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Abstract

Symmetry breaking and bonding at interfaces leads to a variety of anisotropy phenomena in transition metal
sandwiches and multilayers. The charge density, the spin density and the orbital moment become anisotropic. These
e!ects can be studied by the X-ray magnetic circular dichroism (XMCD) technique which senses the local anisotropy of
charge, spin and angular momentum around an atom that is excited by the absorption of polarized X-rays. Here we
brie#y review the principles of the technique and then apply it to the study of the thickness-dependent electronic and
magnetic properties of a Co "lm sandwiched between Au. The experimental results are compared to those obtained by
electronic structure calculations for a free Co monolayer and a Co monolayer sandwiched between Au. In particular,
a simple ligand "eld model is developed which allows one to visualize the origin of the magnetocrystalline anisotropy in
terms of the preferred direction of the orbital moment, corresponding to the direction of maximum size. The model
supports the intuitive picture that the orbital moment on an atom becomes anisotropic through quenching e!ects by the
anisotropic ligand "elds of the neighbors. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Transition metal thin "lms and surfaces may
exhibit a variety of interesting magnetic phe-
nomena such as enhanced spin and orbital
magnetic moments [1}10], or enhanced magnetic
anisotropies [11], e.g. perpendicular magnetic an-
isotropy (PMA) [12}16]. Such e!ects have their
microscopic origin in the reduced symmetry experi-
enced by magnetic atoms near interfaces or surfa-
ces. Of particular interest from a technological

point of view is the large PMA often found in
arti"cially layered structures or the large perpen-
dicular or in-plane uniaxial anisotropies in chemic-
ally ordered alloys with superlattice structures
[17}20]. Such systems are also of great scienti"c
interest in that they allow the exploration of one of
the most important yet still poorly understood
magnetic phenomena, the origin of magnetocrystal-
line anisotropy (MCA). Historically, it has been
di$cult to obtain a clear picture of the origin of the
MCA because of its small size [21]. Even today the
easy [1 1 1] magnetization direction of bulk FCC
Ni cannot be accounted for by means of electronic
structure calculations [22]. Van Vleck [23] "rst
proposed the MCA to arise from the spin}orbit
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1The one-electron diagram shown in Fig. 1 is misleading,
especially to the photoemission community, in that it depicts the
spin}orbit splitting of the p core shell as an &initial state' e!ect. In
the proper description based on a conxguration picture, an atom
is excited from a ground or initial state con"guration to an
excited or "nal state con"guration. While in general the one
electron and con"guration pictures are not equivalent, equiva-
lence does exist for the case of a d9 ground state, as discussed in
Ref. [54]. This, in fact, justi"es the use of the one electron model.

interaction which couples the isotropic spin mo-
ment to the lattice. In todays electronic structure
calculations the magnetocrystalline anisotropy
energy corresponds to the largest di!erence of the
spin}orbit energy when the sample is magnetized
along two di!erent crystallographic directions. In
the absence of shape anisotropy e!ects, the two
directions then de"ne the &hard' versus the &easy'
magnetization directions.

In general, the complexity of electronic band-
structure calculations impedes simple physical in-
sight. In the case of layered thin "lms, however, the
inherent in-plane/out-of-plane asymmetry and the
resulting enhancement of the MCA by orders of
magnitude [24] suggest exploration of a di!erent,
more intuitive, concept based on anisotropic bond-
ing or ligand "elds, as previously suggested by
Wang et al. [25,26]. In addition, it is di$cult to
picture the origin of &energy anisotropy'. Since our
visualization of magnetism is closely related to
magnetic moments it would be preferable to cast
anisotropy concepts in terms of &moment aniso-
tropies'. In the present paper we will explore such
&ligand "eld' and &moment' concepts.

The opportunity to directly observe the MCA as
an anisotropy of the orbital moment, "rst suggested
by Bruno [11,24], comes from the development of
a powerful new magnetics technique called X-ray
magnetic circular dichroism (XMCD) spectro-
scopy. The technique was pioneered by SchuK tz and
coworkers in 1987 [27] and over the last ten years
has been developed both experimentally [4,8,
28}37] and theoretically [5,6,38}45] into a quantit-
ative magnetometry tool. It has several capabilities
not a!orded by traditional magnetics techniques
[46]. Its foremost strengths are the element-speci-
"c, quantitative separation and determination of
spin and orbital magnetic moments and their an-
isotropies. These capabilities are highlighted in the
present paper. Other strengths, which will not be
further discussed here, are its chemical sensitivity
[16,47], its ability to identify moment orientations
in ultrathin "lms and monolayer magnetic mater-
ials [48] which leads to its element-speci"c mag-
netic imaging capability [49], its ability to obtain
element speci"c AC susceptibilities [50] and mag-
netization loops [51], and its sub-monolayer sensi-
tivity [33,52,53].

The structure of the paper is as follows. The
principles of XMCD spectroscopy will be reviewed
in Section 2. In Section 3 XMCD results for
a Au/Co/Au wedge with Co thickness ranging from
3 to 12 layers will be presented. In Section 4 the
origin of anisotropy e!ects is discussed in terms of
electronic structure calculations and a simple
ligand "eld model. The XMCD results are dis-
cussed in terms of theoretical expectations in Sec-
tion 5. Conclusions are presented in Section 6.

2. XMCD spectroscopy

2.1. XMCD spectroscopy in 3d transition metals

Here we shall brie#y review the principles of
XMCD spectroscopy. For more detailed accounts
the reader is referred to earlier works [54}56]. The
magnetic properties of the 3d transition metals are
mainly determined by their d valence electrons
[57,58]. In the ferromagnets Fe, Co and Ni the
d shell becomes increasingly "lled, resulting in a de-
creasing number of d holes, N. The spin magnetic
moment due to the exchange interaction is simply
the di!erence between the number of spin-up and
spin-down holes, m
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arises from the spin}orbit interaction which is sig-
ni"cantly smaller (&50 meV) than the exchange
interaction (&1 eV) and the 3d bandwidth (a
few eV). Therefore, the orbital moment (e.g.
m

0
"0.14 l

B
for Co) is much smaller than the spin

moment (e.g. m
4
"1.64 l

B
for Co).

The properties of 3d-electrons are best probed in
an X-ray absorption experiment by excitation of 2p
core electrons to un"lled 3d states as illustrated by
a simple one-electron picture1 in Fig. 1a. In
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Fig. 1. (a) Electronic transitions in conventional L-edge X-ray absorption, (b) and (c) X-ray magnetic circular dichroism, illustrated in
a one-electron model. The transitions occur from the spin}orbit split 2p core shell to empty conduction band states above the Fermi
level. In conventional X-ray absorption the transition intensity measured as the white line intensity I

L3
#I

L2
is proportional to the

number of d holes, N. By use of circularly polarized X-rays the spin moment (b), and orbital moment (c), can be determined from the
dichroic di!erence intensities A and B, as explained in the text.

principle, L-edge X-ray absorption spectra contain
contributions from both pPd and pPs
transitions, but in practice the pPd channel dom-
inates by a factor '20 [59]. The sum of the white
line intensities, denoted I

L3
and I

L2
, respectively, is

directly proportional to the number of d holes. This
correlation follows from one of the several intensity
sum rules [38,39,41] to be discussed below. The use
of circularly polarized X-rays opens the door for
magnetic studies. The underlying physics is most

easily understood in the following two-step picture
[54,55].

In the xrst step, right or left circularly polarized
photons transfer their angular momentum, + and
!+, respectively, to the excited photoelectron. If
the photoelectron originates from a spin}orbit split
level, e.g. the p

3@2
level (L

3
edge), the angular mo-

mentum of the photon can be transferred in part to
the spin through the spin}orbit coupling. Right
circularly polarized photons transfer the opposite
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momentum to the electron than left circularly
polarized photons, and hence photoelectrons with
opposite spins are created in the two cases. Since
the p

3@2
(L

3
) and p

1@2
(L

2
) levels have opposite

spin-orbit coupling (l#s and l!s, respectively),
the spin polarization will be opposite at the two
edges. In the "rst (absorption) step, &spin-up'
and &spin-down' are de"ned relative to the
photon helicity or photon spin, which is parallel
(right) or antiparallel (left) to the X-ray propagation
direction. The handeness of circularly polarized
light is not uniquely de"ned. We follow Feynman
and the convention used in particle physics. See
Ref. [60].

The magnetic properties enter in the second step.
Here the spin-split valence shell acts as a detector
for the spin of the excited photoelectron. The
quantization axis of the detector is given by the
magnetization direction which, for maximum dich-
roism e!ect, needs to be aligned with the photon
spin direction. As illustrated in Fig. 1 we shall
denote the di!erences of the white line intens-
ities recorded with right and left circular polariza-
tion, i.e. the XMCD intensities, as A (L

3
edge)

and B (L
2

edge), respectively. Note that A and
B have opposite sign, re#ecting the opposite
spin}orbit coupling of the p

3@2
and p

1@2
levels.

A powerful sum rule [39] links the spin moment
quantitatively to the measured intensity A!2B, as
discussed below.

Similarly, if the d valence shell possesses an or-
bital moment, as shown in Fig. 1c, it will act as
an orbital momentum detector for the excited
photoelectron. By summing over the L

3
, i.e. (l#s),

and L
2
, i.e. (l!s), intensities it is apparent that the

spin s is eliminated and one measures the orbital
moment of the valence shell, as schematically
shown in Fig. 1c. This is expressed by the orbital
moment sum rule [38] which links the orbital mo-
ment in the d shell to the dichroism intensity
A#B.

In the above discussion we have assumed
that the magnetization direction is "xed so that
the XMCD intensity is the di!erence intensity,
obtained for two X-ray helicities. It is easy to
show that it is equivalent to "x the X-ray heli-
city and switch the magnetization direction
[54].

2.2. Probing anisotropic charge
and magnetic properties

So far we have implicitly assumed that the white
line and dichroism intensities do not depend on the
sample orientation relative to the X-ray wave vec-
tor or polarization. This is a rather good approxi-
mation for the bulk 3d transition metals which have
high symmetry lattices (FCC, BCC or HCP) and
hence the bonding and charge distribution is rather
isotropic. In the following, we shall use a Cartesian
coordinate system with the z-axis along the surface
normal and assume uniaxial symmetry about z. If
one describes the electronic band states in terms of
basis functions consisting of the "ve d orbitals
[61,62], d

xy
, d

xz
, d

yz
, d

x
2~y

2, and d
3z2~r

2, one may
de"ne d-orbital projected quantities after summing
over the Brillouin zone (BZ). In particular, one
obtains a density of states (DOS) for each d-orbital.

