
Reading and Problem Assignments for Physics 243A 
Surface Physics of Materials: Spectroscopy, Fall, 2016 

(In order of coverage in lecture) 
Reading: 
 

 Woodruff and Delchar, "Modern Techniques of Surface Science", 2
nd

 Edition-- 
 Chapter 1 

Chapter 2: Sections 2.1, pp.22 (bottom)-23(top) on Wood notation for surface structures,   
                                                  2.4, and 2.5 (pp. 31-37), 2.9.6 on standing waves 
Chapter 6: 6.9, 6.10, 6.11 

 Chapter 3: Sections 3.1, 3.2, 3.3, 3.5 
 
 

 Zangwill, “Physics at Surfaces”, downloadable Chapters 1-5 (see course website)-- 
 Chapter 1: Everything except "The roughening transition" 

Chapter 3: pp. 28-34, pp. 49-52 on STM 
Pages 85-86, 192-196, 204-212 
Chapter 2: All  
Chapter 4: Introduction, with lighter reading of The jellium model, One-dimensional band  
     theory, and Three-dimensional band theory, and detailed reading of Photoelectron  
     spectroscopy, Metals, and Alloys 
 

 Ibach, “Physics of Surfaces and Interfaces”, downloadable book (see course website)— 
             Chapter 2: 2.1, 2.2 
             Chapter 8: 8.2 
 

 Desjonqueres and Spanjaard, “Concepts of Surface Physics”, excerpts downloadable from  
             Course website: On STM current calculation, equilibrium shapes of surfaces, thermodynamics, 

kinetics and adsorption isotherms.  No need to follow every step, but this fills in the line of  
              arguments in Zangwill and lecture 
 

 Fadley, “Basic Concepts of XPS”, to be handed out, but also downloadeable— 
              Sections I, II, and III. A-C, with remaining sections by the end of the course 
  

 Attwood, Downloadeable excerpt on synchrotron radiation from the book 
           “Soft X-Rays and Extreme Ultraviolet  Radiation” (see course website) 
 
Problem assignments: 

Problem Asst. 1-all of PS 1.  Due Thursday, October 13th 
Problem Asst. 2—all of PS 2, plus 3.1 and 3.2.  Due Thursday, October 27

th
 

Problem Asst. 3—finish PS 3, plus 4.1-4.4,4.6. Due Monday, November 21
st

 
Problem Asst. 4—4.5, 4.7(a) only, 5.1, 5.2, 5.3. 5.4, 5.7, 5.8, 5.9, 5.10, due Friday, December 2nd 
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The Nobel Prize in Physics 2010 

Andre Geim, Konstantin Novoselov 

…"for groundbreaking experiments 

regarding the two-dimensional 

material graphene" 

Bostwick et al., Nature Physics 3, 36 - 40 (2007) 

Photoelectron spectroscopy  









Plus new higher sensitivity via very low 
energy few-eV exchange scattering 
from Co(0001)/W(110):  Graf et al., 
http://arxiv.org/pdf/cond-
mat/0404720.pdf and Joswiak et al., 
REVIEW OF SCIENTIFIC INSTRUMENTS 
81, 053904 (2010)  

http://arxiv.org/pdf/cond-mat/0404720.pdf
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Complete Reading and Problem Assignments for Physics 243A 
Surface Physics of Materials: Spectroscopy, Fall, 2016 

READING: 
  WOODRUFF AND DELCHAR, "MODERN TECHNIQUES OF SURFACE SCIENCE", 2

ND
 EDITION-- 

 Chapter 1 
Chapter 2: Sections 2.1, pp.22 (bottom)-23(top) on Wood notation for surface structures,   
                                                  2.4, and 2.5 (pp. 31-37), 2.9.6 on standing waves 
Chapter 6: 6.9, 6.10, 6.11 

 Chapter 3: Sections 3.1, 3.2, 3.3, 3.5 

  ZANGWILL, “PHYSICS AT SURFACES”, DOWNLOADABLE CHAPTERS 1-5 (SEE COURSE WEBSITE)-- 
 Chapter 1: Everything except "The roughening transition" 

Chapter 3: pp. 28-34, pp. 49-52 on STM, Pages 85-8, 192-196, 204-212 
Chapter 2: All  
Chapter 4: Introduction, with lighter reading of The jellium model, One-dimensional band  
     theory, and Three-dimensional band theory, and detailed reading of Photoelectron  
     spectroscopy, Metals, and Alloys 

  IBACH, “PHYSICS OF SURFACES AND INTERFACES”, DOWNLOADABLE BOOK (SEE COURSE WEBSITE)— 
             Chapter 2: 2.1, 2.2 
             Chapter 8: 8.2 

