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Preface

Writing a textbook is an undertaking that requires strong motivation, strong 
enough to carry out almost two years of solid work in this case. My motivation 
arose from three sources. The first was the ever-increasing pressure of our German 
administration on research institutions and individuals to divert time and attention 
from the pursuit of research into achieving politically determined five-year plans 
and milestones. The challenge of writing a textbook helped me to maintain my 
integrity as a scientist and served as an escape. 
 A second source of motivation lay in my attempt to understand transport proc-
esses at the solid/electrolyte interface within the framework of concepts developed 
for solid surfaces in vacuum. These concepts provide logical connections between 
the properties of single atoms and large ensembles of atoms by describing the 
physics on an ever-coarser mesh. The transfer to the solid/electrolyte interface 
proved nontrivial, the greatest obstacle being that terms such as surface tension
denote different quantities in surface physics and electrochemistry. Furthermore, I 
came to realize that not infrequently identical quantities and concepts carry differ-
ent names in the two disciplines. I felt challenged by the task of bringing the two 
worlds together. Thus a distinct feature of this volume is that, wherever appropri-
ate, it treats surfaces in vacuum and in an electrolyte side-by-side.  
 The final motivation unfolded during the course of the work itself. After 40 
years of research, I found it relaxing and intellectually rewarding to sit back, think 
thoroughly about the basics and cast those thoughts into the form of a tutorial text.  
 In keeping with my own likings, this volume covers everything from experi-
mental methods and technical tricks of the trade to what, at times, are rather 
sophisticated theoretical considerations. Thus, while some parts make for easy 
reading, others may require a more in-depth study, depending on the reader. I have 
tried to be as tutorial as possible even in the theoretical parts and have sacrificed 
rigorousness for clarity by introducing illustrative shortcuts.  
 The experimental examples, for convenience, are drawn largely from the store 
of knowledge available in our group in Jülich. Compiling these entailed some 
nostalgia as well as the satisfaction of preserving expertise that has been acquired 
over three decades of research.  
 I pondered long and hard about the order of the presentation. The necessarily 
linear arrangement of the material in a textbook is intrinsically unsuitable for de-
scribing a field in which everything seems to be connected to everything else. I 
finally settled for a fairly conventional sequence. To draw attention to relation-
ships between different topics the linear style of presentation is supplemented by 
cross-references to earlier and later sections.  
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 Despite the length of the text and the many topics covered, it is alarming to 
note what had to be left out: the important and fashionable field of adhesion and 
friction; catalytic and electrochemical reactions at surfaces; liquid interfaces; 
much about solid/solid interfaces; alloy, polymer, oxide and other insulator sur-
faces; and the new world of switchable organic molecules at solid surfaces, to 
name just a few of a seemingly endless list.  
 This volume could not have been written without the help of many colleagues. 
Above all, I would like to thank Margret Giesen for introducing me to the field of 
surface transport and growth, both at the solid/vacuum and the solid/electrolyte 
interface. This book would not exist without the inspiration I received from the 
beautiful experiments of hers and her group and the almost daily discussions with 
her. I should also be grateful for the patience she exercised as my wife during the 
two years I spent writing this book.  
 Jorge Müller went through the ordeal of scrutinizing the text for misprints, the 
equations for errors, and the text for misconceptions or misleading phrases. I also 
express my appreciation for the many enlightening discussions of physics during 
the long years of our collaboration.  
 I greatly enjoyed the hospitality of my colleagues at the University of Califor-
nia Irvine during my sabbatical in Spring 2005 where four chapters of this volume 
were written. On that occasion I also enjoyed many discussions with Douglas L. 
Mills on thin film magnetism and magnetic excitation, the fruits of which went 
into the chapter on magnetism. In addition, the chapter on surface vibrations bene-
fited immensely from our earlier collaboration on that topic.  
 Of the many other colleagues who helped me to understand the physics of inter-
faces, I would like to single out Ted L. Einstein and Wolfgang Schmickler. Ted 
Einstein initiated me in the statistical thermodynamics of surfaces. Several parts of 
this volume draw directly on experience acquired during our collaboration. Wolf-
gang Schmickler wrote the only textbook on electrochemistry that I was ever able 
to understand. The thermodynamics of the solid/electrolyte interface as outlined in 
chapter 4 of this volume evolved from our collaboration on this topic.  
 With Georgi Staikov I had fruitful discussions on nucleation theory and various 
aspects of electrochemical phase formation which helped to formulate the chapter 
on nucleation and growth. Guillermo Beltramo contributed helpful discussions as 
well as several graphs on electrochemistry. Hans-Peter Oepen and Michaela 
Hartmann read and commented the chapters on magnetism and electronic proper-
ties. Rudolf David contributed to the section on He-scattering. Claudia Steufmehl 
made some sophisticated drawings. In drawing the structures of surface, I made 
good use of the NIST database 42 [1.1] and the various features of the package. 
 Last but not least I thank the many nameless students who attended my lectures 
on surface physics over the years. Their attentive listening and the awkward ques-
tions it led to were indispensable for formulating the concepts described in this 
book. Finally, I beg forgiveness from my colleagues in Jülich for having been a 
negligent institute director lately.  