For bulk FCC transition metals one may distin-
guish bands derived from the e

'
(d

x
2~y

2 and d
3z2~r

2)
and t

2'
(d

xy
, d

xz
and d

yz
) manifolds. The e

'
and

t
2'

manifolds, respectively, possess a nearly iso-
tropic charge density (i.e. have no quadrupole mo-
ment) and therefore, the total charge density in the
atomic cell will also be nearly isotropic. Similarly,
the spin density and the orbital moment will be
rather isotropic. For ultra thin "lms or surfaces
with uniaxial symmetry about the surface normal
one may group the d-orbitals into in-plane (d

x
2~y

2

and d
xy

) and out-of-plane (d
xz

, d
yz
, and d

3z2~r
2)

manifolds and de"ne averaged in-plane and out-
of-plane DOSs. This is illustrated in Fig. 2a for
a free Co monolayer using the theoretical results of
Daalderop [55,63] as a guide. It is seen that for
a Co monolayer the out-of-plane DOS is narrower
than the in-plane DOS because of smaller overlap
of the out-of-plane (p bonding) relative to the in-
plane (p bonding) orbitals. The out-of-plane DOS
exhibits more holes (NM"Nxz"Nyz"N3z2~r

2)
per orbital than the in-plane DOS (N,"Nxy"

Nx
2~y

2). The DOSs lead to a slightly anisotropic
charge (hole) distribution which is largest along the
surface normal as schematically shown on the right
side of Fig. 2a. The total number of d holes is given
by N"2N,#3NM, and is isotropic by de"nition.

From the spin resolved DOSs we can obtain the
spin moments for each d-orbital. Per de"nition the
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b

Fig. 2. Illustration of the origin of charge, spin and orbital moment anisotropies in an ultrathin "lm using a free Co monolayer as an
example [63]. (a) The bonding anisotropy is re#ected by di!erent densities of states for the in-plane and out-of-plane d orbitals. This leads
to di!erent numbers of unoccupied states above the Fermi level, i.e. the number of in-plane N@@ and out-of-plane NM holes, as shown shaded.
The total number of d holes N"2N,#3NM, is isotropic per de"nition. (b) Same as (a) for the spin-resolved densities of states. The total
spin moment, m

4
"2m,

4
#3mM

4
, is isotropic per de"nition. (c) Origin of the orbital magnetic moment illustrated in a d-orbital based

bonding model [55]. If the bonding is anisotropic, as in the case of a multilayer, the energetic splitting between the in-plane and
out-of-plane d orbitals will be di!erent. In the presence of spin}orbit coupling the resulting orbital moment will be anisotropic.

spin moment is the di!erence between the number
of electrons in the majority band and the minority
band. Neglecting hybridization e!ects between
d electrons with the s and p electrons [6] one may
also de"ne the spin moment as the di!erence be-
tween the number of holes in the minority band and
the majority band (note opposite sign) so that, with
the de"nition of Fig. 1b and Fig. 2b, mi

4
"

(Ni
t
!Ni

s
)k

B
for each d

i
orbital. As shown in

Fig. 2b for a Co monolayer the out-of-plane
(mM

4
"mxz

4
"myz

4
"m3z2~r

2

4
) spin moment is found

to be larger than the in-plane (m,
4
"mxy

4
"mx

2~y
2

4
)

one. The total isotropic spin moment is given by
m

4
"2m,

4
#3mM

4
. In the transition metals Fe, Co

and Ni there is a close correspondence between the
anisotropy of charge and spin because the majority
band is nearly full, as indicated in Figs. 2a and b. In
practice, the anisotropy of the spin density is found
to be larger than in the charge density because
opposite minority and majority band contributions
enhance the di!erence [55,63].

While the anisotropy of the charge and the spin
is determined by the xlling of the in-plane and
out-of-plane sub-bands, i.e. the number of holes,
the orbital moment anisotropy greatly depends on
the in-plane versus out-of-plane bandwidth as illus-
trated in Fig. 2c. The orbital moment arises mainly
from the minority band since a "lled band has no
net orbital moment. Its value is determined by the
average bandwidth= which determines the aver-
age separation of the "lled and empty minority
band states that are mixed by the small spin}orbit
interaction. A perturbation treatment gives m

0
J

m/=, where m&70 meV is the spin}orbit coupling
constant. Because the orbital moment direction is
perpendicular to the plane of the orbiting hole or
electron the in-plane moment m,

0
is determined by

the out-of-plane orbitals and their bandwidth. The
smaller out-of-plane bandwidth therefore leads to

a larger in-plane orbital moment as indicated on
the right side of Fig. 2c.

The polarized nature of X-rays allows one to
quantitatively probe the various electronic and
magnetic anisotropies, as discussed below.

2.3. Sum rules

2.3.1. Charge
Polarized X-rays are intrinsically anisotropic.

For linearly polarized X-rays the electric "eld vec-
tor E de"nes a direction (axis) in space and right-
and left-handed circularly polarized photons are
characterized by a helicity vector which points
either into the X-ray propagation direction k or
along !k. This anisotropy of polarized X-rays
leads to a search light e!ect and allows the detec-
tion of anisotropic charge and moment distribu-
tions in magnetic thin "lms. Three sum rules relate
the measured intensities I

L3
, I

L2
, A and B, de"ned in

Fig. 1, to the electronic and magnetic properties of
the sample. The "rst sum rule is related to the
charge distribution and is given by [41],

[I
L3
#I

L2
]a"C(N#Na

Q
), (1)

where C is the square of the pPd radial transition
matrix element and has a value of about 10 Mb eV
[56]. We have characterized the anisotropy by an
index a that speci"es the orientation of E (linear
polarization) or k (circular polarization). In the
following a may either denote the coordinate axes
x, y or z or the polar angle from the z-axis as
de"ned in Fig. 2. Eq. (1) correlates the polarization
dependent white line intensity with the total num-
ber of d holes N"2N,#3NM and a quadrupole
term Na

Q
which expresses the anisotropy of the

charge density in the unit cell [41]. The origin of
this term is discussed in more detail in Appendix A.
The sum rule expression N#Na

Q
"N

%&&
can be
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written as a linear combination of N, and NM [55].
For linear polarization a speci"es the E direction
and a"03 corresponds to Eoz and a"903 corre-
sponds to EEz (see Fig. 2a) and we obtain

Eoz: N
%&&
"2NM#3N,,

EEz: N
%&&
"5NM. (2)

For circular or plane polarization a speci"es the
k direction and a"03 corresponds to kEz and
a"903 corresponds to koz (see Fig. 2a), and we
obtain

kEz: N
%&&
"2NM#3N,,

koz: N
%&&
"3.5NM#1.5N,. (3)

The term Na
Q

vanishes when an angular average
is performed, 1

3
+aNa

Q
"(Nx

Q
#Ny

Q
#Nz

Q
)/3"0. In

this case the isotropic sum rule I
L3
#I

L2
"CN is

obtained.

2.3.2. Spin
For 3d transition metals the spin}orbit coupling

is small and the charge distribution is not signi"-
cantly altered if the spin is rotated by an external
magnetic "eld. As a consequence the anisotropy of
the spin density is related to that of the charge
density. In the following, we shall assume that in all
measurements the sample is magnetically saturated
by a strong external magnetic "eld along the X-ray
propagation direction. The spin sum rule [39] is
then given by [41]

[A!2B]a"!

C

k
B

(m
4
#ma

D
) (4)

and it closely resembles the charge sum rule [55].
The total number of holes, N, is simply replaced by
the isotropic spin moment m

4
"2m,

4
#3mM

4
, and

the charge density term Na
Q

is replaced by a spin
density term ma

D
, also called an intra-atomic mag-

netic dipole moment [39,41]. This term, discussed
in more detail in Appendix B, is non-zero in aniso-
tropic bonding environments and re#ects the fact
that the number of spins in the unit cell di!ers
along di!erent crystallographic directions. The sum
rule term m

4
#ma

D
is again given by contributions

of the various d orbitals. For circular polarization
a"03 corresponds to the X-ray wave vector kEz
and a"903 corresponds to koz (see Fig. 2b) and

we obtain

koz: m,
D
"mx

D
"my

D
"2(mM

4
!m,

4
),

kEz: mM
D
"mz

D
"4(mE

4
!mM

4
) (5)

or equivalently,

koz: m
4
#m,

D
"5mM

4
kEz: m

4
#mM

D
"6m,

4
!mM

4
. (6)

Polarized X-rays therefore o!er the capability of
probing the angular distribution of the spins in the
atomic cell, whereas conventional magnetometry
only probes the integrated number of spins, i.e. the
essentially isotropic spin moment per atom. The
term ma

D
vanishes when an angular average is per-

formed, 1
3
+ama

D
"0, and the isotropic sum rule

A!2B"!Cm
4
/k

B
is obtained [41]. The angular

average requires that in all measurements the
sample is magnetically saturated by a strong ex-
ternal magnetic "eld along the X-ray propagation
direction.

2.3.3. Orbital moment
The electronic states created by the crystal

potential alone possess no orbital moment, since all
d orbitals have a perfect balance of $m

-
contri-

butions (see Fig. 13 below) [55]. This balance is
broken by the spin}orbit interaction which mixes
di!erent d orbitals in a way to produce a non-zero
angular momentum [24,55], as illustrated in
Fig. 2c. If the bonding is anisotropic, the d electron
charge will be anisotropic. When the sample is
magnetized in di!erent directions, i.e. by rotating
the spin moment by a su$ciently strong external
magnetic "eld, an orbital moment arises from the
clockwise/counterclockwise imbalance of orbital
motion in the plane perpendicular to the spin
quantization axis as a consequence of the
spin}orbit coupling. Because of the anisotropic
charge cloud, the orbital amplitudes will di!er for
di!erent magnetization (spin moment) directions,
and the orbital moment will be anisotropic. The
direction of the orbital moment relative to the spin
moment is given by Hund's third rule. For Fe, Co
and Ni m

0
and m

4
are parallel because the d shell is

more than half full. In the presence of an external
magnetic "eld which is su$ciently large to
magnetically saturate the sample, the orbital
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moment ma
0

along the "eld direction a can be dir-
ectly determined by use of the sum rule [38]

[A#B]a"!