  DESJONQUERES AND SPANJAARD, “CONCEPTS OF SURFACE PHYSICS”, EXCERPTS DOWNLOADABLE FROM  
             COURSE WEBSITE:  
              On equilibrium shapes of surfaces, thermodynamics, kinetics and adsorption isotherms,STM current calculation, photoelectron diffraction 

and Debye-Waller factors.  No need to follow every step, but as needed to fill in the line of arguments in lecture and Zangwill 

  FADLEY, “BASIC CONCEPTS OF XPS”,  HANDED OUT, BUT ALSO DOWNLOADEABLE— 
              Read all of it  

 FADLEY, “THE STUDY OF SURFACE STRUCTURES BY PHOTOELECTRON DIFFRACTION AND AUGER ELECTRON DIFFRACTION”, 
             PAGES 421-450 only, DOWNLOADABLE FROM COURSE WEBSITE 

 with other examples and exercises using the EDAC web program introduced in lecture  

 ATTWOOD, DOWNLOADEABLE EXCERPT ON SYNCHROTRON RADIATION FROM THE BOOK 
           “Soft X-Rays and Extreme Ultraviolet  Radiation” (see course website) 

 SIX READING DOWNLOADS FROM THE COURSE WEBSITE: If needed for comprehension at level of lectures or to use programs 
1) Molecular orbital basics 
2) Tight-binding basics 
3) Core-Hole Multiplets with Charge Transfer--Basic Theory, or similar pages from Book by de Groot and Kotani 
4) Brief Manual for SESSA spectral simulation program 
5) Brief Manual for CTM4XAS20 charge-transfer multiplet simulation program 
[ 7) Optional only for physics students: Basic theory for the Hubbard Model of bonding } 
 

PROBLEM ASSIGNMENT 4-FINAL: Not all problems assigned 
           Problem Asst. 4—4.5, 4.7(a) only, 5.1, 5.2, 5.3. 5.4, 5.7, 5.8, 5.9, 5.10, due Friday, December 2nd 

 

REMAINING LECTURE SCHEDULE: 

22 November, Happy Thanksgiving!, 29 November and 1 December 
   

FINAL EXAMINATION: TUESDAY, DECEMBER 6TH, 10:30-12:30 PM, PHYSICS 185 
Open book: You may use lecture notes, copies of lecture slides, textbooks, and laptops, with signed 
affirmation as follows: 

I will not make use of any hardcopy or online material from prior versions of this course 
that is not posted at the current course website. 

Copying from such material will be considered as cheating. 
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Solterbeck et al., Phys. Rev. Lett. 79, 4681 (1997) 





Chikamatsu et al., 

PRB 73, 195105 (2006); 

Plucinski, TBP 

Plucinski, TBP 

with expt’l. band offset  

Zheng, Binggeli, J. Phys. 

Cond. Matt. 21, 115602 (2009) 

Plucinski, TBP 
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Ferromagnet 

SrTiO3 and La0.67Sr0.33MnO3 band structures and DOS 
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An additional many-elecron effect: Resonant photoemission 
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 Resonant Photoemission—La0.6Sr0.4MnO3, Mn 3d with Mn 2p 

Valence spectrum 
Mn 2p absorption 

spectrum 

Prior resonant PS: Fujimori et al., J.A.P 99, 08S903 (2006) 
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Downloadable program: 
http://www.quases.com/products/quases-imfp-tpp2m/  

Inelastic mean free paths for many materials 

http://www.quases.com/products/quases-imfp-tpp2m/
http://www.quases.com/products/quases-imfp-tpp2m/
http://www.quases.com/products/quases-imfp-tpp2m/
http://www.quases.com/products/quases-imfp-tpp2m/
http://www.quases.com/products/quases-imfp-tpp2m/
http://www.quases.com/products/quases-imfp-tpp2m/
http://www.quases.com/products/quases-imfp-tpp2m/












https://drive.google.com/drive/folders/0B-VeL-nROIxaME41T2dEb1d2MFk?usp=sharing   

The SESSA program for XPS simulations 

https://drive.google.com/drive/folders/0B-VeL-nROIxaME41T2dEb1d2MFk?usp=sharing
https://drive.google.com/drive/folders/0B-VeL-nROIxaME41T2dEb1d2MFk?usp=sharing
https://drive.google.com/drive/folders/0B-VeL-nROIxaME41T2dEb1d2MFk?usp=sharing
https://drive.google.com/drive/folders/0B-VeL-nROIxaME41T2dEb1d2MFk?usp=sharing
https://drive.google.com/drive/folders/0B-VeL-nROIxaME41T2dEb1d2MFk?usp=sharing
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