Jülich, May 2006              Harald Ibach
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1. Structure of Surfaces  

Surface Physics and Chemistry flourished long before anything was known about 
the atomic structure of surfaces. Chemical, optical, electrical and even magnetic 
properties were investigated systematically, sometimes in great detail and not 
without lasting success. The concept of an ideally terminated bulk structure with 
its assumed physical properties frequently served as a base for the rationalization 
of the experimental results. Examples are the postulation of specific electric prop-
erties that would arise from the broken bonds at surfaces of semiconductors and 
the high chemical activity that might be associated with defects on the surface. 
Quantitative understanding on an atomic level could not be achieved however 
without knowledge the crystallographic structure of surfaces. Vice versa, a tutorial 
presentation of our present understanding of the physics of surfaces and interfaces 
requires the fundament of facts, concepts and the nomenclature that has evolved 
from the analysis of surface structures. The first chapter of this treatise is therefore 
devoted to the structure of clean and adsorbate covered surfaces, the important 
defects at surfaces and the structural elements of the solid/electrolyte interface.  
 As for Solid State Physics in general, the quantitative understanding on an 
atomic level greatly benefits from the periodic structure of crystalline matter since 
the periodicity reduces the electronic and nuclear degrees of freedom from 1023

per cm3 to the degrees of freedom in a single unit cell. However, at surfaces the 
reduction in the degrees of freedom by periodicity is less, as the three-dimensional 
symmetry is broken. Near surfaces, material properties may differ from the bulk in 
several monolayers below the surface. The surface unit cell of periodicity there-
fore necessarily contains more atoms than the corresponding unit cell of the bulk 
structure. Not infrequently, the unit cell of a real surface is substantially larger 
than the surface unit cell of a terminated bulk, which increases the number of at-
oms in the surface unit cell further. For example, the surface cell of the clean 
(111) surface of silicon contains 49 atoms in one atom layer and the restructuring 
involves 4-5 atom layers! Solving a bulk structure with that many atoms per unit 
cell is not an easy, but nowadays tractable problem, but structure analysis at sur-
faces has to be performed in the presence of the entire bulk below the surface. It is 
still one of the greatest successes of surface science that after decades of research 
and literally thousands of papers the structure of the Si(111) surface was eventu-
ally solved.  
 Substantial advances in surface crystallography are owed to the experimental 
and theoretical achievements in Low Energy Electron Diffraction (LEED) and 
Surface X-Ray Diffraction (SXRD). Scanning Tunneling Microscopy (STM) and 
other scanning microprobes contributed by providing qualitative images of sur-
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faces, which reduced the number of possibilities for surface structure models. 
Presently, the structures of more than 1000 surface systems are documented, and 
the number keeps growing [1.1].  