3C

2k
B

ma
0
. (7)

2.4. Magic geometries

The quantities Na
Q
, ma

D
and ma

0
all depend on the

measurement geometry, characterized by a. For
multilayers with uniaxial geometry about the sur-
face normal, two &magic' geometries are parti-
cularly useful. The "rst one, suggested by StoK hr and
KoK nig [41], allows one to determine the angle
averaged quantities N, m

4
, and m

0
"(mM#2m,)/3

in a single measurement. Assuming circularly po-
larized light, it consists of a measurement with the
photon spin and the external magnetic "eld (strong
enough to saturate the sample), oriented at the
magic angle a"54.73 from the surface normal
(equal projections onto x-, y- and z-axis). The sec-
ond one, due to DuK rr and van der Laan [42],
directly determines the size of the anisotropic mag-
netic terms mM

D
!m,

D
and mM

0
!m,

0
. It consists of

a &forbidden geometry' measurement, where the
photon spin is perpendicular to the external mag-
netic "eld (strong enough to saturate the sample),
and the sample is at a"453 X-ray incidence.

3. Magnetic anisotropies in Au/Co/Au sandwiches

The microscopic origin of magnetic anisotropy
in transition metals has been debated for more
than 60 years [23]. Recently, the interest in
this problem has become revived in conjunction
with arti"cially made transition metal multilayers
which exhibit perpendicular magnetic anisotropy
(PMA) [12}14,64]. For example, PMA is observed
when a thin Co "lm, a few atomic monolayers thick,
is sandwiched between two transition metal "lms
such as Au, Pt, Pd, In or Ni, as shown in Fig. 3. For
such multilayers the easy magnetization direction de-
viates from the in-plane orientation observed for
thicker (tens or hundreds on nanometers) Co "lms.

The case of perpendicular magnetic anisotropy is
of considerable interest for technological applic-
ations such as magneto-optical recording [65]. It is
clear that PMA is due to an intrinsic, i.e. magneto-

crystalline, anisotropy mechanism strong enough
to overcome the extrinsic macroscopic shape an-
isotropy, which favors an in-plane orientation of
the magnetization [24], as discussed in detail in
Section 4.1. The microscopic origin of the PMA has
remained fuzzy, however. While it is clear now that
the PMA is determined by the anisotropy of the
spin}orbit energy, di!erent mechanisms have been
proposed to dominate. Some authors [21,63,66]
have stressed the importance of band structure
e!ects, especially of states close to the Fermi level
which are strongly mixed by the spin}orbit interac-
tion while others [25,26] have emphasized the im-
portance of anisotropic bonding at interfaces which
may be described by a ligand "eld model that
averages out band e!ects. It has also been sugges-
ted that the increased spin}orbit interaction in
&heavy' ligands such as the 4d and especially the 5d
transition metals is important through hybridiza-
tion e!ects at interfaces [7,63].

In the following, we shall use the model staircase
structure shown in Fig. 4a, to explore the micro-
scopic origin of the magnetocrystalline anisotropy
and how it leads to PMA. The Co/Au/Co staircase
bridges the two structures shown in Fig. 3 and
exhibits in-plane magnetic anisotropy at the thick
end and PMA at the thin end.

3.1. Sample preparation

The Au/Co-staircase/Au sample was prepared by
MBE (for details see Refs. [67}70]) using room
temperature deposition of the metals in ultrahigh
vacuum, with background pressures below
5]10~10 mbar during "lm growth. First, a 28 nm
thick Au bu!er is grown onto a #oat-glass substra-
te, which after annealing for 1 h at 1753C provides
an atomically #at and fully (1 1 1) textured tem-
plate. Subsequently, ten Co terraces of 2 mm width
and thicknesses between 3 and 12 monolayers (ML)
of Co are generated using a linear shutter at the low
growth rate of 0.3 ML/min, and are "nally capped
with a &9 ML thick Au layer. A schematic picture
of the resulting Au/Co-staircase/Au sample is
shown in Fig. 4a. The sample consists of ten Co
terraces of 2 mm width ranging from 3 and 12
atomic layers, corresponding to thicknesses
6.15 As )t)24.6 As .
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Fig. 3. Illustration of magnetic anisotropies in two often encountered cases. In magnetic "lms with a thickness exceeding about 2 nm the
easy magnetization direction is typically found to be in-plane due to the dominance of the magnetostatic shape anisotropy. In multilayer
systems, consisting of ultrathin alternating magnetic (sub-nanometer thickness) and non-magnetic layers, such as Co and Au, discussed
in this paper, the easy axis may be out-of-plane due to the dominance of the spin}orbit derived magnetocrystalline anisotropy.

3.2. Kerr results

The Co staircase was characterized by angle-
dependent polar Kerr hysteresis measurements in
"elds up to 20 kOe [7]. Plateaus in both the co-
ercivity and the Kerr rotation con"rmed its steplike
structure as shown in Fig. 4b. The intrinsic energy
anisotropy (per Co volume), K

1
, was found to fol-

low a K
V
#2K

S
/t dependence, as shown in Fig. 4c,

with volume and surface anisotropy constants
K

V
"0.45 MJ/m3 and K

S
"3.4 MJ/m3"0.70 mJ/

m2, respectively. By extrapolation we obtain for the
energy anisotropy of a monolayer of Co
sandwiched between Au E

40
"!7.3 MJ/m3"

!5.1]10~4 eV/atom. The size of K
V

together
with the observation of a second-order anisotropy
constant K

2
"0.1}0.2 MJ/m3 are consistent with

mostly hexagonal (0 0 0 1)Co. With these anisot-

ropy constants, the transition from out-of-plane to
in-plane anisotropy occurs at t+11 ML [35].

3.3. XMCD measurements

XMCD measurements were performed at room
temperature at the Stanford Synchrotron Radi-
ation Laboratory (SSRL) on beamline 8-2. Circu-
larly polarized X-rays were obtained by moving the
pre-focusing mirror below the electron orbital
plane, yielding a degree of polarization of 90$5%.
The X-ray absorption was measured by the photo-
current from the sample [55] using right circularly
polarized X-rays and switching the magnetization
direction parallel and then antiparallel to the
photon spin at each photon energy step.

The XMCD spectra were recorded in a 10 kOe
external magnetic "eld oriented parallel to the X-ray
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Fig. 4. (a) Schematic of the investigated Au/Co-staircase/Au
sample. (b) Kerr rotation as a function of Co thickness.
(c) Anisotropy constant K

1
, determined from the measured

Kerr loops, as a function of Co thickness. The inset shows polar
geometry Kerr hysteresis loops (magnetization measured in the
out-of-plane direction) for 3 and 12 ML Co. The hysteresis loops
show that at 3 ML, the easy axis is out-of-plane, and it rotates
in-plane as the Co thickness increases to 12 ML.

propagation direction, at angles a"0 and 653 with
respect to the surface normal of the sample. A high
transmission grid, formed in shape of a cylinder,
around the sample produced an electric bias "eld of
#200 V to draw the photogenerated electrons
from the grounded sample. This arrangement
avoids experimental asymmetries in the presence of
large magnetic "elds [55].

Measurements for di!erent Co thicknesses were
performed by translating the sample along the wedge
direction.TheX-raybeamspot sizewasabout 0.75 mm
along the translation direction, assuring adequate
spatial resolution for the 2 mm wide Co terraces.

3.4. XMCD results

Experimental XMCD results for two Co thick-
nesses, normalized to a per Co atom basis, are
shown in Fig. 5 for X-ray incidence angles a"0
and 653 from the surface normal. While the spectra
for 11 ML thickness look identical a di!erence is
discernable in the intensity of the L

3
peak near

775 eV in the 4 ML spectra. The sum rule derived
values for the number of d holes and the spin and
orbital moments derived from the original data,
corrected for electron yield saturation e!ects [71],
are plotted in Fig. 6 as a function of Co thickness.
A clear anisotropy is found for the orbital moment
in the a"03 relative to the a"653 data at the thin
edge of the Co wedge. A smaller anisotropy is found
in the values derived from the spin sum rule, corre-
sponding to m

4
#ma

D
, while no anisotropy is ob-

served within experimental uncertainty for the
values derived from the charge sum rule.

The anisotropy of the orbital moment, after cor-
rection for insu$cient magnetic saturation of the
sample in the applied "eld of 10 kOe and for the "-
nite X-ray incidence angle (a"653) (see footnote 2
and Ref. [72]), is shown in more detail in Fig. 7.
Here we have plotted the orbital moments m,

0
and

mM
0
, the average moment m

0
"(2m,

0
#mM

0
)/3 and the

di!erence *m
0
"mM

0
!mE

0
. The angle averaged or-

bital moment decreases in value with decreasing Co
thickness, probably because of a reduced Curie tem-
perature, and is approximately constant for
t*6 ML at the Co bulk value of m

0
"0.14l

B
. At

the thin end of the wedge the orbital moment is
found to be strongly anisotropic, with a value
*m

0
"0.22 l

B
at the 3 ML Co step. *m

0
decays

rapidly and becomes smaller than the experimental
error for thicknesses larger than 7 ML. The measured
data in Fig. 7c appear to deviate somewhat from
a 1/t

C0
behavior (dashed line) although the statistical

accuracy of the data is insu$cient to draw a de"nite
conclusion. Instead, two di!erent "ts (linear and ex-
ponential) were used (see Fig. 7c) to estimate the
orbital moment anisotropy for 1 ML Co sandwiched
between Au, mM

0
!m,

0
"(0.37$0.05 ) l

B
/atom.

Fig. 8a shows the anisotropy of the spin density
with Co thickness, after correction for insu$cient
magnetic saturation of the sample in the applied
"eld of 10 kOe and for the "nite X-ray incidence
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Fig. 5. Top: XMCD experimental setup for photon spin P at 03 (left) and 653 (right) incidence with respect to the sample normal. In our
experimental setup, the external magnetic "eld was reversed such that it was either parallel or antiparallel to the photon spin for the
XMCD absorption measurements. Bottom: Dichroism spectra at 4 and 11 ML Co at X-ray incidence angles of 653 (right) and 03 (left)
from the surface normal.

2The measured anisotropic moments in the photon spin di-
rection PK a )mx

"ma
x
for a"0 and 653, where x denotes either the

orbital moment or the dipolar spin moment, have been con-
verted into moments m,

x
and mM

x
by means of the equation

ma
x
"m,

x
sin 0 sin a#mM

x
cos 0 cos a, derived by DuK rr et al.

[94]. The equilibrium magnetization angle 0 which lies between
the applied "eld direction H

%95
DDPK a and the easy axis of magnetiz-

ation, was obtained from the polar Kerr hysteresis loops ha
K
(H)

measured at a "eld angle a in "elds $H
%95

, according to the
relation ha

K
(10 kOe)/ha/03

K
(20 kOe)"cos 0 where a "eld of

20 kOe is assumed to be su$ciently strong to magnetize the Co
"lm in the perpendicular direction for all Co thicknesses.

angle (a"653)2 (for details see Ref. [72]). We also
show the values for the average isotropic spin mo-
ment, m

4
, derived by use of the angular average

+ama
D
"0, and the anisotropy of the dipole mo-

ment ma
D
. At the thin end of the wedge the average

spin moment decreases by 15% from the bulk value

of m
4
"1.64 l

B
measured at the thick end of the

wedge. The dipole moment anisotropy increases
with decreasing Co thickness and amounts to
*m

D
"0.22 l

B
at the 3 ML Co step. The "ts in Fig.

