which has
to be directional. It is therefore zero for antiferromagnets. It also requires the
presence of spin–orbit coupling because the photon angular momentum does
not directly couple to the electron spin but only indirectly via the orbital
angular momentum. This is because the electronic transition is driven by
the electric field which does not act on spin but only on the orbital angular
momentum through the charge.

In a simple picture, in the absorption process a handed photon transfers
its angular momentum to a core electron. The X-ray energy is tuned so that
the created photoelectron is excited into the valence shell. If the valence shell
has a preferential angular momentum direction the transition probability will
depend on whether the photon and valence shell angular momenta are parallel
or antiparallel. The dependence of XMCD on the spin–orbit coupling has the
benefit that it allows the separate determination of spin and orbital angular
momenta (and therefore moments) from linear combinations of the measured
L3 and L2 dichroism intensities. This and the ability to determine the size and
direction of the moments is a consequence of the famous XMCD sum rules
that we shall discuss later in the chapter. XMCD has become an important
magnetic tool partly because it allows the study of magnetic properties in
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combination with submonolayer sensitivity, elemental specificity, and chem-
ical state specificity. When nanoscale magnetic imaging and ultrafast time
resolution are added we have a method that is unique for the study of modern
magnetic materials.

10.3 Experimental Concepts of X-ray Absorption
Spectroscopy

This section gives concepts and experimental details of X-ray absorption spec-
troscopy. We do not yet discuss polarization dependent changes in the spec-
tra, i.e., dichroic effects, but rather concentrate on the basic concepts that
determine absorption spectra of magnetic materials spectra. In particular, we
outline basic experimental techniques, and by examples of selected X-ray ab-
sorption spectra, we discuss important spectral features and aspects of data
normalization and analysis. As examples we will predominantly use L-edge
spectra of the transition metals since they are best suited to obtain informa-
tion for the important 3d transition metals. We mention that other absorption
edges have also been used, like the K-edges of the 3d transition metals, first
investigated by Schütz in her pioneering XMCD work [95], or the M2,3 edges
of the 4d metals [424,425] and even the M4,5 edges of the actinides [409].

10.3.1 General Concepts

In the last chapter we have seen that the X-ray absorption intensity is atten-
uated upon transmission through a sample of thickness d according to

I = I0 e−µx d = I0 e−ρa σabs d . (10.1)

Here µx is the linear X-ray absorption coefficient with a dimension of [length−1],
and σabs is the X-ray absorption cross-section of dimension [length2/atom].
The two quantities are related according to (9.29) by the atomic num-
ber density ρa = NAρm/A with dimension [atoms/length3], where NA =
6.02214× 1023 [atoms/mol] is Avogadro’s number. We have listed in Table 10.1
the relevant parameters for Fe, Co, and Ni.

Table 10.1. Bulk Properties of 3d metals Fe, Co, Ni. Listed are the mass density
ρm at room temperature, the atomic mass number A, the atomic number density ρa

and the atomic volume Va

Element ρm A ρa Va

[kg/m3] [g/mol] [atoms/nm3] [Å
3
]

Fe (bcc) 7,874 55.845 84.9 11.8

Co (hcp) 8,900 58.933 90.9 11.0

Ni (fcc) 8,908 58.693 91.4 10.9
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Historically, X-ray absorption has been measured in a transmission geome-
try as shown in Fig. 10.2a and the transmitted intensity drops when the X-ray
absorption channel is opened up at a threshold (absorption edge), correspond-
ing to loss of photons through core electron excitation to empty states. On
the right side of Fig. 10.2a we show a typical measured transmission intensity
It, normalized to the incident number of photons I0. The shown spectrum
corresponds to a d = 10 nm Co film, calculated by means of (10.1) from the

X-ray absorption spectroscopy techniques

(a) Transmission

(b) Electron yield

0

0

0

0

Fig. 10.2. Two common methods for the measurement of X-ray absorption. In the
top row (a) we show a typical transmission geometry used for X-ray absorption
measurements, the core electron excitation process during an absorption event, and
a schematic of the measured transmitted intensity. We have used real data for Co
metal, and the plotted transmission intensity It/I0 corresponds to a Co thickness of
10 nm. In the bottom row (b) we illustrate the method and principles of recording
absorption spectra by electron yield (or total electron yield) detection. The absorbed
photons create core holes that are filled by Auger electron emission. The primary
Auger electrons cause a low energy cascade through inelastic scattering processes on
the way to the surface. The total number of emitted electrons is directly proportional
to the probability of the Auger electron creation, that is the absorption probability.
The emitted electron yield is simply measured with a picoammeter that measures
the electrons flowing back to the sample from ground. The electron yield spectrum
Ie/I0 shown on the right is that of Co metal. The numbers on the ordinate actually
correspond to the cross-section in Mb since we have simply converted (renormal-
ized) the measured electron yield ratio Ie/I0 into a cross-section as discussed in
conjunction with Fig. 10.9
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experimentally measured averaged dichroism spectra shown in Fig. 10.12. It is
common to present X-ray absorption spectra “downside-up” by plotting the
quantity ln(I0/I) which is proportional to µx or σabs and we shall use such
plots from now on.

There are two other methods for the measurement of X-ray absorption by
solids, X-ray fluorescence and electron yield (EY) detection, as discussed in
detail by Stöhr [189]. Of the two methods, EY detection, also called total elec-
tron yield detection, is particularly often used in the soft X-ray region where
it offers larger signals due to the dominance of the Auger over the fluorescence
decay channel after X-ray excitation [189]. It is also experimentally simple and
requires just a picoammeter for the measurement of the photocurrent. It is
for these reasons and the important fact that it underlies photoemission elec-
tron microscopy (PEEM), discussed later, that we shall discuss EY detection
here. The experimental method and the underlying electronic processes are
shown in Fig. 10.2b and are explained in the caption. EY detection directly
gives a spectrum that is proportional to the X-ray absorption coefficient or
the absorption cross-section because the yield is directly proportional to the
probability of X-ray absorption. This is seen by writing down the number of
absorbed photons according to (10.1) under the assumption of a thin sample
d # 1/µx. We get

I0 − It = I0(1 − e−µx d) $ I0 dµx = I0 ρa dσabs. (10.2)

Fortunately, for EY measurements the approximation (10.2) is not only valid
for thin samples d but it turns out that it is valid in general since one always
measures in the limit of a “thin sample.” This is due to the fact that the EY
signal originates only from a depth λe ∼ 2 nm that is much shorter than the
X-ray penetration length or X-ray absorption length λx into the sample. This
topic has been discussed extensively elsewhere [189, 426] and we shall here
only review the important facts.

The X-ray absorption length λx = 1/µx is the distance in a material
over which the intensity has dropped to 1/e of its original value. This length
depends strongly on the photon energy and as the absorption coefficient µx

increases close to an edge, λx becomes shorter. For convenience we have listed
in Table 10.2 values for σabs and µx for Fe, Co, and Ni at three characteristic

Table 10.2. X-ray absorption cross-sections σabs [Mb] and linear absorption coef-
ficients µx[nm−1] for Fe, Co, Ni for three energies, 10 eV below the L3 peak, at the
L3 peak and 40 eV above the L3 peak. For the conversion between σabs and µx it is
convenient to remember that 1 Mb = 10−4 nm2

10 eV below L3 at L3 peak 40 eV above L3

Element σabs [Mb] µx[nm−1] σabs [Mb] µx[nm−1] σabs [Mb] µx[nm−1]

Fe (bcc) 0.21 1.8 × 10−3 7.1 6.0 × 10−2 1.45 1.2 × 10−2

Co (hcp) 0.195 1.8 × 10−3 6.4 5.8 × 10−2 1.34 1.2 × 10−2

Ni (fcc) 0.18 1.6 × 10−3 4.6 4.2 × 10−2 1.28 1.2 × 10−2
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energies, 10 eV below the L3 peak, at the L3 peak, and 40 eV above the L3

peak. We see that the X-ray absorption length 1/µx is about 500 nm before
the edge, 20 nm at the L3 peak and 80 nm above the L3 peak.

We now take a look at the electron sampling depth λe. As illustrated in
Figs. 10.2b and 10.3, the absorption of the incident X-rays leads to the produc-
tion of Auger electrons that trigger an electron cascade. Only those cascade
electrons that have enough energy to overcome the work function of the sam-
ple contribute to the measured electron yield. If one thinks of the sample as
consisting of atomic layers parallel to the surface, as illustrated on the left
side of Fig. 10.3, one can show that the EY contribution from the individual
layers falls off exponentially with their perpendicular distance from the sur-
face plane [189].2 The depth below the surface of the layer whose contribution
is 1/e of that of the first layer is called the electron sampling depth λe, and
experiments show it to be about 2 nm for Fe, Co, and Ni [426]. One may also
refer to λe as an effective secondary electron mean free path (see footnote
2). The short value of λe causes a high sensitivity to the near surface region
or layers, as illustrated on the right side of Fig. 10.3 for a wedge sample. It
was grown on a Si substrate (not shown) and consists of a 5 nm-thick Ni film,
covered by an Fe wedge of thickness 0–3.5 nm, a constant thickness (1 nm) Cu
film and a 1.5 nm Pt cap layer. As the X-ray beam is moved across the wedge
toward increasing Fe thickness the EY spectra clearly reveal the increase in
the Fe signal and the decrease of the Ni substrate signal, as expected for the
short EY sampling depth.

For the L-edge absorption region of Fe, Co, and Ni, the 1/e electron yield
sampling depth λe from which 63% of the signal originates is about 2 nm.
In contrast, the 1/e X-ray absorption length λx = 1/µx is strongly energy
dependent and is about 500 nm before the edge, 20 nm at the L3-edge,
and 80 nm above the edge.