1.1 Surface Crystallography 

1.1.1 Diffraction at Surfaces  

The first section of this volume is devoted to the essential elements of surface 
crystallography: Laue-equations, Ewald-construction, and symmetry elements. 
 Elastic scattering of X-rays or particle waves from infinitely extended three-
dimensional periodic structures undergoes destructive interference, which leaves 
scattered intensity only in particular directions. The conditions under which dif-
fracted intensity can be observed are described by the three Laue-equations, which 
can be expressed in terms of a single vector equation 

Gkk 0 , (1.1) 

in which k and k0 are the wave vector of the scattered and incident wave, respec-
tively, and G is an arbitrary vector of the reciprocal space. At the surface, the bulk 
periodicity is truncated and the three Laue-equations reduce to two equations con-
cerning the components of the incident and scattered wave vectors parallel to the 
surface.  

||||0|| Gkk  (1.2) 

G|| is a vector of the reciprocal lattice of the two-dimensional unit cell at the sur-
face. Diffracted beams are therefore indexed by two Miller-indices (h,k). The 
reduction to two Laue-equations has the consequence that scattering from a sur-
face lattice leads to diffracted beams for all incident k0, unlike for bulk scattering 
where diffracted beams occur only for particular wave vectors of the incident 
beam. As for the bulk, the Laue-condition is best illustrated with the Ewald-
construction. Figure 1.1 shows the Ewald-construction as it is typical for LEED: A 
beam of low energy electrons (energy  E0  between 20 and 500 eV, corresponding 

to a wave vector eV/nm12.5 0
-1

0 Ek ) with normal incidence is diffracted 

from the surface lattice. Depending on the energy, the {01}, {11}, {02}... beams 
are observed in the backscattering direction, providing direct information on the 
surface reciprocal lattice. 
 Early experiments used a Faraday cup for probing the diffracted beams [1.2]. 
More convenient is the experimental set-up introduced by Lander et al. [1.3], 
which is displayed in Fig. 1.2. The equipment was primarily designed for a quali-
tative quick overview on the diffraction pattern.  
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Fig. 1.1. Ewald-construction for surface scattering. The magnitude and orientation of k0

(normal incidence) is representative of a LEED-experiment. Diffracted beams occur if the 
wave vector of the scattered electron ends on one of the vertical rods (crystal truncation 
rods) representing the reciprocal lattice of the surface. Diffracted electrons are therefore 
observed for all energies of the incident beam: The scattering intensity is particular large if 
the third Laue-condition concerning the perpendicular component of the scattering vector 
(indicated by ellipsoids) is approximately met.  

Later the same equipment has been used also for the quantitative analysis of dif-
fracted intensities by monitoring the spots on the screen with the help of a video 
camera and specially developed image processing software (Video-LEED). 
 Like all other experiments using low energy electrons, LEED gains its surface 
sensitivity from the relative large cross section for inelastic scattering. The prime 
source of inelastic scattering is the interaction with collective excitations of the 
valence electrons electron, the plasmons (Sect. 2.2.2, 8.1). The mean free path of 
electrons in the relevant range is of the order of 1 nm. All elastically backscattered 
electrons therefore stem from the first few monolayers of the crystal. This is the 
reason that intensity is observed even for energies for which the third Laue equa-
tion for the vertical component of the scattering vector K = k0 k is not fulfilled. 
The few monolayers, from which the diffraction originates, however, suffice to 
impose a weak Laue-condition on the vertical component of the scattering vector 
K. In Fig. 1.1 this weak Laue condition is indicated by the ellipsoids. Figure 1.3 
displays the measured diffracted intensity of the (10) beam from a Cu(100) surface 
[1.4] together with the position of the expected intensity maxima according to the 
third Laue-condition. The experimental intensity curve indeed displays pro-
nounced maxima, but only very roughly where they are expected from single 
scattering (kinematic scattering) theory. Surely, the complexity of the various 
features in the intensity curve cannot be explained based on single scattering 
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U+ U

Fig. 1.2. Instrument for low electron energy diffraction. Diffracted electrons are observed 
on a fluorescent screen. The grids serve for various purposes. Grid 1 establishes a field free 
region around the sample, grid 2 repels inelastically scattered electrons so that they cannot 
reach the screen, grid 3 prevents the punch-through of the high voltage applied to the screen 
to the field at grid 2.  