8c give values mM
D
"0.44 l

B
and m,

D
"!0.22 l

B
for

1 ML Co sandwiched between Au. The anisotropy
in the dipole moment tracks that of the orbital
moment, indicating a close relationship between
orbital and dipolar anisotropies.

4. Origin of magnetic anisotropies

4.1. Dipolar anisotropy

The easy magnetization axis of a sample is deter-
mined by a competition between two anisotropy
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3When the magnetization distribution in the unit cell is ex-
panded in multipoles the dipole}dipole interaction has the gen-
eral form of Eq. (8) but the size of the moments m

i
is given by the

multipole expansion m
i
"m

4
#ma

D
/2#2 . The monopole term

m
4
gives Eq. (8), the quadrupole term ma

D
/2 makes a contribution

of order ma
D
/2m

4
.

Fig. 6. Sum rule derived white line (a), spin moment (b), and
orbital moment (c) values as a function of Co layer thickness for
incidence angles a"0 and 653 from the surface normal of the
circularly polarized X-rays. The data have been corrected for
electron yield saturation e!ects [71].

mechanisms arising from the magnetostatic
dipole}dipole coupling of the magnetization distri-
butions within the individual atomic cells, i.e. the
magnetic moment densities, and from the spin}or-
bit interaction [24]. In general, the magnetization
distribution in the atomic cells contains spin and
orbital contributions and it is not spherical but
involves various multipoles. In the multipole ex-
pansion of the spin density3 the largest (monopole)
term, after integration over the atomic volume,
corresponds to the magnetic spin moment. Since it
arises from the exchange interaction the spin mo-
ment is intrinsically isotropic and magnetic anisot-
ropy arises only from the preferred dipolar
coupling between the atomic moments. The mono-
pole term in the spin density therefore gives rise to
the conventional dipole}dipole interaction between
magnetic moments m

4
, located at the atomic posi-

tions in the lattice,

E
$*1~$*1

"

k
0

4p
+
iEj

1

r3
ij
Cm

i
)m

j
!3

(r
ij
)m

i
)(r

ij
)m

j
)

r2
ij

D. (8)

The summation is over all atomic dipoles m
i
and

m
j
, whose absolute values are given by the spin

moment m
4
. Every pair of dipoles is only counted

once, and r
ij

is the vector connecting the two mo-
ments. The next higher (quadrupole) term in the
multipole expansion of the spin density re#ects
the lowest-order anisotropic spin distribution in
the atomic cell and it gives rise to the intra-atomic
magnetic dipole moment m

D
discussed in conjunc-

tion with the spin sum rule (see also Appendix B).
The orbital moment also contributes to the mag-
netization density in the atomic volume and its
anisotropy is typically comparable to that of the
intra-atomic magnetic dipole moment, as seen from
Figs. 7 and 8. Since the anisotropies of ma

0
and

ma
D

are much smaller than the spin moment m
4
, in

practice, the contributions of the anisotropic

ma
0
and ma

D
terms to the magnetostatic energy can be

neglected and it is su$cient to consider the lowest-
order magnetic dipole}dipole interaction given by
Eq. (8).

Remembering that all moments are parallel be-
cause of the dominant exchange interaction, the
dipole}dipole energy between two magnetic
dipoles, for example, is smallest when both atomic
moments align parallel along the internuclear axis.
For a thin "lm the internuclear axes are preferen-
tially oriented in the plane of the sample and the
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Fig. 7. XMCD analysis of mM
0

and m,
0
. (a) Orbital moments

mM
0

and m,
0
. (b) The isotropic orbital moment (mM

0
#2m,

0
)/3.

(c) The orbital moment anisotropy, *m
0
,mM

0
!m@@

0
. The linear

"t to 3}6 ML data (solid line) and an approximate exponential
"t to all of the data (3}12 ML; dot}dashed line) give
*m

0
"!0.05]t#0.36 and *m

0
"0.59e~0.41Ct, respectively.

Fig. 8. XMCD sum rule results for m
4
#mM

D
and m

4
#m,

D
, plot-

ted versus Co thickness t. (b) Isotropic spin moment m
4
. The net

spin moment decreases with decreasing Co thickness, due to the
drop in Curie temperature. The curve "t shown is the function
m

4
"1.64!(0.67/t). (c) Spin dipole moments mM

D
and m@@

D
with

"ts mM
D
"(0.44/t) and m,

D
"!(0.22/t).

dipole energy is therefore minimized for an in-plane
direction of the magnetic moment. For bulk mater-
ials the dipolar "eld may be decomposed into three
contributions, a &microscopic' component consist-
ing of the contributions from the atomic dipoles on
the actual lattice sites within a spherical volume, E

S
,

that arising from pseudo-charges on the surface of
the sphere, E

L
, and a &macroscopic' component due

to the demagnetizing "eld from pseudo-charges on
the external sample surface, E

D
, according to

E
$*1}$*1

"E
S
#E

L
#E

D
. (9)

The dominant term, E
D
, arising entirely from the

demagnetizing "eld, is the well-known shape an-
isotropy, given by

E
D
"!2pM2

V
, (10)

where M
V

is the volume magnetization. The other
two terms depend on the crystallographic arrange-
ment of the atoms in the sphere and therefore
constitute a dipolar magnetocrystalline anisotropy.
For Co, for example, the microscopic component is
found to be negligible in size (E

S
#E

L
+

4]10~7 eV/atom) relative to the shape anisotropy
(E

D
"9.3]10~5 eV/atom) [24].

482 J. Sto( hr / Journal of Magnetism and Magnetic Materials 200 (1999) 470}497



4Note that *E
40
"!K

1
with the convention E

40
"

K
0
#K

1
sin2 h used by Bruno [24].

For surfaces and ultrathin "lms the anisotropy
may be calculated by a two-dimensional lattice sum
[73]. Typical anisotropy energies are )5]
10~5 eV/atom for a single ferromagnetic layer,
smaller than those observed experimentally [24].
Therefore, the magnetocrystalline anisotropy, in
general, and the PMA, in particular, cannot be
accounted for by a dipolar anisotropy. Instead,
they arise from spin}orbit coupling as suggested by
Van Vleck [23].

4.2. Spin}orbit anisotropy

Todays electronic structure calculations account
for Hund's "rst rule (maximum spin) by using the
local spin-density approximation for the exchange
splitting. However, such theories do not adequately
account for Hund's second rule (maximum orbital
momentum) and this de"ciency leads to orbital
moments that are too small. Eriksson et al. [57,74]
have proposed an orbital enhancement term that
leads to much better agreement between theory and
experiment. Hund's third rule (total angular mo-
mentum) is accounted for by treating the spin}orbit
interaction either fully relativistically [75,76] or by
perturbation methods [11,21,25]. In particular, the
small MCA energies correspond to the energetic
di!erence obtained by two calculations with the
spin direction chosen along two orthogonal crystal-
lographic axes, corresponding to the easy and hard
magnetization directions.

Owing to the complexity of electronic structure
calculations it is di$cult to obtain a simple physical
picture that catches the essence of the magnetocrys-
talline anisotropy mechanism. For the bulk
transition metals Fe, Co and Ni the crystal sym-
metries are high and the MCAs are extremely small
(10~6 eV/atom) so that insight into the origin of the
anisotropy mechanism is nearly impossible to ob-
tain [21,22]. In contrast, the MCA in anisotropic
systems like monolayers and multilayer systems is
larger by orders of magnitude (10~4 eV/atom), sug-
gesting a possible interpretation of the MCA based
on symmetry breaking and asymmetric bonding at
the magnetic surfaces or interfaces. Such an inter-
pretation is supported by the preference for PMA
in many multilayer systems, independent of the
detailed crystallographic structure of the layers.

A symmetry-based model has indeed been sugges-
ted by Wang et al. [25,26] who compared "rst
principles band structure results with those ob-
tained from a more intuitive ligand "eld model that
accounts for the di!erent in-plane and out-of-plane
bonding at surfaces and interfaces. The ligand "eld
approach used by Wang et al. was based on com-
parison of spin}orbit energies for in-plane versus
out-of-plane orientations of the spin.

Bruno [11,24] has shown that under certain as-
sumptions the anisotropy of the spin}orbit energy is
directly related to the anisotropy of the orbital
moment according to

*E
40
"C(m,

0
!mM

0
), (11)

where C'0 is a proportionality constant. Bruno's
work followed careful high "eld measurements of
the anisotropy of the total (spin plus orbital) mag-
netic moment by Aubert, Rebouillat, Escudier and
Pauthenet [77}80]. The relationship between the
orbital moment and the magnetic anisotropy was
also discussed in an early paper by Ducastelle and
Cyrot-Lackmann [81]. We have used the de"nition
that *E

40
(0 if the easy axis is perpendicular to the

surface and the orbital moment is larger in the easy
direction than in the hard one.4 Bruno's model
leads to a particularly simple and beautiful picture
for the origin of the MCA based on the anisotropy
of the orbital moment. This is illustrated in Fig. 9,
using concepts by Smit [82]. Consider a d electron
in a free atom whose spin is oriented by an external
magnetic "eld. The orbital momentum of the d elec-
tron circling about the spin direction can then take
on values !2)S¸

z
T)#2, as depicted in Fig. 9.

Let us now assume that, instead, the atom is
bonded in a planar geometry to four other atoms
with a negative charge as shown in Fig. 9. Now the
orbiting electron will experience a Coulomb repul-
sion near the corners of the bonding square where
the negative neighbor ions are located and the
orbiting electron will form a standing wave by
superposition of two oppositely travelling waves
with $¸

z
, with charge maxima away from the four

corners. One may say that the in-plane orbit of the
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Fig. 9. Directional quenching of the orbital momentum of an atom by ligand "eld e!ects in a thin "lm, as discussed in the text.

electron is broken up through the formation of
molecular orbitals (e.g. a d

x
2~y

2 orbital in our case).
Therefore, the corresponding orbital momentum
along the normal of the bonding plane, will be
quenched. The orbital motion perpendicular to
the bonding plane will be less disturbed owing to
the lack of neighbor ions and the corresponding in-
plane orbital momentum remains largely unquen-
ched. The simple model pictured in Fig. 9 therefore
relates the anisotropy of the orbital moment of an
atom to the anisotropy of the bonding environ-
ment. For a free monolayer the orbital momentum
(or moment) is predicted to be larger in the bonding
plane than perpendicular to it, and for the case of
stronger out-of-plane bonding, e.g. for a multilayer,
the orbital moment would be larger in the out-of-
plane direction.