Despite the fact that the X-ray absorption length λx is at least 10 times
larger than the electron yield sampling depth λe one still needs to be careful in
the quantitative analysis of EY absorption spectra since the peak intensities
are slightly reduced relative to the true X-ray absorption cross-section [426].
This is referred to as the saturation effect in the literature. Its origin is easy
to understand. Ideally the different layers in the sample contribute to the EY
with an exponentially decaying intensity as shown on the left side of Fig. 10.3.

2This can be derived in analogy to the concepts used in photoemission, where
the inelastic scattering or attenuation of the elastic electrons along a direction x is
described by an exponential decay of the form I = I0 exp(−i#e x), where #e is the
electron mean free path. This leads to an exponential decay of the elastic photoemis-
sion signal from layers below the surface, similar to that shown in Fig. 10.3. In total
electron yield measurements one defines an effective mean free path λe that averages
over the various scattering channels [189].
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Fig. 10.3. Left: Illustration of layer-by-layer contributions to the electron yield
signal from a sample consisting of different layers. We have assumed that the X-ray
absorption length is much larger than the electron sampling depth, λx % λe. For
simplicity we have also assumed that both λx and λe are the same for the different
layers. Middle and right: X-ray absorption spectra of a wedge sample grown on a Si
substrate with the layered structure Ni(5 nm)/Fe(0–3.5 nm)/Cu(1 nm)/Pt(1.5 nm).
The spectra reveal the preferential sensitivity to the near-surface layers. As the Fe
wedge gets thicker its signal increases relative to that of the underlying Ni. The Cu
layer of constant thickness contributes an approximately constant signal, as revealed
by the jump at its absorption edge. The Pt cap layer has no absorption edge in the
shown spectral region and contributes only a constant background signal. The curves
have been vertically shifted relative to each other to facilitate their comparison

If the X-ray absorption length λx becomes shorter at the resonance posi-
tion, say λx ≈ 10λe, of the order of 10% of the photons with that energy
are absorbed within the electron sampling depth. This means that the X-ray
intensity that reaches the deeper layers in the sample is already reduced by
several percent at the resonance positions. Therefore the contributions from
the deeper layers at the resonance energy is less than the ideal contribution
shown in Fig. 10.3, and the relative total EY intensity at the resonance posi-
tion is reduced relative to that outside the resonance. EY absorption spectra
therefore need to be corrected for saturation effects as discussed in the liter-
ature [406,426–431]. We shall come back to this point below (see Fig. 10.9).

10.3.2 Experimental Arrangements

In the soft X-ray region, X-ray absorption experiments on magnetic materials
are typically carried out as shown in Fig. 10.4.

A suitable undulator produces X-rays of selectable polarization, and a
monochromator selects the photon energy of interest with a typical energy
resolution of 0.2 eV. The monochromatic X-rays are then focused to a spot
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Fig. 10.4. Basic components of X-ray magnetic dichroism spectroscopy. The polar-
ized, monochromatic X-rays are incident on an intensity reference monitor consisting
of a high transmission (∼80%) metal (e.g., gold) grid that is enclosed by a cage that
is positively biased relative to the sample. The electron photocurrent from the grid,
I0, measured with a picoammeter, serves as a reference of the X-ray beam intensity.
For electron yield measurements the sample is also enclosed by a biased nonmagnetic
cage which is used to pull the photoelectrons away from the sample. The sample
current I is directly measured with a picoammeter. The sample is positioned in the
homogeneous field of an electromagnet which is typically parallel to the X-ray prop-
agation direction. The sample can be translated in the beam and rotated about the
vertical axis

on the sample that is of the order of a few hundred micrometers in size. On
their way to the sample the X-rays pass through a beam intensity monitor
which consists of a metal grid surrounded by a wire cage, both made from
nonmagnetic materials and coated with a material, often chosen to be Au,
that has no prominent absorption edges in the spectral range of interest. The
grid inside the cage is chosen to have a large number of fine metal wires
within the beam diameter to minimize intensity changes with beam drifts,
and typically absorbs about 20% of the incident X-rays. The cage consists of
a coarser grid and is positively biased (∼+20V) to pull off the photoelectrons
from the grid inside. The electron current (of order nA) flowing back to the
grid from ground is measured with a picoammeter and it serves as the beam
intensity signal I0.

The sample is positioned in the center of an electromagnet or supercon-
ducting magnet, with the field axis typically aligned along the horizontal beam
direction. The sample can be rotated in the beam about a vertical axis. If the
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sample is in the form of a thin film the transmission is measured with a suit-
able detector like a photodiode that is positioned behind the sample, outside
the magnet. It is most common, however, to simply measure the photocurrent
of the sample with a picoammeter. Again a biased metal cage around the
sample is used to pull of the photoelectrons from the sample. The biased cage
has another benefit in that it minimizes the effect of the magnetic field on the
measured sample current. When circular dichroism spectra are recorded with
fixed photon spin by switching the field direction in the electromagnet, it is
best to switch the field at every energy point in the dichroism spectrum. This
eliminates effects due to beam instability. The switching typically takes of the
order of 1 s and one only counts when the new field has been established. By
adjusting the bias voltage of the grid, one can make the signals for the two field
directions nearly the same, i.e., minimize the effect of the field on the signal.

A more versatile experimental configuration uses a magnet with variable
field directions, as the octopole magnet implemented by Arenholz and Preste-
mon [432], shown in Fig. 10.5 and described in the caption. The magnetic
field with a strength of 0.8 T can be oriented into a random direction, but is

Magnet
pole

Magnet
pole

Yoke

(a) (b) (c)

(d)

Vacuum
chamber

Fig. 10.5. Octopole magnet for the generation of an arbitrary field direction [432].
(a) shows a design drawing with an identification of the main components, the Ti-
alloy vacuum chamber, the steel box yoke, and the magnetic poles with water cooling
circuits. The photographs (b)–(d) show the manufactured and partly assembled
components in more detail. The vacuum chamber is a six cross with vacuum flanges
and a spherical center chamber of about 5 cm diameter. The shared steel yoke holds
all eight magnetic poles and provides flux closure. The eight pole design offers better
field uniformity in the center (below 1%) and larger fields than a six pole design,
which in principle would be sufficient. The pole pieces are surrounded by the magnet
coils and on the outside by three parallel water cooling circuits to avoid overheating



444 10 X-rays and Magnetism: Spectroscopy and Microscopy

Fig. 10.6. Winding up of an antiferromagnetic exchange spring. An external mag-
netic field is used to rotate a ferromagnetic (FM) layer that is exchange coupled to
an antiferromagnet (AFM). If the antiferromagnet is soft, its antiferromagnetic axis
near the FM–AFM interface follows the rotation of the ferromagnetic magnetiza-
tion. Deep in the bulk the axis remains unchanged. Thus an antiferromagnetic wall
is formed that consists of a spring-like twist of the AFM axis by an angle α. This has
been observed for Co/NiO by X-ray magnetic linear dichroism spectroscopy [405]
using the octopole magnet in Fig. 10.5. The incident X-ray polarization E was fixed
and the magnetic field direction H could be rotated relative to E. By use of EY
detection only the rotated fraction of the antiferromagnetic domain wall near the
interface is observed

typically aligned either along the beam direction or along the horizontal or
vertical directions perpendicular to the beam.

An octopole magnet is ideally suited for X-ray magnetic linear dichroism
measurements. An example of such an experiment is schematically shown in
Fig. 10.6. Without discussing the details of the experiment which can be found
elsewhere [405], we only show the concept and the results. The experiment was
conducted to prove the conjecture of the Mauri model of exchange bias [433]
that an antiferromagnetic wall is formed at the ferromagnet–antiferromagnet
interface when the ferromagnet is rotated in an external magnetic field. By
fixing the direction E of the incident linearly polarized light, the experiment
measured the orientation of both, the ferromagnetic magnetization and the
antiferromagnetic axis near the interface, as a function of the orientation of the
magnetic field vector H relative to the E-vector. The magnetic linear dichro-
ism effect in NiO revealed that the AFM axis indeed followed the rotation
of the ferromagnetic Co magnetization, and therefore an exchange spring is
wound up with one end coupled to the FM and the other end anchored deep in
the bulk. The use of EY detection assured that only the rotating spin region
in the AFM near the FM–AFM was observed.
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10.3.3 Quantitative Analysis of Experimental Absorption Spectra

The quantities ln(I0/It) obtained from a transmission measurement and Ie/I0

from an EY experiment are called X-ray absorption spectra. Their intensity
is directly proportional to the X-ray absorption coefficient or cross-section. In
most cases, the sample thickness or the factors that determine the electron
yield are not accurately known so that the spectral intensity is in arbitrary
units. For the quantitative analysis of the spectra it is usually necessary to
convert them into meaningful units. In doing so one uses the fact that, accord-
ing to (10.1), for a given atom the measured intensity is proportional to µxd
and therefore increases linearly with the number of atoms in the beam. There-
fore also the edge jump of the absorption spectrum, defined as the difference
of the average intensities well above and below the edge, depends linearly on
the number of absorbing atoms.

By definition, the edge jump assumes that the absorption intensity changes
by a sudden jump from a smooth curve below the edge to a smooth curve above
the edge, as observed for the X-ray absorption spectra of atoms [189]. As an
example we show in Fig. 10.7 the atomic cross-sections around the L-edges of
the 3d transition metals taken from the Henke–Gullikson tables [362,363].