events. Multiple elastic scattering of the electron has to be taken into account (dy-
namic scattering theory). The difficulty to describe multiple elastic scattering of 
electrons theoretically has been a major impediment in the development of surface 
crystallography. As Fig. 1.3 demonstrates [1.4-6], theory is now able to describe 
the observed intensities quite well. A quantitative structure analysis is performed 
by proposing a model for the structure and by comparing experimental and theo-
retical LEED intensities as a function of the atom position parameters (trial and 
error method). Comparison of theory and experiment is quantified in the Pendry 
R-factor Rp which is defined on the basis of the logarithmic derivative of the in-
tensities I with respect to the electron energy E0.
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Fig. 1.3. Intensity of the (10) beam diffracted from a Cu(100) surface vs. beam energy for 
normal incidence. Experiment and theory are plotted as solid and dashed curves, respec-
tively. The positions of the maxima according to the simple single scattering theory are 
indicated as vertical bars. 

Here, V0i is the imaginary part of the inner potential (approximately the width of 
the intensity peaks on the energy scale) and the sum is over all energies and dif-
fracted beams. The agreement between theory and experiment in Fig. 1.3 
corresponds to an Rp-factor of 0.08. In general, Rp-factors below 0.20 are consid-
ered as good.  

Compared to LEED, X-ray scattering has the definite advantage that X-rays are 
scattered only once. The scattering amplitude is therefore the Fourier-transform of 
the scattering density [1.7] and intensities are easily calculated for any given struc-
ture. Schemes for direct structure determination via the Patterson function can be 
employed. Surface sensitivity is achieved by working under condition of grazing 
incidence. Since the photon energy is well above all electronic excitations the 
complex refraction index n~  for X-rays is described by the dielectric properties of 
the free electron gas in the high frequency limit. The real part of n~  is therefore 
smaller than one. Total reflection of the X-ray beam occurs at grazing incidence if 
the angle between the beam and the surface plane i is smaller than a critical angle 

c. Typical values for c are between 0.2° and 0.6° for an X-ray wavelength of 
0.15 nm [1.8]. Under condition of total reflection the X-ray intensity inside the 
solid drops exponentially with a decay length  of about 10 nm. All diffraction 
information therefore concerns no more than about 50 atom layers. Information of 
just the surface layer is contained in diffracted beams of a surface superlattice. The 
intensity of such beams is sufficiently large for detection and stands out from the 
diffuse background. The technique is called Grazing Incidence X-Ray Diffraction 
(GIXRD). Figure 1.4 shows the structure factor (the modulus of the scattering 
amplitude as due to the structure) as a function of the perpendicular component of 
the scattering vector [1.9] (a) for a bare Cu(110) surface and (b) for a Cu(110) 
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surface covered with oxygen. The parallel component of the scattering vector is 
chosen to fulfill the (01) surface diffraction condition. The full line is calculated 
using the structural parameters, which gave the best fit to all measured structure 
factors (about 150). Note that comparison between experiment and theory is made 
for the intensity outside the L=1 peak that results from the third Laue condition. 
The intensity in that peak contains mostly information about the structure of the 
bulk inside the decay length .
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Fig. 1.4. Structure factor along the (01) crystal truncation rod as a function of the vertical 
component of the scattering vector L expressed in units of the reciprocal lattice vector (a)
for a bare Cu(110) surface and (b) for a Cu(110) surface covered with oxygen [1.9]. The 
insets display a top view on the first two layers of surface atoms (see also Sect. 3.4.3). The 
structure with oxygen is the so-called added row structure where every second row is 
formed by a chain of oxygen atoms (dark circles) and Cu-atoms. Experimental data and 
theory for the optimized geometry data are shown as circles and solid lines, respectively. 

The applicability of single scattering theory also provides the possibility to use the 
elastic diffuse X-ray intensity for an analysis of non-periodic features on surfaces, 
such as defects or strain fields associated with domains of adsorbates [1.9, 10]. 
Furthermore, vacuum is not required, which makes X-ray scattering a technique 
suitable also for studies on the solid/liquid interface [1.11] if the liquid layer is 
thin enough.  