In the following, we shall explore the origin of the
PMA in Au/Co/Au more quantitatively, using the

concepts of anisotropic bonding and orbital anisot-
ropy.

4.2.1. From band structure to ligand xeld model
The question arises whether the simple model

shown in Fig. 9 is qualitatively correct for thin
metal "lms. One might argue that the simple point
charge model or the concept of directional bonding
does not apply for metallic systems and that the
model therefore has no validity. However, "rst
principles band structure calculations indeed pro-
vide the basis for anisotropic bonding in monolayer
and multilayer systems. For example, Fig. 10 taken
from Daalderop et al. [63] clearly shows the di!er-
ent bandwidth associated with the in-plane d

xy
and

d
x
2~y

2 orbitals relative to the out-of-plane d
xz

, d
yz
,

and d
3z2~r

2 orbitals for a free Co monolayer. As
expected from simple arguments [25,26], the over-
lap of the in-plane orbitals (p bonding) leads to

484 J. Sto( hr / Journal of Magnetism and Magnetic Materials 200 (1999) 470}497



Fig. 10. Density of states and band structure of a free-standing Co(1 1 1) monolayer, calculated by Daalderop et al. [63]. (a) Majority-
(dashed) and minority-spin (solid) orbital projected density of states for m"0 (d

3z2~r
2), DmD"1 (d

xz
, d

yz
), and DmD"2 (d

x
2~y

2 and d
xy

).
The &out-of-plane' orbitals (i.e. DmD"0, 1) have a narrower bandwidth than the &in-plane' orbitals (i.e., DmD"2). (b) Majority- (dashed)
and minority-spin (solid) band structure of Co monolayer.

Fig. 11. Density of states for the d
3z2~r

2 orbital in a Co mono-
layer taken from Daalderop et al. [63] and for a Co monolayer
sandwiched between Au [structure Au(1 1 1)/Co(1 ML)/
Au(2 ML)] taken from UD jfalussy et al. [83].

a larger bandwidth, relative to that for the less
overlapping out-of-plane orbitals (p bonding). In
contrast, when the Co monolayer is sandwiched
between Au layers, the strong out-of-plane bonding
signi"cantly increases the out-of-plane bandwidth.
This is shown in Fig. 11, where the density of states
(DOS) for the Co d

3z2~r
2 orbital in a free Co mono-

layer [63], taken from Fig. 10, is compared to that
calculated by UD jfalussy et al. [83] for the same
orbital in a Au/Co/Au sandwich. Figs. 10 and 11
suggest that an anisotropic bonding model may be
used for the description of the electronic structure
of a free or sandwiched ultrathin magnetic layer. In
the following we shall develop such a model for the
calculation of the orbital moment.

We can schematically represent the band struc-
ture results for a free Co monolayer, shown in Fig.
10 by the simple DOS model shown in Fig. 12. Here
the majority (spin down) band is assumed to be
"lled, and we shall assume the minority band to be
half-"lled as obtained by the band structure results
for bulk and monolayer Co [26,63]. We shall dis-
tinguish contributions from in-plane and out-of-
plane d states. The in-plane d bandwidth is larger
and the empty and "lled states have an average
separation 2<

,
. The narrower out-of-plane d band

exhibits an average separation between the empty
and "lled states of 2<

M
. In our model, shown in Fig.

12, we further assume that the DOSs for the in-
plane d

xy
and d

x
2~y

2 orbitals are the same. We make
the same assumption for the out-of-plane d

xz
, d

yz
orbitals and assume that the DOS for the
d
3z2~r

2 orbital has the same width as those for the
d
xz

and d
yz

orbitals. This is reasonable according to
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Fig. 12. Schematic model for the density of minority spin states
for a free Co monolayer. The half-"lled minority band may be
separated into contributions from in-plane and out-of-plane
d states, as shown. The in-plane bandwidth is larger because of
the preferential in-plane bonds between the Co atoms and the
empty and "lled states have an average separation 2<

,
. The

narrower band of the out-of-plane d orbitals has an average
separation between the empty and "lled states of 2<

M
. The band

picture may be represented by a ligand "eld model where the
in-plane and out-of-plane d orbitals are separated by 2<

,
and

2<
M
, respectively, and an average is performed over two cases

(k
1
and k

2
) with the empty and "lled d orbitals being exchanged,

as shown.

Fig. 10. The band picture may be represented by
a ligand "eld model where the in-plane d

xy
and

d
x
2~y

2 orbitals are separated by 2<
,

and the out-
of-plane d

xz
, d

yz
, and d

3z2~r
2 orbitals are separated

by 2<
M
, as shown. In order to account for the

Brillouin zone averaged densities of states it is then
necessary to average over two cases, labelled k

1
and

k
2
, where the empty and "lled d orbitals are ex-

changed. The wave vector re#ects the fact that the
two cases may be thought of as band splittings at
two di!erent points k

1
and k

2
in the Brillouin zone.

See for example Fig. 2 in Wang et al. [26], where
the order of the band states is inverted at the CM and
MM points, respectively.

The model shown in Fig. 12 for a free Co mono-
layer with <

,
'<

M
can be generalized to cases

with any <
,
/<

M
ratio. For a sandwich of the form

X/Co/X the out-of-plane bandwidth is determined
by the overlap of the Co d orbitals with those of the
sandwich layers X. Harrison (see chapter 20 in Ref.
[95]) has tabulated interaction strengths between
di!erent elements. If the in-plane Co}Co bonding
strength is normalized to 1.00, then the correspond-

ing out-of-plane Co}X bonding strength is 1.53,
1.60, 1.38, 0.83 for X"Au, Pt, Pd, and Cu, respec-
tively [26]. Hence we would predict that for
a Au/Co/Au sandwich the out-of-plane bandwidth
is larger than the in-plane one (i.e. <

M
'<

,
), in

good accord with the dramatic increase in
d
3z2~r

2 bandwidth shown in Fig. 11.

4.2.2. Orbital moment and spin}orbit energy
anisotropy in ligand xeld model

By use of the simple ligand "eld concept we can
now calculate the anisotropy of the orbital moment
for di!erent bonding situations by use of perturba-
tion theory [11,24,55]. The results for a Co ML
corresponding to <

,
'<

M
are given in Fig. 13.

Here we have for simplicity assumed a level split-
ting corresponding to the center of the BZ for
a (1 0 0) monolayer. The in-plane and out-of-plane
splittings of the non-perturbed states are

2<
,
"E

$xy
!E

$x2~y2
,D

(xy)(x2~y
2)
, (12)

2<
M
"E

$yz
!E

$3z2~r2
,D

(yz)(3z2~r
2)
, (13)

where D
(n)(m)

denotes the energy di!erence between
the orbital states d

n
and d

m
. The results in Fig. 13

are obtained from Eq. (C.5) in Appendix C. We can
now apply the results in Fig. 13 to our model
shown in Fig. 12 and assuming a half-"lled spin-up
band and a completely "lled spin-down band we
obtain using the de"nition R"<

M
/<

,
,

m,
0
"

mk
B

2<
,
A

3

R
#

2

R#1B (14)

and

mM
0
"

mk
B

2<
,

4. (15)

Here m is the spin}orbit coupling constant which
for Co has a value close to m"70 meV [21,84].
Similarly, we obtain from Eqs. (C.6) and (C.8) in
Appendix C for the magnetocrystalline anisotropy
energy if we neglect spin-#ip terms (*E

jj{
"0),

SH,
40
T"!

m
4k

B

m,
0

(16)

and

SHM
40
T"!

m
4k

B

mM
0
. (17)
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Fig. 13. Orbital momentum in a ligand "eld model with tetragonal or hexagonal symmetry. For simplicity we assume that the magnetic
exchange splitting is large and we consider only states of one spin. Band structure or ligand "eld e!ects result in d orbitals which are
linear combinations of functions Dl, m

-
T (!2)m

-
)#2). We show an energy level scheme corresponding to that at the center of the

BZ for a free Co monolayer with cubic (1 0 0) structure [26], where the in-plane splitting (2<
@@
) is larger than the out-of-plane splitting

(2<
M
). The pure d orbitals possess no orbital momentum. The inclusion of the spin}orbit interaction in lowest order perturbation theory

results in new states which have anisotropic orbital momenta (units +) as shown, where m (&0.07 eV for Co) is the spin}orbit coupling
constant and D

(i)(j)
+1 eV is the energy separation (taken positive) between a higher energy state i and a lower state j. The indicated

orbital momenta for spin alignment SEz and SEx or y result from mixing of the spin-up states, only. Note that the total orbital
momentum (sum) vanishes if all states are empty or full.

We obtain for the MCA energy,

*E
40
"

m
4k

B

(m,
0
!mM

0
)"

m2
8<

,
A

3

R
#

2

R#1
!4B.

(18)

The anisotropies of the orbital moment ma
0

and
the spin}orbit energy SHa

40
T as a function of

R"<
M
/<

,
according to Eqs. (14)}(17) are plotted

in Fig. 14. We see the preference for an in-plane
easy axis for <

,
'<

M
, revealed by the fact

m,
0
'mM

0
, and for an out-of-plane easy axis for

<
M
'<

,
. This result is in good accord with the

predictions of the simple model shown in Fig. 9.
Our model also gives quantitative results surpris-

ingly similar to those obtained by means of "rst
principles calculations. From Figs. 10 and 12 we see

that for a Co monolayer the in-plane bandwidth is
about 4<

,
&4 eV and R"<

M
/<

,
"0.5. Using

the values<
,
"1 eV and R"<

M
/<

,
"0.5 eV and

m"0.07 eV/atom we obtain *E
40
"SHM

40
T!

SH,
40
T"2.0]10~3 eV/atom, close to the value

*E
40
"1.5]10~3 eV/atom (using our sign conven-

tion) calculated by Daalderop et al. [63] for a free
Co monolayer. For a Au/Co/Au sandwich we
would also expect <

,
"1 eV and using Harrison's

estimates of the in-plane (Co}Co) versus out-of-
plane (Co}Au) bonding strengths we estimate
R"<

M
/<

,
"1.5. With the values <

,
"1 eV,

R"<
M
/<

,
"1.5 and m"0.07 eV/atom we

obtain *E
40
"!0.7]10~3 eV/atom, close to

the value *E
40
"!1.0]10~3 eV/atom (using

our sign convention) calculated by UD jfalussy et al.
[83].
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Fig. 14. (a) Spin}orbit energies as a function of R"<
M
/<

,
based on the ligand "eld model in Fig. 12 with a half-"lled minority band

(2.5 electrons), for the case when the sample is magnetized in-plane (SH
,
T) and out-of-plane (SH

M
T). (b) In-plane and out-of-plane

orbital moments as a function of R. The easy magnetization direction lies in-plane for R(1 (shaded region), as indicated by the icons in
the plot and out-of-plane for R'1.