We see that each atom has its characteristic edge jump, whose value is
separately shown as circles, connected by a gray line. The cross-sections are
simply obtained by extrapolating the ones measured at higher energy, outside
the resonance region, into the near edge region and therefore do not account for
the “white-line” resonance structure due to bonding. It is therefore common
in the analysis of X-ray absorption spectra to proceed as follows.

Fig. 10.7. Atomic cross-sections and L-edge jumps (L3 plus L2) for the 3d transition
metals taken from the Henke–Gullikson tables [362,363]. Note that the atomic cross-
sections simply extrapolate the values determined well above the edge into the near
edge region and therefore all resonance effects due to bonding are absent
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In the analysis of X-ray absorption spectra one distinguishes the intensi-
ties of resonance structures or “white lines” at the absorption thresholds
which is sample and bonding-specific from the atomic-like nonresonant
background. The smooth atomic-like background is independent of the
atomic environment and is available as tabulated atomic X-ray absorp-
tion cross-sections.

The atomic edge jump picture still holds for bonded atoms if the core
electrons are excited to continuum states that lie significantly higher in energy
than any bonding (antibonding) orbitals. When the absorption spectrum of a
given atom is measured in different environments like the gas phase, in a liquid
or in different solids, the fine structure of the absorption edge will greatly
change due to the atomic environment, yet for the same number of atoms in
the X-ray beam the intensity outside the resonance region will be smooth and
its value will be independent of bonding. This is illustrated schematically in
Fig. 10.8.

Since the edge jump is proportional to the number of absorbing atoms we
can renormalize the measured spectra for a given atom in different samples to
a per atom basis by simply scaling and fitting them below the edge and well
above the edge to the atomic cross section. We can make the following gen-
eral statement that underlies different analysis methods of X-ray absorption
spectra.

By renormalizing the measured absorption spectra of a given atom in dif-
ferent samples to the same edge jump one obtains spectra that correspond
to the same number of absorbing atoms.

Absolute X-Ray Absorption Cross Sections

In practice, one rarely determines the absolute x-ray absorption cross section
of a sample. If needed, one simply fits experimental spectra to the Henke–
Gullikson cross-sections [362, 363] outside the resonance region where the
cross section is smooth and atomic like. Often, experimental spectra have
some background slope which is adjusted to match the slope of the tabulated
atomic cross-section. The method is illustrated in Fig. 10.9a for the absorption
spectrum of LaFeO3 [406], which exhibits a large resonance intensity super-
imposed on a small edge jump. Once the region before and above the edge
are properly fitted the resonance intensities are automatically obtained in the
proper cross-section units.

For electron yield spectra, which may contain saturation effects in the res-
onance region, one exploits the fact that saturation effects are generally negli-
gible before and above the edge, because in these regions the X-ray absorption
length is much larger than the electron sampling depth (see Table 10.2). The
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Fig. 10.8. Characteristic X-ray absorption spectra of an atom, the same atom in a
molecule and the same atom in a solid, assumed to be a metal. For an atom the lowest
energy resonances correspond to transitions to Rydberg states [189], which merge
into a step-like structure at the core electron ionization potential (IP), corresponding
to transitions from the core shell of interest to states just above the vacuum level
(EV). For a molecule transitions to unfilled orbitals result in pronounced resonances
as shown. For atoms embedded in a metal the lowest energy transition correspond
to states just above the Fermi level (EF). The X-ray absorption intensity follows the
Brillouin zone (k) integrated density of states (DOS). In all cases resonant transitions
to specific electronic states are superimposed on smooth atomic-like cross-sections
given in the Henke–Gullikson tables [362,363]. In the analysis one assumes that the
atomic cross-sections well above the “edge” can be simply extrapolated to lower
energies, with a step like onset that is positioned either at EV or EF [189] or, for
solids, at the position of the first resonance [96]
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converted EY spectra do, however, still contain saturation effects in the res-
onance region. They can be eliminated if the electron sampling depth λe is
known [406,426–431]. This is illustrated in Fig. 10.9 for LaFeO3, where λe = 20
Å. The saturation effects are seen to be quite large in this case due to the large
resonant cross-section (short λx), and the fact that the effective X-ray pene-
tration depth perpendicular to the surface is further shortened to λx sin 20◦,
since the spectrum was recorded at a 20◦ grazing X-ray incidence angle from
the surface.

Fig. 10.9. (a) Illustration of converting the measured electron yield spectrum of
LaFeO3 (solid line) into an absolute X-ray absorption coefficient. The spectrum is
fitted outside of the resonance region to the calculated absolute atomic absorption
coefficient (dashed-dotted line) taken from the Henke–Gullikson tabulation [362,363].
The experimental spectrum was measured at a grazing X-ray incidence angle of 20◦

from the surface plane. (b) Enlarged L2,3 region of (a). Here we also show the
saturation corrected electron yield spectrum as a dotted line. Spectra taken from
Lüning et al. [406]
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Relative Absorption Cross Sections: Edge-Jump Normalization

In many cases one is simply interested in the relative intensities of absorption
resonances or dichroic differences. Then the determination of absolute x-ray
absorption cross sections can be avoided, and one uses a simple method which
goes as follows. One measures two samples, one with known and one with un-
known properties, in exactly the same way. If the two spectra have a different
average slope with photon energy one approximately matches the slopes. Then
a background is subtracted so that the region before the absorption edge has
zero intensity. One then simply multiplies the spectra by constants to make
the edge jump the same in both spectra. They now correspond to the same
number of atoms in the beam, without knowing their number. All we know is
that the chosen number for the edge jump corresponds to the same number in
both spectra. One can now compare the relative intensities of the resonance
structures in the spectra.

For example, we shall see below that the L-edge resonance structures in
the magnetic 3d transition metals show a large magnetic dichroism effect that
is proportional to the magnetic moment per atom. If we wanted to know the
size of the magnetic moment in a sample of interest, say one that contains
Co, we would take a dichroism spectrum of this sample and compare it to
that of Co metal, where we know the magnetic moment per atom. We would
normalize both experimental spectra in an identical fashion to the same edge
jump, and then compare the size of the resonant dichroism effects in the two
samples. This would allow us to determine the unknown magnetic moment
per atom by comparison of the two dichroism effects.
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Fig. 10.10. Polarization averaged X-ray absorption spectra for Ti, V, Cr, Fe, Co,
and Ni metal [434]. The spectra are normalized to the same unit edge jump for easier
comparison. Spectra on the left are vertically offset

10.3.4 Some Important Experimental Absorption Spectra

Fig. 10.10 shows the L-edge X-ray absorption spectra of some important 3d
transition metals [434]. The spectra are normalized to the same unit edge jump
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for easy comparison of the separation between the L3 and L2 resonances. While
for the “heavy” 3d metals Fe, Co, and Ni the spin–orbit splitting of the 2p core
electrons is significant larger than the width of the associated white line reso-
nances, for the light 3d metals the splitting decreases and the width increases.
As illustrated in Fig. 9.26, the comparable size of the spin–orbit coupling and
the intraatomic correlation energy will then lead to a mixing of absorption
channels leading to the observed resonances. This leads to complications in
the determination of spin magnetic moments [435,436] which is based on the
separate analysis of the two 3d → 2p3/2 and 3d → 2p1/2 excitation channels,
as illustrated in Fig. 9.16.

Because of the importance of the 3d transitions metals and their oxides we
show in Fig. 10.11 the properly normalized X-ray absorption spectra of the
magnetic 3d transition metals and their oxides. We have plotted the X-ray
absorption coefficient in units of µm−1 as a function of energy. These spectra
form the basis for much of the dichroism work discussed in the rest of the book.
Comparison of the spectra in Fig. 10.11 shows the rich resonance fine structure

Fig. 10.11. Polarization averaged X-ray absorption spectra for Fe, Co, and Ni
metal and their oxides [431]. The spectra are plotted in absolute intensity units of
the X-ray absorption coefficient. The rich fine structure of the oxide spectra is due
to multiplet effects
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in the near edge region. This chemical sensitivity allows the identification of
different bonding environments for a given atom. Besides the atomic specificity
of X-ray absorption indicated by the greatly different L-edge positions of Fe,
Co, and Ni, the chemical specificity and the later discussed magnetic specificity
constitute three important cornerstones of the X-ray absorption technique.

Magnetic dichroism spectroscopy offers:

– Atomic specificity through the energy separation of characteristic
X-ray absorption edges.

– Chemical sensitivity through the resonant fine structure at a given
atomic absorption edge.

– Magnetic specificity through the polarization dependence of the near-
edge fine structure.

The rich fine structure in the oxide spectra is due to so-called multiplet
splitting. As discussed in more detail in Sect. 9.7.8, the detailed splitting de-
pends on three main quantities, the ligand field symmetry, the valency of the
atom, and spin configuration of the electronic ground state.

Fig. 10.12. XMCD spectra for the elemental ferromagnetic metals, corrected to
correspond to 100% circularly polarized X-rays. The data for Fe, Co, and Ni are
from Chen et al. [96, 375], those for Gd are from Prieto et al. [356]. The difference
spectra shown underneath correspond to the convention I− − I+ of (9.95)

10.3.5 XMCD Spectra of Magnetic Atoms: From Thin Films to
Isolated Atoms

Data for the four elemental ferromagnets, Fe, Co, Ni [96, 375] and Gd [356],
are shown in Fig. 10.12. In all cases, the shown data correspond to maximum
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Fig. 10.13. Angle-averaged L-edge X-ray absorption spectra (solid lines) for thin
metal layers of Ti, V, Cr deposited on Fe and the corresponding dichroism spectra
(dashed) [434]. The data were corrected for incomplete polarization and saturation
effects. The Ti, V, and Cr layers are magnetic through proximity effects, i.e., induced
magnetism. Their coupling to Fe is antiparallel as revealed by the sign of the original
dichroism spectra. In our plot the dashed XMCD spectra for Ti, V, and Cr have
been inverted to avoid overlap of the XAS and XMCD traces. All plotted intensities
correspond to a unit edge jump normalization in the original spectra

dichroism effect (100% polarization and alignment of the photon spins and
sample magnetization), and we have also plotted the data for the same relative
orientations of photon spins and sample magnetization. The more complicated
spectrum for Gd is due to multiplet splitting, the origin of which was discussed
in Sect. 9.7.8.