The question which of the two methods LEED or SXRD is the method of 
choice depends on circumstances. In principle, both methods can provide equally 
precise atom positions for a large number of atoms per unit cell. The scattering 
cross section for X-rays scales with the square of the atom number Z. Light ele-
ments contribute little to X-ray scattering and data are not sensitive to the position 
of light element. LEED does not suffer from that to the same extent. Because of 
the larger momentum transfer in the direction of the surface normal, LEED has a 
better sensitivity to the vertical atom coordinates, while SXRD is more sensitive to 
the lateral position. X-ray scattering experiments require extremely flat surfaces 
because of the grazing incidence condition while LEED is more forgiving with 
respect to sample quality. At present, most of the surface structure determinations 
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are based on the quantitative analysis of LEED-intensities. However, the balance 
may tip as improved synchrotron sources become more available. 

1.1.2 Surface Superlattices  

Notation 

The positions of surface atoms differ from the bulk because of the broken symme-
try and the broken bonds. The modifications are referred to as relaxations if the 
surface unit cell remains that of the truncated bulk. If the surface unit cell is dif-
ferent, then the corresponding changes in the structures are addressed as
reconstructions. The lattice of an adsorbed phase with a unit cell larger than the 
surface cell of the truncated bulk is called a superlattice, the associated structure a 
superstructure. Adsorbate superstructures frequently go along with a reconstruc-
tion of the substrate. The nomenclature therefore is not unambiguous.  
 Base vectors of the unit cell of superstructures and surface reconstructions are 
expressed in terms of the base vectors of the unit cell of the truncated bulk. With 
s1 and s2 as vectors spanning the surface unit cell of a truncated bulk lattice, the 
lattice vectors of the actual unit cell on the surface, a1 and a2, are described by the 
matrix t

2

1

2221

1211

2

1

s

s

a

a

tt

tt
(1.5)

1s2

=45° R4522

2s2
s

2s

1s

22c

1s

2s

12s

22s

Fig. 1.5. Illustration of the notation of the c(2 2) unit cell of the surface lattice and its 

alternative notation as 22 R45°. 

In most cases, this unambiguous notation introduced by E. A. Wood in 1964
[1.12] is unnecessarily complicated and inconvenient. If the surface lattice vectors 
are just multiples of the lattice vectors s1 and s2 unit cells are denoted as (2 1), 
(2 2), (3 1), etc. Centered and primitive unit cells are denoted by adding a "c" 
and a "p" to the notation, e.g. p(2 2) and c(2 2). This type of notation is not al-
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ways unique: The c(2 2) lattice on a (100) surface of a cubic crystal can also be 

noted as 22 R45° in which the R45° stand for a rotation by 45° (Fig. 1.5). 

The unambiguous matrix notation 
11

11
 is rarely used in that case, as it is more 

difficult to quote. 
A few common adsorbate superlattices are displayed in Fig. 1.6 together with 

their notation. 

p(2x2) c(2x2)

(2x2) 30R)3x3(

Fig. 1.6. Typical adsorbate superlattices on surfaces together with their trivial notation. 
Substrate and adsorbate atoms are displayed as black and grey, respectively.

Diffraction pattern of superlattices 

The existence of a superlattice on a surface is most easily discovered in a diffrac-
tion experiment because the larger unit cell produces extra, fractional order spots 
in the diffraction pattern between the normal (hk) spots of the truncated bulk lat-
tice. The determination of the base vectors of the unit cell frequently requires the 
consideration of domains. For example, the diffraction pattern of a (1 2) unit cell 
on a (111) or (100) surface of a cubic material has half order spots in terms of the 
Miller-indices of the substrate at (h 1/2), (h 3/2), etc.. The equivalent second 
(2 1) domain, which is rotated by 90°, has spots at (1/2 k), (3/2 k), etc. (Fig. 1.7). 
The pattern is distinct from the pattern of a (2 2) lattice since the latter would 
produce reflexes also at ( 1/2, 1/2), ( 3/2, 3/2), etc., which are absent in the 
diffraction pattern of the (1 2), (2 1) superlattice (Fig. 1.7). 