Note that the simple picture presented by Fig. 14
does not include the e!ect of the shape anisotropy
which favors an in-plane orientation. The
transition from in-plane to out-of-plane easy
magnetization is therefore actually shifted to
R'1.

4.2.3. Majority band contribution to the orbital
moment and the MCA

In the previous Section we focussed on the close
correspondence of the orbital moment anisotropy
and the spin}orbit energy anisotropy. As shown
in Appendix C this correspondence only holds
under two key assumptions: (i) that the spin-#ip
terms involving matrix elements between minority
and majority bands are negligibly small and
(ii) that the majority (spin-down) band is full. In the
following we shall look at the validity of these
assumptions.

Let us "rst consider the size of the spin-#ip terms
using our ligand "eld model under the assumption
that the majority band is full. The spin}orbit energy
anisotropy consists of two terms corresponding to
contributions from states with equal spin, *E

jj
, and

unequal spin, *E
jj{

, as discussed in Appendix C. We
can expand our model shown in Fig. 12 to also
include the majority spin-down band, as shown in

Fig. 15. We then obtain,

*E
40
"*E

jj
#*E

jj{

"

m2
4+2A+

n,m

DSd`
n
D¸

z
Dd`

m
TD2!DSd`

n
D¸

x
Dd`

m
TD2

D
nm

#+
i,m

DSd~
i

D¸
x
Dd`

m
TD2!DSd~

i
D¸

z
Dd`

m
TD2

D
im

B, (19)

where the indices n and m label spin-up "lled and
empty states, respectively, and i labels spin-down
"lled states. Note D

im
is negative. We obtain from

Eqs. (18) and (19),

*E
40
"

m
4k

B

(m,
0
!mM

0
)#*E

jj{
, (20)

indicating that a direct proportionality between the
orbital moment anisotropy and the spin}orbit en-
ergy anisotropy holds only if the spin-#ip term
*E

jj{
is much smaller than the non-spin-#ip term

*E
jj
"m(m,

0
!mM

0
)/4k

B
.

De"ning A"D
%9
/<

,
we obtain for the spin-#ip

term under the condition D
%9
'<

,
, <

M
,

*E
jj{
"

m2
8<

,
A!

1

A#R!1
#

2

A
!

1

A!R#1

!

6

A#2R
!

2

A#R#1
#

8

A#2B. (21)
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Fig. 15. Schematic density of states (boxes) and ligand "eld (horizontal energy levels in boxes) models for a free Co monolayer and
a Au/Co/Au sandwich, based on bandstructure results [63] and our experimental results, respectively. The Co monolayer model is
similar to that shown in Fig. 12 but includes the majority bands. We also list the theoretical (Co monolayer) and experimentally
(Au/Co/Au) determined in-plane and out-of-plane spin-dependent number of d holes.

5Wang et al. [25] have shown that for a "lled spin-up band
the anisotropy of the spin-#ip term E

jj{
is much smaller than that

of the term E
jj
. This is seen from their expression for *E

jj{
given

by our Eq. (27). This result is derived by replacing the denomin-
ator in the spin-#ip terms in Eqs. (C.6) or Eq. (19) by the
exchange splitting D

%9
, and assuming that it is larger than the

crystal potential splitting. The spin-down states are then elimi-
nated by summing over them.

In the limit of large exchange splitting
D
%9
<<

,
, <

M
the various terms in Eq. (21) cancel

each other and the spin-#ip contribution to the
anisotropy vanishes. The other limit is the case
D
%9
"0 (A"0). For A(1 the highest spin-down

states (both in- and out-of-plane) in Fig. 15 become
unoccupied and no longer contribute to *E

jj{
. We

obtain,

*E
jj{
"

m2
8<

,
A!

6

A#2R
!

2

A#R#1
#

8

A#2B.
(22)

It is seen by comparison of Eqs. (18) and (22) that
the spin-#ip contribution always has the opposite
sign of the non-spin-#ip one and has a smaller
magnitude. Hence in Eq. (20) the spin}orbit energy
anisotropy is decreased relative to that calculated
from the orbital moment anisotropy. In the limit
D
%9
"0 (A"0) the non-spin-#ip and spin-#ip con-

tributions are of equal size and cancel each other,
*E

jj{
"!*E

jj
.

From Figs. 10 and 12 we see that for a Co
monolayer the in-plane bandwidth is about

4<
,
&4 eV and the exchange splitting is about

D
%9
&2<

,
&2eV. For a Au/Co/Au sandwich we

would expect the same values of D
%9

and <
,

and
using Harrison's estimates of the in-plane (Co}Co)
versus out-of-plane (Co}Au) bonding strengths we
estimate R"<

M
/<

,
"1.5. With these values we

calculate *E
jj{

/*E
jj
"!0.25 from Eqs. (18) and

(21). Hence the spin-#ip term is predicted to be
much smaller than the non-spin-#ip term and the
easy axis is therefore determined by *E

jj
, i.e. by the

preferred direction of the orbital moment accord-
ing to Eqs. (16) and (17). Similar conclusions about
the size of the spin-#ip terms have previously been
reached by Wang et al.5
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Let us now investigate our second assumption of
a "lled majority band. Again we shall use our
ligand "eld model in Figs. 12 and 15 for an estimate
of e!ects due to a partially "lled majority band and
we shall neglect spin-#ip terms. We shall assume
that the spin-up minority band is half-full (2.5 elec-
trons and holes), as before, and assume that the
highest energy majority states are unoccupied. In
particular, we shall consider the case <

M
'<

,
ap-

propriate for Au/Co/Au and assume that the high-
est out-of-plane ligand "eld state is partly
unoccupied with a hole population 0(w(1. Ac-
cording to Eq. (C.5) we can calculate the combined
orbital moment due to minority and majority states
that would be measured in an XMCD experiment
and obtain,

m,
0
!mM

0
"

mk
B

2<
,
C

3

R
#

2

R#1
!4

!wA
3

R
#

1

R#1BD. (23)

Note that the minority and majority contributions
enter with opposite sign (see Eq. (C.5)). Alterna-
tively, we can calculate the spin}orbit energy
anisotropy according to Eq. (C.7), ignoring all
spin-#ip terms. Now the minority and majority con-
tributions enter with the same sign and we obtain,

*E
40
"

m2

8<
,
C

3

R
#

2

R#1
!4#wA

3

R
#

1

R#1BD.
(24)

The spin}orbit energy anisotropy is therefore re-
lated to the one calculated from the orbital moment
anisotropy *E

m0
"m(m,

0
!mM

0
)/4k

B
that would be

measured by XMCD according to

*E
40
"*E

m0
#*E

&*-
(25)

with

*E
&*-
"

wm2
4<

,
C

3

R
#

1

R#1D. (26)

Since the "rst term in Eq. (25) is negative for
<

M
'<

,
, the second, positive, term *E

&*-
decreases

the spin}orbit energy anisotropy over the value
calculated from the orbital moment anisotropy,
similar to the term *E

jj{
in Eq. (20).

For R"<
M
/<

,
"1.5 we obtain *E

&*-
/

*E
m0
"!4w/(1#2w). This is a strongly varying

function of w but for a realistic value of w"0.1 we
obtain *E

&*-
/*E

m0
"!1

3
indicating again that the

spin}orbit energy anisotropy is dominated by the
orbital moment anisotropy of the minority band.

5. XMCD results and theoretical models

5.1. Anisotropy of charge and spin density

Our experimental results for Au/Co/Au in Fig. 6c
show that the number of 3d holes per atoms is
isotropic (NM"N,) within experimental error. The
Co charge density in the atomic volume is therefore
predicted to be nearly spherical. In contrast, the
experimental results in Fig. 8 reveal a signi"cant
anisotropy in the spin density ma

D
. At the thin end of

the wedge (3 ML Co) we obtain m
4
"1.43 l

B
,

mM
D
"0.15 l

B
and m,

D
"!0.075 l

B
from Fig. 8

which yields mM
4
"0.27 l

B
and m,

4
"0.31 l

B
ac-

cording to Eq. (6). In 3d metals the anisotropy in
the spin density is mainly induced by the bonding
anisotropy, i.e. by the anisotropic charge distribu-
tion in the unit cell because of the small spin}orbit
coupling. If the majority band is completely full the
charge and spin distributions are identical. Our
results therefore reveal that the majority band is
not completely "lled. Combining our charge and
spin results we can obtain the in-plane and out-of-
plane number of majority and minority holes. Us-
ing the experimental values for 3 ML Co thickness
N,"N,

t
#N,

s
"NM"NM

t
#NM

s
"2.5/5"0.50

and m,
4
"(N,

t
!N,

s
) l

B
"0.31 l

B
and mM

4
"

(NM
t
!NM

s
) l

B
"0.27 l

B
we obtain N,

t
"0.41,

N,
s
"0.09, NM

t
"0.39 and NM

s
"0.11. The results

are graphically illustrated in Fig. 15 together with
those for a free Co monolayer as calculated by
Daalderop [63]. The various anisotropies for
Au/Co/Au are found to be opposite to those for
a free Co monolayer, in support of the discussion in
Section 4.2.1.

Our "nding of a signi"cant number of majority
holes has implications for the contribution of the
majority band to the orbital moment and spin}
orbit energy anisotropies as discussed in Section
4.2.3. The holes in the majority band give rise to
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a term *E
&*-

(Eq. (26)) and cause a break down of
the simple proportionality of the spin}orbit energy
anisotropy with the orbital moment anisotropy ac-
cording to Eq. (25). This will be discussed in more
detail in Section 5.2 below.