The sensitivity of XMCD to small magnetic moments is illustrated in
Fig. 10.13. Here we have plotted the absorption and XMCD spectra of Fe
and compared it to absorption and dichroism spectra for thin films of Ti,
V, and Cr deposited on an Fe substrate. The small dichroism in the Ti, V,
and Cr spectra, indicated by the listed multiplicative factors, is due to induced
magnetic moments caused by the adjacent Fe layer. Note that we have plotted
inverted dichroism (difference) spectra (dashed lines) for the cases of Ti, V,
and Cr to avoid overlap of the solid and dashed curves. Since in the original
Ti, V, and Cr data the dichroism effects (the dashed spectra) were upside
down from those shown in Fig. 10.13, comparison to the spectrum of the Fe
standard shows that in all cases the magnetization in the deposited thin films
is opposite to that in the Fe substrate.
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Fig. 10.14. XMCD spectra for isolated 3d impurities deposited on K films, corre-
sponding to coverages of 0.015 monolayer for Fe, 0.015 monolayer for Co, and 0.004
monolayer for Ni [437]. The spectra were recorded at 10 K in fields up to ±7 T. The
insets show the spectra calculated for the d7 and d8 atomic configurations [438] with
the energies renormalized to match the experimental ones

The metal spectra are seen to exhibit rather broad resonances. Only the
dichroic difference spectra of the lighter atoms Cr, V, and Ti show significant
fine-structure which is associated with multiplet effects. Such effects become
pronounced for isolated Fe, Co, and Ni atoms deposited on K films as shown
in Fig. 10.14 [437].

The spectra were recorded at 10 K, and fields up to ±7 T were used to align
the atomic moments. The presence of multiplet structure clearly shows the
localized character of the 3d electrons in the atoms. The multiplet structure
serves as a sensitive fingerprint of the electronic ground state configuration
which can be determined by comparison of the experimental spectra to those
calculated by atomic multiplet theory [438]. The calculated spectra, shown as
insets, correspond to 3dn → 2p53dn+1 transitions assuming zero ligand field.
The comparison of experiment and theory readily allowed the determination
of the respective ground states d7, 4F9/2 for Fe, d8, 3F4 for Co and d9, 2D5/2

for Ni (see Table 7.1). These differ from the approximate configurations d6 for
Fe, d7 for Co and d8 for Ni in the metals (see Sects. 7.3 and 12.2.2). In fact,
prior to the XMCD measurements there had been considerable debate as to
the electronic ground state configuration.

The measured XMCD effects are larger than in the bulk metals and show
very different ratios of the L3 and L2 dichroism intensities and opposite
signs. In particular, the L2 dichroism for Ni is zero. The latter is understood
from the ground state configuration d9, 2D5/2, which does not allow L2-edge
transitions, which in a configuration picture correspond to J = 5/2 → J = 1/2
and thus violate the dipole selection rule.
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10.3.6 Sum Rule Analysis of XMCD Spectra: Enhanced Orbital
Moments in Small Clusters

In Sect. 10.3.5 we have discussed the XMCD spectra of the ferromagnetic
transition metals Fe, Co, and Ni in comparison to those of the isolated atoms,
aligned at low temperature in a strong magnetic field. Here we want to take a
look at what happens in the transition region between isolated atoms and bulk
metals. We shall see that the magnetic properties of small transition metal
clusters are quite fascinating, indeed. Because the XMCD studies of interest
required a quantitative determination of magnetic moments by application of
the sum rules discussed in Sects. 9.6.5 and 9.7.9, we shall use this opportunity
to also comment on practical aspects of the sum rule analysis in XMCD.

Today, quantitative analysis of XMCD spectra is often carried out by
means of the method suggested by Chen et al. [96]. This method determines
the ratios of the spin and orbital moments divided by the number of valence
holes. Hence, in order to determine the magnetic moments, the number of
valence holes needs to be known. In practice, this is almost never the case for
samples of interest. It is for this reason that we discussed in Sect. 9.6.5 the
combined use of three sum rules, which all depend on the knowledge of the
constant C, which in turn is determined by the radial transition matrix ele-
ment as expressed by (9.91). The results shown in Fig. 9.17 demonstrate, that
for elements with similar atomic number Z, like Fe, Co, and Ni, C is roughly
constant. This fact has been utilized, for example, in the determination of the
magnetic moment of Cu atoms in Co/Cu and Fe/Cu multilayers [315, 439],
where in the analysis of the Cu XMCD spectra the average constant C for Fe,
Co, and Ni was used.

The most robust and accurate method of determining magnetic moments
is therefore typically the use of a reference sample with known moments,
like the elemental ferromagnetic metals, and transfer of the constant C to
the analysis of the sample of interest. This method has been successfully
used to determine the orbital magnetic moments in small Co clusters and low
dimensional structures [440, 441], with the results calibrated by comparison
to bulk Co metal.

As shown in Fig. 3.9 small metal clusters in molecular beams show the
expected increase in the total magnetic moment toward atomic values. One
particularly interesting question is what role the orbital magnetic moment
plays in the enhancement of the total moment. In fact, based on our discussion
on the quenching effects of the ligand fields in Sect. 7.9 one might expect
substantial enhancement of the orbital moment in clusters due to reduced
coordination of the surface atoms. This is indeed found [440–442].

As an example we show in Fig. 10.15 the XMCD results for Co atoms on
a Pt(997) surface in the form of monatomic chains, a monolayer and a thick
Co film. For atoms in low-symmetry environments, the application of the spin
sum rule given by (9.133) is complicated by the presence of the anisotropic spin
density term mα

D [410, 411]. In contrast, the orbital moment can be directly
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Fig. 10.15. Co L-edge X-ray absorption and dichroism spectra for, from left to
right: monatomic chains, a monolayer and a thick Co film, all grown on Pt(997) [440].
Spectra are shown for parallel (I+) and antiparallel (I−) directions of X-ray helicity
and field-induced magnetization. The dichroism signal (I− − I+) is obtained by
subtraction of the absorption spectra in each panel and normalization to the intensity
of the L2-edge dichroism peak. Spectra were recorded in the electron-yield mode at
T = 10K and B = 7T. Because of the low Co coverage, the edge structures of
the monatomic wires are superimposed to a strong background. Changes in the L3

XMCD intensity indicate that the orbital moment is substantially increased in going
from bulk Co to a 2D Co monolayer and to the 1D chains

determined along the applied field direction. The spectra shown in Fig. 10.15
were recorded in the electron-yield mode at T = 10K and B = 7T. According
to the orbital moment sum rule (9.134), the orbital magnetic moment is zero
if the L3 and L2 dichroism intensities A and B have the same size but opposite
signs. By normalizing the dichroism spectra to the L2-edge intensity (peak B
in Fig. 9.16), one can therefore conveniently see changes in the orbital moment,
as illustrated at the bottom of Fig. 10.15.

We have summarized in Table 10.3 results for various types of Co struc-
tures on Pt, taken from work by Gambardella and collaborators [440,441].

These results clearly show the strong dependence of the orbital magnetic
moment on coordination. As expected, the orbital moment increases strongly
with decreasing size or dimensionality of the Co structures. For a Co adatom
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Table 10.3. Orbital magnetic moments 〈Lz〉 for various Co/Pt systems, measured
by XMCD along the easy axis and values for the magnetocrystalline anisotropy con-
stant K1 determined from directional magnetization loops. The results were taken
from work by Gambardella and collaborators [440,441]

System 〈Lz〉 [µB] K1 [meV/atom]

Co metal (hcp) 0.14 0.053

Co/Pt(997) ML 0.31 0.14 ± 0.01

Co/Pt(111) ML 0.29

Co/Pt(997) chain 0.68 ± 0.05 2.0 ± 0.2

Co/Pt(111) adatom 1.1 ± 0.1 9.3 ± 1.6

on Pt it has a value of more than 1 µB and becomes comparable to the spin
moment (1.7µB) in bulk Co metal. This indicates that the enhancement for
the total moment in Fe, Co, and Ni clusters with decreasing cluster size, seen
by the Stern–Gerlach experiments on cluster beams [127] shown in Fig. 3.9,
must be partly or even largely due to an orbital moment enhancement.

For Co structures on Pt, the increase in orbital moment is accompanied by
an increase of the magnetocrystalline anisotropy (MCA) energy K1, also listed
in Table 10.3. It was derived from angle-dependent XMCD magnetization
loop measurements and corresponds to the element specific MCA of Co in the
various samples. For the monolayer and isolated adatoms of Co on Pt(111) the
easy axis was found to be perpendicular to the surface and for the individual
adatoms the MCA had a huge value of K1 = 9.1meV per Co atom. This
should be compared to the values found for the hardest thin film materials,
e.g., Co/Pt multilayers with K1 $ 0.3 meV per Co atom or bulk materials
such as SmCo5 with K1 = 1.8 meV per atom [40, 443] or the ordered L10

phase of CoPt with K1 = 0.8 meV per Co atom [443]. For Co on Pt(997),
the Co monolayer had an out-of-plane easy axis and for the Co chains the
easy axis was perpendicular to the chain at an angle of 43◦ from the sample
normal. The observed easy axis orientation perpendicular to the chain axis
agrees with earlier tight binding calculations for monoatomic Co chains on
Pd [444]. These calculations showed the transition of the easy axis from along
the chain axis for free monoatomic Co chains to a perpendicular orientation
when the chains were placed on Pd.