  1.1  Surface Crystallography __________________________________________________________________________ 9

(2 1) + (1 2) c(2 2)

Fig.1.7. Diffraction pattern of two domains of a (1 2) superlattice and a c(2 2) superlattice 
on a (100) surface of a cubic material. 

Centered unit cells and unit cell containing glide planes can be identified because 
they give rise to systematic extinctions. The extinctions of reflexes (h, k) are cal-
culated from the surface structure factor Shk.

hk vkuhiS )(exp  (1.6) 

Here, h' and k' are the Miller-indices of the superlattice, u  and v  are the compo-
nents of the vector r  pointing to the atom  in the unit cells in terms of the base 
vectors a1 and a2.

21 aar vu (1.7)

We consider the c(2 2) superlattice as an example. Because of the (2 2) lattice, 
the Miller-indices of the superlattice h' and k' in terms of the Miller-indices of the 
substrate lattice h and k are h' = 2h and k' = 2k. The components u  and v  are 
u1 = v1 = 0 and u2 = v2 = 1/2. The structure factor is therefore 

even)(2if2

uneven)(2if0
)1(1 )2(

kh

kh
S kh

hk . (1.8) 

The c(2 2) structure is therefore identified by characteristic extinctions in the 
half-order spot of the (2 2) lattice. In particular, these extinctions occur for all 
half-order spots along the h 0  and 0 k -directions (Fig. 1.7).  

Point group symmetry of sites

A very important element of the surface structure is the symmetry of various sites 
on surfaces, important, because the local symmetry of an atom or molecular com-
plex determines the classification of the eigenvalues of the electronic quantum 
states as well as the selection rules in spectroscopy. The fact that the surface plane 
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is never a mirror plane reduces the number of possible point groups on surface to 
those, which have rotation axes and mirror planes perpendicular to the surface. 
These point groups are Cs, C2v, C3v, C4v, C6v, C3, C4, C6. Figure 1.8 illustrates the 
most important point groups Cs, C2v, C3v, C4v together with the point groups C3 and 
C4. For the purpose of analyzing and classifying spectroscopic data, it is useful to 
have the character tables of the point groups at hand. Characters tables for Cs, C2v,
C3v, C4v, and C6v are listed in Table 1.1.

x

Cs C2v

y

C3v

v v
d

C4v

C3 C4

Fig. 1.8. The point groups Cs, C2v, C3v, C4v, C3, and C4. The upper four point groups are 
illustrated with a diatomic molecule like CO or NO (black and gray circle). The species 
representing C3 and C4 are hypothetical. The point groups Cs, C2v, C3v, and C4v are fre-
quently encountered with molecules like CO, NO, or NH3.
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Table 1.1. Character tables of surface point groups. The upper left corner notes the point 
group. The first column are the irreducible representations, the following columns are the 
characters of the classes of the group. The last column describes to which irreducible repre-
sentation the translations along the x, y and z-axes and the rotations around these axes 
belong. This is important since the translations and rotations of a molecule turn to vibra-
tions when the molecule is adsorbed. (see Sect. 7.2.2). 