There is also an interesting connection of the
charge and spin density anisotropies with the spin-
#ip terms discussed in Section 4.2.3. Wang et al.
[25] (see footnote 5), showed that in the limit of
large exchange splitting and a "lled majority band
the quadrupolar charge density, which in this
model is identical to the spin density, gives rise to
a magnetic anisotropy contribution which is pro-
portional to the spin-#ip term *E

jj{
discussed in

Section 4.2.3. Using our notation the result of
Wang et al. is given by (see footenote 5)

*E
jj{
"

!m2
8+2D

%9

+
n,k,E

S/`
n
(k, E)D3¸2

z
!¸2D/`

n
(k, E)T

"

!m2

8+2
SQL

zz
T

D
%9

"

!21m2
16

SQ
zz

T
D
%9

. (27)

In this case the anisotropy depends only on the
quadrupole moment (see Appendix A) of the occu-
pied states in the spin-up minority band and is
inversely proportional to the exchange splitting
(note that the "lled subband has SQL

zz
T"0). In this

model our result of a vanishing small white line
anisotropy for Au/Co/Au for all Co thicknesses, i.e.
Na

Q
"7/8SQaaT&0, would predict a negligibly

small contribution to the magnetic anisotropy due
to the quadrupolar charge ("spin) anisotropy.

The result of Wang et al. was extended by DuK rr
and van der Laan [42,85] to the general case of
minority as well as majority spin contributions, the
situation encountered for our Au/Co/Au structure.
It was proposed that, in general, the intra-atomic
magnetic dipole term plays a role for the MCA
through a term S )T that couples the atomic spin
with the dipole operator. Since for transition metals
the dipole operator is approximately given by
¹a"(2/21+2)(3¸2a!¸2)S

z8
(see Appendices A and

B), a magnetic anisotropy results from the
spin}orbit coupling, and the S )T term is related to
the spin-#ip anisotropy energy *E

jj{
discussed in

Section 4.2.3. Estimates of the spin-#ip anisotropy
energy from our measured anisotropy of the dipole
moments ma

D
"!7S¹aTk

B
/+ (see Fig. 8) again pre-

dict a small spin-#ip contribution to the spin}orbit
anisotropy.

The contribution of the intra-atomic dipole mo-
ment to the magnetic anisotropy suggested by
Wang et al. and by DuK rr and van der Laan is based
on spin}orbit coupling. Since for 3d metals the
intra-atomic magnetic dipole term is mainly deter-
mined by the anisotropy of the lattice there is also
a magnetostatic contribution to the magnetic an-
isotropy, as discussed in Section 4.1. This is due to
a quadrupole term in the magnetostatic energy. We
may estimate the size of this anisotropy energy
from the Au/Co/Au data at a Co thickness of 3 ML
(Fig. 8). We use the experimentally determined
quadrupole term in the spin density mM

D
/2"m,

D
"

0.075 l
B

and the spin moment m
4
"1.5 l

B
to esti-

mate the size of the quadrupole induced magnetos-
tatic anisotropy relative to the monopole term to
be mM

D
/2m

4
"0.05 (see footnote 3). Hence we con-

clude that, in practice, the intra-atomic magnetic
dipole moment plays a negligible role for the mag-
netic anisotropy.

5.2. Anisotropy of orbital moment

The anisotropy of the orbital moment shown in
Fig. 7c qualitatively shows the same thickness de-
pendence as the energy anisotropy shown in Fig. 4c
obtained from the Kerr measurements. We can use
the XMCD values for mM

0
!m,

0
to calculate the

corresponding spin}orbit energy anisotropy by use
of the spin}orbit coupling constant for Co which
we assume to have the value m"70 meV [21,84].
Because of the problems associated with extrapola-
tions we shall simply compare the XMCD and
Kerr results obtained at a Co thickness of 3 ML.
The XMCD value mM

0
!m,

0
"(0.22$0.05) l

B
/

atom then yields the anisotropy energy
*E

40
"m(m,

0
!mM

0
)/4"!3.8]10~3 eV/atom.

Here we have used Eq. (18), i.e. neglected the spin-
#ip terms *E

jj{
in Eq. (20) and assumed a "lled

majority band so that the term *E
&*-

in Eq. (25) is
negligible. This value is larger than the Kerr result
*E

40
"!2.55 MJ/m3"!1.8]10~4 eV/atom

(Fig. 4c) by a factor of about 20.
The anisotropy energy calculated from the or-

bital moment anisotropy using the proportionality
factor C"m/4 (see Eqs. (11) and (18)) obtained by
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perturbation theory is therefore signi"cantly in er-
ror. Comparing experimental Kerr and XMCD
values for 3 ML Co we obtain the proportionality
factor C in Eq. (11) to be C"0.8]10~3 eV/l

B
which is the same as that obtained for Co/Pd multi-
layers by DuK rr et al [86]. A similar value,
C"0.68]10~3 eV/l

B
, has recently been obtained

from ferromagnetic resonance data for the BCC
Fe

2
/V

5
(0 0 1) superlattice system [87]. On the

theory side larger C values have been obtained that
are in closer agreement with the perturbation value
m/4"1.8]10~2 eV/l

B
. Using a fully relativistic

spin polarized theory for Au(1 1 1)/Co(1 ML)/
Au(R), UD jfalussy et al. [83] obtained C"5]
10~2 eV/l

B
. DuK rr et al. [37] obtained 1.6]

10~2 eV/l
B

from electronic structure calculations
for face centered tetragonal (FCT) Ni and Co and
Hjortstam et al. [88] obtained approximately
2.6]10~2 eV/l

B
for FCT Ni, although the rela-

tionship between *E
40

and *m
0

was found to be
only approximately linear as a function of the FCT
c/a ratio.

The reason for the discrepancy between the
MCA energy calculated from the XMCD orbital
moment anisotropy and that obtained from Kerr
measurements remains to be explained. A possible
source for the discrepancy is the majority band
contribution discussed in Section 4.2.3. Eqs. (20)
and (25) may be written in the general form
*E

40
"*E

m0
[1#*E

.!+
/*E

.*/
] where the term

*E
.!+

represents either the spin-#ip or the direct
majority band contribution. In order to obtain the
Kerr value *E

40
"!1.8]10~4 eV/atom for

3 ML Co in Au/Co/Au the XMCD value
*E

m0
"!3.8]10~3 eV/atom needs to be correc-

ted by [1#*E
.!+

/*E
.*/

]"0.05. This would re-
quire an almost equal contribution *E

.!+
"

!0.95*E
.*/

of the majority and minority bands to
the spin}orbit anisotropy. Our estimates in Section
4.2.3 and Section 5.1 of the majority band contribu-
tions to the MCA, yielding D*E

.!+
/*E

.*/
D(0.4,

make it very unlikely that the discrepancy can be
entirely explained by either the spin-#ip terms or by
incomplete "lling of the majority band.

A possible explanation is provided by the fact
that XMCD is a local, element speci"c, probe. In
our case the determined orbital moments are those
of the Co atoms alone. In contrast, the total MCA

and the Kerr measurements contain contributions
from magnetically polarized Au atoms at the inter-
faces. Interfacial hybridization between Co and Cu
states in Co/Co multilayers has been observed ex-
perimentally and theoretically [89] and it is re-
sponsible for an appreciable magnetic moment on
Cu interface atoms [31]. Similar e!ects are ex-
pected for Co/Au sandwiches. As revealed by Figs.
11 and 15 the hybridization of Co and Au atoms at
the interface leads to an increase in bandwidth. The
Co derived minority d states, which are mostly
responsible for the orbital moment, are concen-
trated in the region !3 to #1 eV relative to the
Fermi level (see Fig. 10) while the Au d states lie in
the !7.5 to !2 eV range [90]. According to Eq.
(18) the MCA energy and orbital moment anisot-
ropy are inversely proportional to the average sep-
aration (<

,
or <

M
) between the "lled and empty

minority states. If all Co}Au hybridized states are
considered the e!ective < is considerably larger
than for the Co states only. The reduced moment
associated with the Au derived states may be o!set
by the larger size of the spin}orbit coupling con-
stant (m

A6
/m

C0
&7) [91]. Qualitatively, one would

therefore expect the MCA determined by XMCD
(Co states only) to be signi"cantly larger than that
obtained by Kerr measurements (Co}Au states).
Clearly, more theoretical and experimental work is
needed to explore the quantitative correlation be-
tween the orbital moment anisotropy measured by
XMCD and the true spin}orbit energy anisotropy.

Despite the quantitative discrepancy of the
XMCD and Kerr results the orbital moment an-
isotropy obtained from XMCD provides experi-
mental veri"cation of a simple picture for the
microscopic origin of the MCA shown in Fig. 9. At
the thick end of the wedge the orbital magnetic
moment is nearly isotropic. Here, the overall in-
plane anisotropy of the sample is simply due to the
macroscopic shape anisotropy. With decreasing
sample thickness, the average symmetry of the Co
atoms becomes increasingly anisotropic. At the
thin end of the wedge the anisotropy of the orbital
moment has become so large that it has a strong
preference for a perpendicular orientation. Now
there are two opposing forces acting on the spin
moment. The dipolar "eld wants to rotate it in-
plane and the spin}orbit coupling wants to rotate it
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parallel to the out-of-plane orbital moment
(Hund's third rule). The easy axis is determined by
which of the two forces is stronger, i.e. whether the
dipolar energy is smaller or larger than the anisot-
ropy of the spin}orbit energy. Clearly, at the thin
edge of the wedge the anisotropy energy associated
with the spin}orbit interaction exceeds the value of
the shape anisotropy and we have the interesting
situation that the small orbital moment redirects
the larger spin moment into a perpendicular align-
ment.

6. Summary and conclusions

The present paper discusses the use of XMCD
spectroscopy to explore the microscopic origin of
electronic and magnetic anisotropies in transition
metal thin "lms, in particular, for Co in a Au/
Co-staircase/Au sample. XMCD spectroscopy is
shown to provide detailed information on the an-
isotropy of the atomic charge and spin in the
atomic cell. For thin "lms with uniaxial anisotropy
around the surface normal, angle-dependent
XMCD measurements in strong magnetic "elds are
shown to quantitatively determine the in-plane and
out-of-plane spin-dependent d-band occupations.
These results complement those obtained from "rst
principles electronic structure calculations.

The anisotropy of the orbital magnetic moment
is shown to be especially important because of its
close link to the magnetocrystalline anisotropy.
A simple picture based on anisotropic bonding is
developed that allows one to visualize the preferred
direction of the orbital moment. The picture
is based on the well-known textbook concept
of orbital moment quenching by a ligand "eld.
The connection is made between this simple picture
and the concepts and results of electronic struc-
ture calculations. Model calculations that link
ligand "eld and band structure concepts are carried
out to explore the link between orbital moment
anisotropy and spin}orbit energy anisotropy.
They are found to have remarkably predictive ca-
pabilities.