The above experiments beautifully demonstrate the dependence of the
magnetic properties on the dimensionality of the magnetic materials. For more
information on low-dimensional magnetic systems we refer the reader to re-
views by Bader [39,445] and Himpsel [250]. One particular strength of XMCD
measurements in such systems is clearly the elucidation of the role of orbital
magnetism. In addition to the studies reported here many beautiful studies
of such systems have been performed by XMCD [325,328, 442, 446–453]. The
experiments also demonstrate the extreme sensitivity of XMCD. For exam-
ple, the studies of isolated Co adatoms on Pt(111) [441] corresponded to a
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coverage of 0.010 monolayers of Co or 1.5 × 1013 Co atoms per cm2 or about
109 Co atoms in the X-ray beam.

10.3.7 Measurement of Small Spin and Orbital Moments: Pauli
Paramagnetism

We conclude the spectroscopy section of this chapter by discussing the use
of XMCD spectroscopy to determine truly small magnetic moments. With
improvements of the experimental techniques of XMCD spectroscopy, one
question that naturally arises is as to the ultimate sensitivity of the technique.
How small a magnetic moment can be measured? Of course, the answer to
this question depends on the system to be studied. Nevertheless, the following
experiment provides a nice demonstration of the capabilities of XMCD in this
direction.

We have seen in Sect. 10.3.5 above that we can magnetically align isolated
paramagnetic atoms like Fe, Co, and Ni by use of a low temperature and a large
magnetic field. This is also possible for paramagnetic metals. When cooled to
low temperature and exposed to a large magnetic fields H, they actually
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Fig. 10.16. PdL2,3 X-ray absorption spectra (top) and XMCD difference spectra
(bottom) of a Pd single crystal, recorded at T = 4K and in an applied field of 7 T.
Spectra are corrected for self-absorption and incomplete circular polarization. Inset:
Magnetization curves of Pd metal recorded at 4, 100, and 300 K by monitoring the
PdL3 XMCD signal. Figure courtesy of A. Rogalev [88]
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acquire an induced magnetization M . The associated small susceptibility χ =
M/µ0H is found to be temperature independent, and this situation is referred
to as Pauli paramagnetism, as discussed more in Sect. 15.3. Estimates carried
out in that sections show that the expected moment is quite small, of order
of 10−4µB per atom.

This small moment has indeed been measured in Pd metal using XMCD
spectroscopy by Rogalev and collaborators [454], as shown in Fig. 10.16, de-
spite the rather poor degree of circular polarization of only 12% at the L3-edge
and 22% at the L2-edge available on the used beam line.

After correction of the data for incomplete circular polarization, the
XMCD effect is in fact quite large as shown by the right side scale in Fig. 10.16,
of order 4% at the L3-edge and 1% at the L2-edge. Sum rule analysis of the
data gives a spin magnetic moment of ≈0.012µB and an orbital magnetic mo-
ment of ≈0.004µB, under the conditions of the experiment, T = 4K and in an
applied field of 7 T. The presence of an orbital moment shows, that in addition
to the Pauli spin paramagnetism the system also exhibits an orbital suscep-
tibility, as suggested by Kubo and Obata [455]. The inset in Fig. 10.16 shows
that the measured susceptibility is nearly temperature independent over the
4–300 K range. This confirms that the measured effect is indeed largely due
to the Pauli susceptibility. The slope of the curve gives a total paramagnetic
susceptibility of the 4d electrons in Pd of ≈1.4 × 10−4.

10.4 Magnetic Imaging with X-rays

Before we discuss the use of X-rays for magnetic imaging let us briefly take
a look at the field of magnetic imaging, in general. One milestone is the 1998
book by Hubert and Schäfer [54] which gives a review of magnetic domains and
magnetic imaging. Other valuable resources are the review by Freeman and
Choi [456] and the book by Hopster and Oepen [457] which reviews advances
in magnetic microscopies up to 2004. The latter book also contains articles
by Scholl et al. and Kuch et al. on magnetic imaging by X-rays. The present
section should be viewed against the backdrop of all the knowledge that has
been accumulated over the years.

It is our goal to provide an overview of the prominent X-ray based imag-
ing methods and to present illustrative examples of their unique power. Like
other techniques, X-rays have their specific strength and weaknesses. It will
become clear that spatial resolution is only one important asset of magnetic
microscopy techniques. In this respect X-rays take second place behind other
techniques such a spin-polarized scanning tunneling microscopy [458]. How-
ever, they offer capablities not afforded by other techniques, in particular,
elemental and chemical state specificity, variable sampling depth, and the ca-
pability to follow ultrafast processes on the picosecond scale.

X-ray magnetic microscopy is based on the dichroism effects already dis-
cussed in Sect. 10.3. When the photon energy is tuned to a prominent reso-
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nance in the X-ray absorption spectrum, like the L3 or L2 edges in the transi-
tion metals or the M5 or M4 edges for the rare earths, a large dichroism effect
exists for magnetic materials. In general, this effect depends on the orientation
of the photon polarization relative to the magnetic orientation. For XMCD
we have a cos θ-dependence of the dichroism intensity on the angle θ between
the photon angular momentum and the sample magnetization, expressed by
(9.100). For XMLD we have a cos2 θ dependence according to (9.123), where
θ is the angle between the E-vector and the magnetic axis. It is the X-ray po-
larization in conjunction with the tunable photon energy that forms the basis
for X-ray magnetic imaging. Because of the utilization of these spectroscopy
concepts one often speaks of X-ray spectromicroscopy.

It is quite easy to understand the origin of the magnetic contrast. Let us
assume that we tune the photon energy to a resonance and fix the photon
polarization. If now the sample contains microscopic regions with different
magnetic orientations then the signal from these regions will vary because of
the dichroic absorption effect. In a transmission experiment, some regions will
absorb less and others more, depending on their orientation in the beam. In an
electron yield experiment the number of photoelectrons will also be different
from the differently oriented regions in the beam. The different signal strength
can therefore be used as a contrast mechanism for microscopy. We have seen
that we can expect the signal to vary by as much as 20–30% depending on
the magnetic orientation. This is indeed a very large contrast considering
that Kerr microscopy works with contrasts of less than 1%. All we have to
figure out is how to separate the signals from the microscopic areas of the
sample by some kind of microscopy technique. We shall first discuss three real
space microscopy techniques and then, in Sect. 10.4.1, a technique based on
reconstructing a real space image from a coherent X-ray scattering pattern.

10.4.1 X-ray Microscopy Methods

Similar to electron microscopy there are two main approaches, either based on
scanning or imaging methods. Three common experimental implementations
based on X-rays are illustrated in Fig. 10.17 and we shall now discuss them in
turn.

Scanning Transmission X-ray Microscopy – STXM

In scanning X-ray microscopy, illustrated in Fig. 10.17a, a monochromatic X-
ray beam is focused to the smallest possible spot size and the X-ray intensity
transmitted through the sample is monitored as a function of the focused beam
position on the sample [459]. In principle, either the sample or the beam posi-
tion may be scanned but in practice one typically scans the sample. One may
also measure the fluorescent X-ray or electron intensity from the sample, as
indicated in the figure, but measurement of the transmitted intensity is most
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Fig. 10.17. Schematic of three X-ray microscopy methods for imaging of nanoscale
magnetic structures. (a) In scanning transmission X-ray microscopy, STXM, a mono-
chromatic X-ray beam is focused to a small X-ray spot by a suitable X-ray optic,
e.g., a zone plate as shown, and the sample is scanned relative to the X-ray focal
spot. The spatial resolution is determined by the spot size which is determined by
the width of the outermost zones in the zone plate. The intensity of the transmit-
ted X-rays or the fluorescence or electron yield from the sample are detected as a
function of the sample position and thus determine the contrast in the image. (b)
In transmission imaging X-ray microscopy, TIXM, the incident beam may be either
monochromatic or not. The beam is focused by a condensor zone plate that in con-
junction with a pinhole before the sample produces a monochromatic photon spot on
the sample. For an incident polychromatic beam the energy resolution is determined
by the zone plate and the pinhole and is typically not very high (E/∆E ≈ 200). A
microzone plate generates a magnified image of the illuminated sample area which
can be viewed in real time by a X-ray sensitive CCD camera. The spatial resolu-
tion is determined by the width of the outermost zones in the microzone plate. (c)
In X-ray photoemission electron microscopy, XPEEM, the X-rays are focused by
a shaped mirror to match the field of view of an electron microscope (1–50 µm).
Electrons emitted from the sample are imaged by an assembly of electrostatic or
magnetic lenses with magnification onto a phosphor screen, and the image can be
viewed in real time at video rates. The spatial resolution is determined by the elec-
tron optics within the microscope, the size of the aperture, and the operation voltage.
In advanced designs an energy filter is employed to minimize chromatic abberation
effects and such effects are further reduced by aberration correcting optics

common. In this approach the energy resolution is given by the monochroma-
tor in the beam line (not shown) and the spatial resolution is determined by
the size of the X-ray spot.
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Small X-ray spots can be obtained by using the reflected and focused beam
from grazing incidence mirrors or the diffracted and focused beam from either
a multilayer mirror or a zone plate. In practice, zone plate focussing, shown in
Fig. 10.17a yields the smallest spot sizes. The focal spot size is determined by
the width of the outermost zones of the zone plate and today the resolution
is typically about 30 nm with resolutions down to 10 nm or less expected in
the future [460]. Because the focal length of the zone plate lens changes with
photon energy, for spectroscopic studies the sample position also needs to
be scannable along the beam direction. X-ray transmission or fluorescence
microscopies are well suited for studies in the presence of a magnetic field,
contrary to electron based methods. They are “bulk” sensitive, in the sense
that the transmitted intensity is determined by the entire thickness of the
sample.