C6v I C6 C6
2 C6

3
v d

A1 +1 +1 +1 +1 +1 +1 z

A2 +1 +1 +1 +1 -1 -1 Rz

B1 +1 -1 +1 -1 +1 -1  

B2 +1 -1 +1 -1 -1 +1  

E1 +2 +1 -1 -2 0 0 x, y, Rx, Ry

E2 +2 -1 -1 +2 0 0  

Cs I xz

A' +1 +1 z, x, Ry

A'' +1 -1 y, Rx, Rz

C2v I C2 xz yz

A1 +1 +1 +1 +1 z

A2 +1 +1 -1 -1 Rz

B1 +1 -1 +1 -1 x, Ry

B2 +1 -1 -1 +1 y, Rx

C3v I C3

A1 +1 +1 +1 z

A2 +1 +1 -1 Rz

E +2 -1 0 x,y,Rx,Ry

C4v I C4 C4
2

v d

A1 +1 +1 +1 +1 +1 z

A2 +1 +1 +1 -1 -1 Rz

B1 +1 -1 +1 +1 -1  

B2 +1 -1 +1 -1 +1  

E +2 0 - 2 0 0 x,y,Rx,Ry

C2 I C2

A +1 +1 z, Rz

B +1 -1 x, y, Rx, Ry

C3 I C3

A +1 +1 z, Rz

E +1 -1 x, y, Rx, Ry

C4 I C4 C4
2

A +1 +1 +1 z, Rz

B +1 -1 +1 

E +2 0 -2 x, y, Rx, Ry
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Space groups 

Space groups combine translations with point symmetry operations. In three di-
mensions, the combination of the 14 Bravais-lattices with the 32-crystallographic 
point groups yields the 230 crystallographic space groups. In two dimensions, 
only 17 space groups exist. Three important ones are illustrated in Fig. 1.9. 

p2mg p4gp1g1

Fig. 1.9. Illustration of common space groups at surfaces. All structures contain a combina-
tion of translation and mirror symmetry, a glide plane. The p2mg structure contains an 
additional mirror plane perpendicular to the glide plane. 

1.2 Surface Structures  

Many materials, notably metals, have a surface lattice, which corresponds to the 
bulk crystallographic (hkl) plane. Merely the atomic distances vertical to the sur-
face plane are changed to a larger or lesser degree, depending on the material, the 
surface orientation, and the type of bonding. The surfaces of some 5d-transition 
metals, however, reconstruct to form large, sometimes even incommensurate sur-
face cells. Reconstructions are also typical for covalently bonded semiconductors. 
This section presents the surface structures of common materials [1.1]. 

1.2.1 Face Centered Cubic (fcc) Structure   

Many metal elements crystallize in the face-centered cubic (fcc) structure. Among 
them are the coinage metals copper (Cu), silver (Ag), gold (Au), as well as the 
catalytic important metals nickel (Ni), rhodium (Rh), palladium (Pd), iridium (Ir) 
and platinum (Pt). Surfaces of these metals have been studied intensively since the 
early days of Surface Science. We therefore begin the presentation of surface 
structures with the low index surfaces of fcc-crystals. Following the convention in 
crystallography, we denote a set of equivalent faces by braced indices, e.g. {100}, 
and particular faces like (100), (010), or (001) by indices in parenthesis. The three 
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most densely packed, and therefore the most stable {111}, {100}, and {100} sur-
faces of unreconstructed fcc-crystals are depicted in Fig. 2.1. The packing density 
is the highest for the {111} surfaces, followed by the {100} and {110} surfaces. 
The coordination numbers of surface atoms are 9, 8 and 7 for the {111} , {100} 
and {110} surfaces, hence the number of broken bonds are 3, 4 and 5 per surface 
atom.

111
100 110111111

Fig. 1.10. {111}, {100}, and {100} surfaces of fcc-crystals; bottom row displays side 
views. 

The open structure of the {110} surface has the peculiar feature that atoms in the 
surface layer have nearest neighbor bonds not only to the next, but also to the third 
layer. Vice versa, the second layer atoms have one broken bond oriented perpen-
dicular to the surface plane. Hence, this surface has 5 broken bonds per surface 
atom, but 6 broken bonds per surface unit cell. In a nearest neighbor model, each 
broken bond on a surface corresponds to 1/12 of the cohesive energy Ec. Accord-
ingly, the surface energies per surface unit cell are Ec/4, Ec/3, and Ec/2, for the 
{111}, {100} and {110} surface, respectively. Since the atom packing density also 
decreases in that sequence, the three surfaces differ by a lesser amount in their 
surface energy per area. In units of Ec/a0

2, in which a0 is the lattice constant, the 
energies of the {111}, {100} and {110} surfaces are 0.577, 0.666 and 0.707, re-
spectively. The actual differences between the surface energies are even smaller 
because of next nearest neighbor and many-body contributions to the surface en-
ergy.