XMCD results for Au/Co/Au are discussed in
terms of the presented theoretical model. Our re-
sults lead to a particularly illustrative picture for

the origin of the magnetocrystalline anisotropy
based on the preferred direction of the orbital
moment.
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Appendix A. Charge density term and quadrupole
operator

The terms N and Na
Q

in the charge sum rule
re#ect the monopole and quadrupole contributions
of the charge distribution in the atomic sphere.
Na

Q
can be expressed in terms of the quadrupole

operator of the charge, Qab"dab!3r( ar( b) Qab is
a second rank tensor with the symmetry properties
Qab"Qba and +aQaa"0. The tensor elements
Qab can be expressed as a linear combination of the
well-known spherical harmonics >m

l
(h, /) with

l"2 and !2)m)2. For example, the quadru-
pole moment of the charge is given by SQ

zz
T"

S1!3 cos2 hT"!J16p/5S>0
2
T and it is related

to the quadrupole moment of the angular mo-
mentum SQL

zz
T"S3¸2

z
!¸2T"(21+2/2)SQ

zz
T.

Let /
n
(k, E)"+

i,j
aj
i,n

(k, E)d
i
sj denote a band

state with spin functions sj ( j"$). We then
obtain SQaaT"+

n,k,E
S/

n
(k, E)DQaaD/n

(k, E)T"
+

i
Sd

i
DQaaDdi

T+
n,k,E,j

Daj
i,n

(k, E)D2. The last sum is just
the d orbital projected number of electrons (or
holes) Ni"+

n,k,E,j
Daj

i,n
(k, E)D2 and the matrix ele-

ments Qia"Sd
i
DQaaDdi

T have been tabulated by
StoK hr and KoK nig [34]. This gives Na

Q
"

(7/B)+
i
QiaNi"(7/B)SQaaT. Here B"!4 for
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6For higher than D
2)

symmetry all cross terms Sd
i
DQaaDdj

T in
the crystal wave functions vanish. This holds even in the pres-
ence of s}o coupling since it does not mix the two e

'
orbitals

which give rise to a cross term.

linearly polarized light (electric "eld vector EEa),
and B"8 for circularly or plane polarized light
(X-ray wave vector kEa, Eok) [41]. Note that the
quantities Na

Q
"(7/4)SQiaT (a"x, y, z) correspond

to the diagonal components of a normalized quad-
rupole tensor of the charge (holes), also called ori-
entation matrix or Saupe matrix [92] and they are
identical to the quadrupole terms in the multipole
expansion of the charge [93].

Appendix B. Spin density term and magnetic dipole
operator

The terms m
4
and ma

D
in the spin sum rule re#ect

the monopole and quadrupole contributions of the
spin distribution in the atomic sphere. In general,
ma

D
is de"ned as the expectation value of the intra-

atomic magnetic dipole operator T"S!3r( (r( ) S),
generated by the valence electrons [39], according
to Ref. [55] ma

D
"!7S¹aTk

B
/+. In general, one

can write ¹a"+bQabSb, indicating the coupled
charge (Q) and spin (S) components of T. Since the
quadrupole operator of the charge is related to the
quadrupole operator of the angular momentum, as
discussed in Appendix A, ¹a may also be written as
a coupled operator involving the spin and the
square of the angular momentum.

If we choose the spin quantization axis z8 along
the magnetization direction then the components
(S

x
, S

y
, S

z
) of the spin S in the crystal frame are

related to the components (S
x8
, S

y8
, S

x8
) in the rotated

spin frame (x8 , y8 , z8 ) by S
x
"S

x8
cos /I cos hI !

S
y8
sin /I #S

z8
cos /I sin hI , S

y
"S

x8
sin /I cos hI #S

y8
cos /I #S

z8
sin /I sin hI , and S

z
"!S

x8
sin hI #

S
z8
cos hI and the magnetic dipole operator takes the

following form for k, H
%95

Ex, y or z

k, H
%95

Ex: ¹
x
"Q

xx
S
z8
#Q

xy
S
y8
!Q

xz
S
x8
, (B.1)

k, H
%95

Ey: ¹
y
"!Q

yx
S
y8
#Q

yy
S
z8
!Q

yz
S
x8
, (B.2)

k, H
%95

Ez: ¹
z
"Q

zx
S
x8
#Q

zy
S
y8
#Q

zz
S
z8
. (B.3)

For the 3d transition metals the spin}orbit inter-
action is much smaller than the exchange interac-
tion and the crystal potential. In this case the
expectation values of ¹a are only slightly a!ected

when spin}orbit perturbed band states are used
instead of band states without inclusion of the
spin}orbit interaction. That means we can neglect
the e!ect of spin}orbit coupling in evaluating the
matrix elements in Eqs. (B.1)}(B.3) and hence all
terms containing the spin-#ip operators S

x8
and

S
y8
do not contribute. We can therefore replace the

general operator ¹a"+bQabSb simply by ¹a"
QaaSz8

. Let /
n
(k, E)"+

i,j
aj
i,n

(k, E)d
i
sj denote a band

state with spin functions sj ( j"$). We then
obtain6 S¹aT"+

n,k,E
S/

n
(k, E)DQaaSz8

D/
n
(k, E)T"

+
i
Sd

i
DQaaDdiT+

n,k,E,j
Daj

i,n
(k, E)D2SsjDS

z8
DsjT. The last

sum contains just the d orbital projected spin mo-
menta SSi

z8
T"!(+/2k

B
)+

i
mi

4
so that we obtain

S¹aT"!(+/2k
B
)+

i
Qiami

4
, re#ecting the decoupled

nature of charge and spin. This gives
ma

D
"(7/2)+

i
Qiami

4
which leads to Eq. (6).

There is a formal relationship between the intra-
atomic dipole moment T"+

j
sL
j
!3r(

j
(r(
j
) s(

j
) gener-

ated by the valence electrons, and the inter-atomic
dipole "eld H"(mk

0
/4p)+

j
(SK

j
!3r(

j
(r(
j
) SK

j
))/r3

j
cre-

ated at a given atomic site (placed at the origin) by
all other moments mSK

j
in the sample at positions

r
j
r(
j
. In particular, the magnetic dipole}dipole inter-

action given by Eq. (8) can be viewed as the energy
of a dipole moment mSK at the origin in the "eld of
all the other dipoles, according to E

$*1~$*1
"

mSK )H. The intra-atomic dipole moment T contrib-
utes to the magnetic anisotropy in higher order
through a quadrupole term (see footnote 3) in the
magnetostatic dipole}dipole interaction as dis-
cussed in Section 4.1. The quantities ma

D
/2 corre-

spond to the quadrupole terms in the multipole
expansion of the magnetic moment in the unit cell
[93] (see footnote 3).

Appendix C. The spin}orbit interaction

Here we brie#y discuss the calculation of matrix
elements of the anisotropic spin}orbit interaction
and the orbital moment using perturbation theory.
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The spin}orbit (s}o) interaction within the d
shell

H
40
"mL )S"m(¸

x
S
x
#¸

y
S
y
#¸

z
S
z
), (C.1)

has the e!ect of mixing di!erent d orbitals and the
spin-up and spin-down states. If we choose the
spin quantization axis z8 along the magnetization
direction then the components (S

x
, S

y
, S

z
) of

the spin S in the crystal frame can be expressed in
terms of the components (S

x8
, S

y8
, S

x8
) in the

rotated spin frame (x8 , y8 , z8 ) as discussed in Appendix
B. This gives the following expressions for
H

%95
, z8 Ex, y or z

H
%95

Ex: Hx
40
"m(¸

x
S
z8
#¸

y
S
y8
!¸

z
S
x8
), (C.2)

H
%95

Ey: Hy
40
"m(!¸

x
S
y8
#¸

y
S
z8
!¸

z
S
x8
), (C.3)

H
%95

Ez: Hz
40
"m(¸

x
S
x8
#¸

y
S
y8
#¸

z
S
z8
). (C.4)

The angle-dependent orbital moment
ma

0
"!S¸aTk

B
/+ is calculated by use of the sec-

ond-order perturbation theory expression [11]

S¸aT"
2m
+2

+
k,n,m,j

DS/j
n
(k)D¸aD/j

m
(k)TD2

D
nm

SsjDS
z8
DsjT

"S¸`a T!S¸~a T, (C.5)

where the sum extends over "lled states n and
empty states m within the spin-up and spin-down
manifolds (index j) and /j

n
(k) denotes a zeroth-order

band state associated with spin function sj, where
SsBDS

z8
TDsBT"$1/2. Matrix elements Sd

n
D¸aDdmT

are given by Ballhausen (see p. 70 in Ref. [96]).
Note that the coupling between "lled pairs of states
or empty pairs of states does not need to be con-
sidered since the spin}orbit induced terms cancel
each other for any pair. Also, to "rst-order ma

0
does

not depend on the mixing of spin-up and spin-
down states by the spin}orbit interaction, since the
relevant matrix elements Sd

n
s`D¸aDdm

s~T"0.
Thus there are no spin-#ip contributions to
the orbital moment. According to Eq. (C.5)
the orbital momentum is the sum of contributions
from all "lled states in the spin-up and spin-down
subbands. If a subband is "lled its contribution
vanishes.

The angle-dependent spin}orbit energy is given
by the second-order expression

SHa
40
T"

m2

4+2
+

k,n,m,j

DS/j
n
(k)D¸aD/j

m
(k)TD2

D
nm

# +
k,n,l,j,j{

DS/j
n
(k)DHa

40
D/j{

l
(k)TD2

D
nl

"Ea
jj
#Ea

jj{
,

(C.6)

where the terms Ea
jj

and Ea
jj{

represent the contribu-
tions from states of the same and opposite spin,
respectively, and the sums extend over "lled states
(n, j) and empty states (m, j) and (l, j@).

It is seen that for Ea
jj{
"0 we obtain

SHa
40
T"Ea

jj
"

m
4+

(S¸`a T#S¸~a T), (C.7)

showing the direct correlation between the orbital
moments of the spin-up and spin-down manifolds
and the spin}orbit energy. Note that the contribu-
tions of the spin-down states, S¸~a T, enter with
opposite signs in the expressions for the orbital
moment (Eq. (C.5)) and the spin}orbit energy (Eq.
(C.7)). In general, we therefore obtain a direct pro-
portionality between the orbital moment and the
spin}orbit energy only if S¸~a T"0, i.e. if the spin-
down band is full. In the limit of a vanishing ex-
change splitting the orbital moment vanishes
(S¸`a T"S¸~a T), and so does the spin}orbit energy
(Ea

jj
"!Ea

jj{
).

With the sign convention of Eq. (11) and footnote
4 the magnetocrystalline anisotropy energy is given
by

*E
40
"SHz

40
T!SHx

40
T"SHM

40
T!SH,

40
T. (C.8)
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