Transmission Imaging X-ray Microscopy – TIXM

From an instrumental point of view, transmission imaging X-ray microscopy
or TIXM, shown in Fig. 10.17b is closely related to scanning X-ray mi-
croscopy since in both cases the spatial resolution is determined by zone
plates and both are photon-in/photon-out methods. First generation micro-
scopes used polychromatic beams which were focused and monochromatized
by a combination of a condenser zone plate and a pinhole aperture (typi-
cally 10–20 µm diameter). In such an arrangement the energy resolution is
determined by the zone plate dimensions and the pinhole size and is typically
∆E/E $ 1/250. Modern microscopes use a monochromatic incident beam
with ∆E/E $ 1/5,000 which also allows spectroscopic studies of the detailed
near-edge fine structure.

The beam is focused onto the sample by means of a condenser zone plate.
The focal spot size then serves as the field of view of the imaging process,
accomplished by a microzone plate that generates a magnified image of the
illuminated area on the sample onto a phosphor screen or X-ray sensitive CCD
camera. The spatial resolution is determined by the width of the outermost
zones of the microzone plate [460] and a resolution of 15 nm has been ob-
tained [461]. Spectroscopic studies require movement of both the condensor
and microzone plates relative to the sample, and in practice, this has impeded
spectroscopic studies with TIXM. Like STXM, TIXM is also well suited for
studies in the presence of magnetic fields, and such studies have been per-
formed by Fischer et al. [462,463].

X-ray Photoemission Electron Microscopy – X-PEEM

The third imaging method is based on X-rays-in/electrons-out and was pi-
oneered by Tonner [464]. It is illustrated in Fig. 10.17c. The sample is illu-
minated by a monochromatic X-ray beam that is only moderately focused,
typically to tens of micrometers, so that it matches the maximum field of view
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of a photoelectron microscope. The energy resolution is determined by the X-
ray monochromator in the beam line and the spatial resolution is determined
by the electron optics in the X-PEEM. It is limited by three quantities: spher-
ical aberration, chromatic aberration, and diffraction. In practice, for X-ray
excitation of electrons, chromatic aberrations dominate [464,465]. They orig-
inate from errors in the focusing of electrons with different kinetic energies.

Most PEEM microscopes do not incorporate an energy analyzer or filter
[466] and therefore, in principle, all photoelectrons are detected. In practice,
the electron intensity is dominated, by orders of magnitude, by the secondary
electron tail in the 0–20 eV kinetic energy range, where zero kinetic energy
corresponds to the vacuum level of the sample [467]. The secondary electron
intensity which closely follows the X-ray absorption spectrum of the sample
[467], determines the X-PEEM intensity, and its large size provides a suitably
large signal.

The energy spread of the inelastic tail (about 5 eV for most materials [468])
spoils the spatial resolution through chromatic aberrations. Fortunately, the
effective width of the energy spread is reduced by a suitable aperture placed in
the backfocal plane of the PEEM. The aperture acts as a filter for high energy
electrons which are focused behind the aperture while the low energy portion
of the inelastic tail is properly focused at the aperture position and is thus
transmitted. Calculations show that a spatial resolution of about 20 nm can
be obtained by X-PEEM because of the energy filtering effect of the aperture
[469], and this is verified by experiments. Even better spatial resolutions are
achieved when the energy spread of the emitted electrons is reduced. This
situation is encountered when ultraviolet radiation is used with an energy
slightly higher than the workfunction and a spatial resolution of 8 nm has been
demonstrated [470]. In this case chromatic aberrations are strongly reduced
by the narrow width of the secondary electron distribution. At X-ray energies,
a resolution of 22 nm has been achieved by use of an energy filter to reduce
the electron energy spread [471]. In the future lateral resolutions below 5 nm
appear possible [472,473].

Contrast Mechanisms

The intensity changes with photon energy or X-ray polarization discussed in
the earlier spectroscopy section naturally lend themselves as contrast mecha-
nisms for scanning and imaging X-ray microscopy. For example, if the photon
energy is tuned to 707 eV, the L3 resonance of Fe metal, the measured signal
from the sample will emphasize Fe over other elements in the sample. If we
change the polarization from linear to circular, Fe regions in the sample will be
emphasized whose magnetization direction is parallel to the photon spin (see
Figs. 9.12 and 10.1d). It is not necessary in many cases to change the photon
spin in XMCD microscopy since the contrast is large and can be enhanced by
combining images recorded at the L3 and L2 edges.
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For antiferromagnets the photon energy of the linearly polarized light
is tuned to a particular multiplet peak, e.g., one of the L2-edge peaks in
Fig. 10.1c. Domains with an orientation of the magnetic axis parallel to E
will then show a different intensity than those with the axis perpendicular to
E. Again the contrast can be enhanced by combining images taken at different
photon (multiplet) energies.

In addition to the spectroscopic contrast, other basic contrast mechanisms
exist. In X-PEEM the electron yield from different sample areas is also de-
termined by the local work function and topology. In transmission X-ray mi-
croscopy additional contrast arises from differences in the X-ray absorption
coefficient at nonresonant photon energies caused by compositional changes
or thickness variations of the sample.

10.4.2 Lensless Imaging by Coherent Scattering

We have seen that the resolution of real space X-ray microscopy techniques is
determined by optics in the form of X-ray or electron lenses. Here we describe
an alternative lensless imaging approach based on X-ray scattering, which in
principle is resolution limited only by the X-ray wavelength.

It is well established that, in principle, X-rays may resolve structures down
to the size of the X-ray wavelength, the so-called diffraction limit. Diffraction
imaging, or crystallography, is a lensless approach where the real space struc-
ture is obtained by inversion of a reciprocal space diffraction pattern. This
approach has been extensively used for decades to determine the structures
of crystalline systems, consisting of repeated identical unit cells. The proce-
dure relies on the remarkable fact that for typical experimental geometries
X-ray beams are coherent over dimensions that are larger than the unit cell
dimensions of the sample, despite the fact that all of today’s X-ray sources, in-
cluding undulators, are characterized by spontaneous emission and are there-
fore chaotic or incoherent by nature. A coherent beam can be created from
the radiation emitted by an incoherent source by spectral and spatial filter-
ing [109].3 When a single crystal is inserted into an X-ray beam, its unit cell is
typically so small that across its tiny volume the EM wave has a well defined
phase relationship. Therefore the waves that are scattered off the individual
atoms within each unit cell can interfere. Because all unit cells are identical,
the unit cell interference patterns are identical and add up into intense dif-
fraction spots.4 The diffraction spot pattern can then be used to solve the
crystal structure.

3 More specifically, one distinguishes temporal coherence, which is determined by
the bandwidth of the radiation and lateral coherence which is determined by the
geometry perpendicular to the beam direction.

4When the EM field is quantized one finds that for today’s X-ray sources all
diffraction experiments are based on single photon interference effects because the
coherence volume of the radiation contains less than one photon. This will change
with the advent of X-ray free electron lasers.



464 10 X-rays and Magnetism: Spectroscopy and Microscopy

The diffraction approach breaks down if the sample is nonperiodic since
now the interference patterns from small areas in the sample are no longer
identical and therefore intense diffraction spots will no longer exist. This situa-
tion is encountered in many systems that contain order on the nanoscale with-
out long-range periodicity. A prominent example are magnetic domains which
typically consist of irregular nanometer or micrometer sized areas in which the
magnetization points in different directions. Despite their disordered arrange-
ment it is still possible, however, to derive their real space arrangement from
the scattered intensity as we shall discuss now.

In order to understand how this is possible we first consider the more
familiar case of small angle X-ray scattering (SAXS), illustrated in the top
half of Fig. 10.18. This well-established technique uses an X-ray beam which
at the position of the sample is coherent only over a dimension, called the
coherence length, of tens of nanometers. In Fig. 10.18 we have indicated the
coherence length as the diameter of the red circles, which are assumed to
be larger than the characteristic structures, assumed to be worm domains as
shown in the inset. In general, the internal sample structure may correspond
to regions of different electron density as in a polymer or areas of different
magnetic orientations, i.e., domains, in magnetic materials. The SAXS pattern
corresponds to the incoherent superposition of the coherent patterns from
different sample regions of the size of the red circles. Owing to the different
structural or orientational units in the different sample regions the scattering
pattern is somewhat smeared out. For a sample with an average characteristic
size d associated with the nanoregions, the scattering pattern consists of a ring-
like intensity pattern as shown in Fig. 10.18, located at a momentum transfer
Q = 2π/d.

By moving the sample away from the source, as shown in the bottom half
of Fig. 10.18, one reduces the angular opening angle of the beam intercepted
by the sample, and therefore the effective path length difference of the used
X-rays. This increases the coherent fraction. The associated loss of intensity
can be tolerated for modern high-brightness undulator X-ray sources. One may
therefore coherently illuminate a sample that has a lateral size of the order
of 50 µm. Then the scattered waves from all regions of the sample can inter-
fere and the scattered intensity distribution, the “speckle pattern,” recorded
by an imaging detector contains the complete information on the real space
structure of the sample.5 The remaining challenge is to invert the reciprocal
space pattern into a real space structure.

To obtain a real space image of the sample from the speckle pattern the
phases of the scattering amplitudes have to be reconstructed. This is typically
attempted by phase retrieval algorithms that rely on oversampling of the
speckle pattern [474–477]. The development of such phase retrieval methods
remains an active area of research.

5 The SAXS pattern is an averaged speckle pattern. It contains only statistical
information about the sample structure but offers the advantage of higher intensity.
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Fig. 10.18. Concepts of X-ray scattering from a sample containing worm domains of
nanoscale dimensions. We have assumed a pseudomonochromatic undulator source
and record the scattering pattern from the sample with a position sensitive detector.
Top: The sample is located close to the undulator source and the beam on the sample
is coherent (by geometry) only over areas that are of the size of the red circles. These
coherently illuminated areas are assumed to be slightly larger than the average
separation between the worm domains. The scattering pattern is the incoherent
superposition of the coherent patterns from different sample regions of the size of
the red circles. Bottom: The sample has been moved away from the source so that
only a small fraction of the beam, which is coherent by geometry, illuminates the
sample. At a great loss in intensity the entire sample is now coherently illuminated
and the scattering pattern is a coherent superposition from all regions of the sample.
The resulting scattering pattern, called a speckle pattern because of its appearance,
now encodes the real space structure of the entire sample

A more robust approach is the real space image reconstruction afforded
by holographic methods [478, 479]. One such method is Fourier transform
holography [480], which has been successfully used to image magnetic domains
with soft X-rays [481], as illustrated in Fig. 10.19.

The key component of the experiment is the introduction of a Au mask
before the sample, shown enlarged in the lower left part of the figure. The Au
mask contains two holes, a “sample hole” of 1.5 µm through which the sample
is illuminated, and a “reference hole” of 100 nm diameters, which is drilled all
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Fig. 10.19. Illustration of an X-ray Fourier transform holography experiment [481].
The X-ray beam from an undulator source with variable polarization is incident on
a pinhole that redefines the source. The central part of the Fraunhofer pattern of the
pinhole then illuminates a mask that consists of a “sample hole” and a “reference
hole.” The scanning electron microscopy (SEM) image on the lower left shows a
close-up of the two holes which were drilled into a Au film by a focused ion beam.
In the shown case the mask and sample are integrated, as shown above the SEM
image. The magnetic domain structure within the pinhole opening, recorded by a
scanning transmission X-ray microscope (STXM) is shown on the right top. The
experimentally recorded hologram of the sample by a CCD detector is shown in
false color on the lower right. For magnetic imaging one uses the resonant magnetic
dichroism effect near an absorption edge, as illustrated for Fe in Fig. 9.29

the way through the mask/sample sandwich by a focused ion beam (FIB).In
the experiment shown, the sample consists of a Co/Pt multilayer film with
perpendicular anisotropy which exhibits a magnetic worm domain pattern, re-
vealed in the real space XMCD STXM image on the top right. The two holes
are coherently illuminated by circularly polarized photons, tuned to the Co L
edge (780 eV) for optimum magnetic contrast. The beam through the larger
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hole is scattered by the magnetic domains of the sample and interferes on the
detector with the beam transmitted through the reference hole. The scatter-
ing pattern seen on the detector screen contains speckles like the image in
Fig. 10.18 and also fine diagonal stripes which originate from the interference
of the beams through the sample and the reference holes. One may think of
the scattering pattern as a speckle pattern that has been phase encoded with
the reference beam. The real space image of the magnetic domain structure is
simply obtained by a single Fourier transformation of the recorded scattering
intensities [481]. Its resolution is determined by the encoding reference beam
and is therefore limited to the size of the reference hole. The reconstructed
image looks identical to the STXM image shown in the top right corner of
Fig. 10.18 [481].

In principle, coherent scattering experiments can be performed by means
of either nonresonant X-rays or by tuning the photon energy to an absorption
edge of the sample. For magnetic systems the contrast is greatly enhanced by
using resonant X-rays, that is, taking advantage of the large dichroic effects
near an absorption edge, as illustrated in Fig. 9.29 for Fe. In scattering exper-
iments one may use the dichroic effect in either the real (F ′(E)) or imaginary
(F ′′(E)) part of the scattering factor as shown in Fig. 9.5. In certain cases it is
advantageous to tune to the resonance in the real part F ′(E) which occurs be-
low the onset of absorption, i.e., the maximum in the imaginary part F ′′(E).
For example, in experiments with intense free electron laser radiation this will
greatly reduce deleterious energy transfer from the beam to the sample.

One of the unique properties of this imaging approach is that no focusing
or alignment is required. While this is merely convenient for imaging at a
synchrotron radiation storage ring, it is essential for the envisioned single
X-ray pulse imaging with future X-ray lasers. It is important to keep in
mind that lensless imaging by Fourier transform holography is a true imaging
method. No iterative algorithm is required to obtain the real space structure.

The spatial resolution may be further increased by applying additional
phase retrieval procedures. Since the recorded X-ray hologram can also be
interpreted as a speckle pattern, one may in a second step apply an iterative
algorithm to retrieve the scattering phases. This is aided by the fact that
iterative phase retrieval algorithms are more effective the closer the initial
input is to the real space structure [476]. One can therefore employ a two step
analysis. In the first step the Fourier transform provides a resolution that is
of the order of the reference hole. In the second analysis step, iterative phase
retrieval algorithms are used to obtain higher resolution. The resolution in the
second step is typically determined by the angular range (maximum momen-
tum transfer) and signal-to-noise ratio of the measured scattered intensities,
and is ultimately limited by the wavelength, which is about 1.5 nm at the
transition metal L-edges.
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10.4.3 Overview of Magnetic Imaging Results

Images of Ferromagnetic and Antiferromagnetic Thin Films

We start our discussion of X-ray magnetic imaging by presenting in Fig. 10.20
details about the typical image contrast utilized in imaging of ferromagnetic
domains.

The figure shows PEEM images of ferromagnetic domains for a thin film
of Co deposited on a cleaved crystal of NiO. We shall see later that the Co FM
domain structure has the characteristic striped pattern of the AFM domains
in the NiO crystal underneath. There are four Co domains consisting of two
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Fig. 10.20. PEEM images of the magnetic domains in a Co film deposited on
single crystal NiO recorded with circularly polarized light of fixed photon spin and
with the energy tuned to the L3-edge (left top) and the L2 edge (middle top). The
XMCD spectra recorded for different domains whose orientation is indicated in the
left image are shown underneath. The spectra are shown in different gray shades
and the arrows indicate the correspondence to the domains. On the right top we
show an image that was obtained by dividing the two images taken at the L3 and L2

edges. The orientation of the NiO crystal and the photon polarization is indicated
on the right bottom
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pairs of orthogonal domains, all with their magnetization in the plane of the
film, as indicated by arrows in the left image. Of interest here is not the
domain structure itself but how it is revealed in original images recorded with
a given circular polarization and with the photon energy tuned to either the
L3 or L2 edges. For this reason we show the raw images recorded at these
energies and underneath the original dichroic spectra recorded from the four
individual domains. This is accomplished by selecting areas on the sample by
a soft-ware-set window and recording the intensity of the pixels in the window
as a function of energy.

The figure illustrates the correspondence of the gray scale image contrast to
the difference in spectral intensities, indicated by the shading of the spectra
and by arrows. In direct analogy to the spectra the image contrast inverts
at the L3 or L2 resonance energies, and this can be conveniently used to
enhance the contrast (without change in X-ray polarization) by dividing the
raw images obtained at the two edges. Another method would be to change
the circular polarization at a given resonance energy. This is typically not done
for microscopes located on bending magnet beam lines because by selecting
radiation below and above the orbit plane (see Fig. 4.14) by movement of
an aperture one changes the optical path through the beam line and this
results in energy shifts. For undulator beam lines the change of polarization is
straightforward and one may conveniently use opposite circular polarizations
for contrast enhancement.

An example of the unique capabilities of X-rays for imaging ferromagnetic
domains is given in Fig. 10.21. The figure shows FM domains in a thin film of
magnetite, Fe3O4, grown on SrTiO3(110). As shown in the upper right of the
figure, the Fe L-edge spectrum has a characteristic multiplet structure which
leads to a complicated XMCD difference spectrum shown underneath. The
spectra were recorded independently on an undulator beam line by fixing the
circular polarization and saturating the sample into opposite magnetization
states. The rich XMCD structure is a consequence of multiplet effects as well
as the different Fe sites in magnetite [302] (see Fig. 7.30). The integrated
negative and positive XMCD contributions at the L3-edge have a ratio of
about 2 to 1. Antronov et al. have attributed this intensity distribution with
the moments on the three different Fe sites in Fig. 7.30, which also have a
2 to 1 spin-up to spin-down ratio. The XMCD domain image shown on the
top left was recorded at the Fe L-edge by division of two images taken at
energies with opposite dichroism effect.

The tunablility of X-rays also allows one to look for a magnetic effect at
the site of the O atoms in magnetite. The dichroic O K-edge spectra and the
XMCD difference are shown on the lower right of the figure. The O K-edge
dichroism effect is about 2% of that at the Fe L-edge and has a character-
istic XMCD structure with a negative intensity that is about a factor of 2
larger than the positive intensity, similar to the ratio seen at the Fe L-edge.
As for this case, it is tempting to correlate the 2 to 1 intensity distribution
with the moments on the three different Fe sites in Fig. 7.30. However, since
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Fig. 10.21. Domain images and XMCD spectra for epitaxially grown magnetite,
Fe3O4. On the right we show spectra recorded at the Fe L-edge and O K-edge with
circular polarized light and magnetically saturated samples and their difference, the
XMCD spectra. The O K-edge spectrum agrees with that shown in Fig. 7.32a. The
images on the left were obtained by dividing two images recorded at two photon
energies with opposite dichroism effects

all O atoms in Fe3O4 are equivalent, the situation is different, since the O
K-shell transitions must reflect different valence orbitals on the same atom.
The negative O K-edge XMCD peak would then correspond to transitions to
O 2p orbitals involved in the bonding with Fe3d orbitals on the two octahedral
Fe2+ and Fe3+ atoms, with moments coupled parallel by double exchange. The
positive peak would correspond to O2p orbitals hybridized with Fe3d orbitals
on the tetrahedral Fe3+ atoms. These Fe atoms have opposite moment orien-
tations than the octahedral Fe atoms because of superexchange. We therefore
have the interesting case where we can resolve the 2p-orbital-specific magnetic
moments on the same O atom.
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Fig. 10.22. TIXM images recorded at the FeL3-edge as a function of applied field
for a 75 × [Fe(4.1 Å)/Gd(4.5 Å)] multilayer deposited on polyimide and capped for
protection with an Al layer [463,482]

Within each magnetic domain, the dichroism spectrum has the same in-
tensity distribution, and one can therefore use the positive and negative peaks
for enhancement of the dichroic image contrast. Doing so yields the magnetic
image shown in the lower left corner of Fig. 10.21. We see that it closely re-
sembles the FM image taken at the Fe L-edge.

Our next example, shown in Fig. 10.22, demonstrates the ability of photon-
in/photon out techniques to record magnetic images in the presence of a
magnetic field [463,482].

Shown here are TIXM images recorded at the FeL3-edge for a Fe/Gd
multilayer with perpendicular magnetic anisotropy at various points around
the magnetization loop. The magnetic structure corresponds to domains with
opposite magnetization directions along the surface normal.

As another interesting example, we show in Fig. 10.23 various images of
a polycrystalline film of NiO. The 400-nm-thick polycrystalline NiO sample
was deposited by sputter deposition onto oxidized Si and then annealed for
1 h at 1, 100 ◦C in flowing oxygen at atmospheric pressure, followed by 1 h
at 700 ◦C, and a gradual (4 h) cooldown to room temperature in flowing O2.
The procedure was applied to increase the crystallographic grain size of the
film. In Fig. 10.23a we show an atomic force microscopy image of the surface
after annealing, revealing an average grain size of about 180 nm, which was
significantly larger than the 15–20 nm size before the annealing procedure.
Inspection of the film under an optical microscope revealed that the film had
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Fig. 10.23. Structure of a 400 nm thick NiO film sputter deposited on an oxidized
Si substrate and annealed in an oxygen atmosphere to increase the grain size. (a)
Atomic force microscopy image revealing the grain size, which increased from about
15–20 nm before to about 180 nm after annealing [284]. The schematic underneath
illustrates that after annealing the film cracked as revealed by optical microscopy
images shown in (b). (c) XMLD images obtained from difference images recorded
with linearly polarized X-rays for the shown horizontal E orientation. We used two
images recorded on the two L2 multiplet peaks with opposite XMLD effects, as
shown in Fig. 9.27 (also see Fig. 10.25). (d) Direct comparison of the optical image
in (b) with the cracks shown in dark, superimposed on the XMLD image in (c)

cracked during the procedure, revealed by the web-like white crack lines in
the topographical image in (b). The structure of the film deduced from these
results is schematically illustrated at the bottom of Fig. 10.23a.

The sample was also studied by XMLD PEEM microscopy to investigate
the antiferromagnetic domain structure. By use of linearly polarized light,
images were recorded on the two L2 NiO peaks shown in Fig. 9.27 (also see
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Fig. 10.25) and divided for contrast enhancement. The resulting XMLD image
in Fig. 10.23c consists of bright double lines which are predominantly oriented
vertically. The widths of the bright lines are rather uniform and correspond to
the grain size of the film. Direct comparison of the optical image in (b) with the
XMLD image in (c), shown in (d), reveals that the crack lines, shown in dark,
and the AFM double lines, shown in yellow, can be superimposed and follow
the same web-like cracking pattern. However, no significant antiferromagnetic
contrast exists along the horizontal or near-horizontal web lines.

The AFM contrast arises from preferential orientation of the AFM axis
relative to the E-vector which for the AFM image in (c) was oriented in
the horizontal direction, as indicated. Bright contrast corresponds to regions
with their AFM axis oriented parallel to the E-vector. Hence, the bright dou-
ble stripes in Fig. 10.23c correspond to grains adjacent to the cracks which
have a preferred in-plane horizontal orientation of the AFM axis. Dark con-
trast corresponds to an AFM axis orientation perpendicular to the electric
field vector. The image can thus be explained by a preferential orientation of
the AFM axis as illustrated in the inset in (c). In the grains at the cracks, the
AFM is oriented in-plane, perpendicular to the cracks. Within the islands the
AFM is oriented perpendicular to the surface normal.

The results in Fig. 10.23 reveal a correlation between the topographical and
AFM structure. The formation of cracks proves the existence of considerable
stress and resulting strain in the cooling cycle. The cracking, however, does not
fully relieve all film stress and the residual strain profile is expected to be inho-
mogeneous across the formed islands. We attribute the different orientations
of the AFM axes to a magnetostrictive effect with perpendicular strain direc-
tions in the center of the island and at the cracked edges [284]. The present
case is only one example for the strong correlation between crystallographic
structure and strain and the orientation of the AFM axis, as discussed in
Sect. 11.3.2.

Images of Coupled Magnetic Thin Films

We now look at another strength of X-rays, the investigations of coupled
magnetic layers, where the elemental specificity can be used to investigate the
magnetic structure in each layer separately. As an example we take a look
at the exchange coupling between a ferromagnet and antiferromagnet, and in
Fig. 10.24 we show the first images obtained for such systems [107].

Figure 10.24 shows images of the FM domain structure of a thin Co layer
and the AFM domain structure in LaFeO3 underneath, as schematically illus-
trated on top of the figure. The magnetic contrast in the right image arises
from AFM domains in LaFeO3 with an in-plane projection of the AFM axis
oriented horizontally (light) and vertically (dark). The image was obtained
with linear polarization by dividing two images recorded on the two L2 peaks
in Fig. 10.1c with opposite XMLD effects. The FM Co image shown on the
left exhibits three distinct grey scales, corresponding to FM domains aligned
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Fig. 10.24. Sample structure and PEEM images of domains in the antiferromag-
netic and ferromagnetic layers for 1.2 nm Co on LaFeO3/SrTiO3(001) [107]. Left : Co
L-edge XMCD image of ferromagnetic domains. Right : Fe L-edge XMLD image of
antiferromagnetic domains. The in-plane orientations of the antiferromagnetic axis
and ferromagnetic spins are indicated by arrows below the images

vertically up (black) and down (white), and horizontally left or right (gray).
For the experimental geometry used for the figure, corresponding to a vertical
photon wave vector (angular momentum) direction, we cannot distinguish left
from right horizontally oriented FM domains.

Comparison of the in-plane projections of the AFM axis and the FM spin
directions, illustrated below the images, reveals that the FM Co spins are
aligned parallel or antiparallel to the in-plane projection of the AFM axis.
The magnetic alignment of the Co domains, which exhibit an in-plane easy
axis, must therefore be caused by a coupling to uncompensated spins at the
LaFeO3 surface with an in-plane component parallel to the in-plane projection
of the AFM axis.

Another example of FM–AFM exchange coupling is shown in Fig. 10.25.
The right column of the figure shows the AFM domain pattern near the
Ni(001) surface and the left column the FM domain patterns of eight mono-
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Fig. 10.25. Comparison of AFM (right column) and FM (left column) domain pat-
terns for eight monolayers of Co on NiO(001) and two different azimuthal geometries,
recorded by PEEM [404]. Arrows and wavy lines in the insets indicate the directions
of the crystallographic axes and photon wave vectors, respectively. The directions of
the magnetic moments in the domains are indicated by arrows. The AFM contrast
in NiO was obtained by division of two XMLD images obtained with horizontally
polarized light and photon energies corresponding to the two L2-edge peaks shown
in the spectrum on the bottom right. The FM image for Co was obtained by division
of XMCD images recorded at the L3 and L2 energies. The magnetization direction of
the Co film is found to be either parallel or antiparallel to the domains in the AFM,
depending on which of the two AFM sublattices are present at the interface to Co.
The spectra shown at the bottom show the XMCD and XMLD effects responsible
for the contrast of the images

layers of Co deposited on top. The top and bottom rows correspond to 45◦
rotated azimuthal orientations, as indicated in the insets by the orientation
of the photon wave vector (wavy lines) and the crystallographic axes. The
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ferromagnetic domains in the Co layer split up into two subgroups with each
subgroup spatially following the AFM domains. The observed spatial align-
ment of AFM and FM domains is caused by exchange coupling and it breaks
up upon heating the system above the Néel temperature of NiO. The dichro-
ism contrast of the other subgroup of ferromagnetic domains (black and white
in lower left image) is about 30%, while the antiferromagnetic contrast in the
lower right image is 14%. Within the near-interface region of NiO the AFM
spin directions are found to be completely in plane, parallel to [±110] and
parallel to those in Co [404].