The surface layer of the {111} surface has a six-fold rotation axis and three 
non-trivial mirror planes. Together with the second layer underneath the symmetry 
reduces to a three-fold rotation axis. The highest symmetry of a molecular species 
site on that surface is therefore C3v. However, if the adsorbate species has a six-
fold rotation axis and interacts only with the first layer atoms the effective point 
group symmetry is C6v. The {100} surfaces have four-fold symmetry and two non-
trivial mirror planes. The highest symmetry of an adsorbate is thus C4v. The {110} 
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surface has a two-fold axis and two mirror planes. The highest point group sym-
metry is C2v.

Unreconstructed surfaces as depicted in Fig. 1.10 are found on -cobalt ( -Co), 
Ni, Cu, Rh, Pd, and Ag. Atoms in the surface layer assume a position as in the 
bulk save for a possible relaxation of the vertical distance between the surface 
layer and the layer underneath. This relaxation is very small (1-2%) for the {100} 
and {111} surfaces, hardly outside the error of the best structure determinations. 
The relaxation is larger for the {110} surfaces, and even the distance between the 
second and the third layer differs notably from the bulk. Table 1.2 lists mean re-
laxations on the {110} surfaces for a few materials.  

Table 1.2. Relaxation of the distance between the surface layer and the second layer d12

and the second and the third layer d23 for several {110} surfaces.

Material d12 d23

Cu{110} 9% +3%
Ag{110} 8% 0%  
Ni{110} 9% +3.5%
Pd{110} 5% +1%
Rh{110} 7% +2%

Most surfaces of the 5d-transition metals Ir, Pt and Au reconstruct. The nature of 
the reconstruction is such that the surface plane of the reconstructed surface con-
tains more atoms per area than an unreconstructed surface. The guiding principle 
therefore appears to be to compensate the loss of coordination caused by the "bro-
ken bonds" at the surface by increasing the effective coordination in the surface 
plane. The 5d-metals resort to this method because the stiffness of the 5d-orbitals 
induced by the two nodes prevents compensation by relaxation of the interatomic 
distances. Relativistic effects on the late 5d-metals and the associated contraction 
of the s-shell may also play a role. Some authors have attributed the propensity to 
reconstruct to the large tensile stress on the 5d-metal surfaces [1.13]. However, 
later experimental [1.14] and theoretical [1.15] investigations concerning the re-
constructions on {100} and {110} surfaces did not confirm this view. When 
attempting to understand the reconstruction phenomenon on bare metal surfaces 
one should keep in mind that the energy gain in the reconstruction is very small. 
Investigations on the gold/electrolyte interface show that the difference in the free 
energy for the reconstructed and unreconstructed Au(100) surface is 0.05 N/m 
[1.16] which amounts to less than 4% of the surface energy [1.17].  

The reconstructed {100} surfaces of Ir, Pt and Au all involve a nearly hexago-
nal packing of atoms in the surface layer. For Iridium this leads to a (5 1) 
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Fig. 1.11. Top and side view of the (5 1) reconstructed Ir(100) surface in which the surface 
layer consists of a buckled quasi-hexagonal overlayer of atoms. The buckling depends on 
the lateral position of the surface atom with respect to the second layer atoms and amounts 
to 0.48 Å at the maximum [1.18]. The dashed rectangle indicates the unit cell. The {100} 
surfaces of platinum and gold feature the same quasi-hexagonal arrangement of atoms in 
the first layer, but the surface layer is more densely packed and incommensurate with the 
substrate. 

Fig. 1.12. Reconstruction on the Au(111) surface by an uniaxial compression of the surface 
layer. The position of the surface atoms with respect to the second layer change from fcc-
sites, to bridge sites, to hcp-sites, to bridge-sites and back to fcc-sites. The height corruga-
tion induced thereby is easily seen in an STM-image (Fig. 1.13). 
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(a) (b)

Fig. 1.13. (a) STM-image of a reconstructed Pt(100) surface [1.19]. On Pt(100) as well as 
on Au(100), the surface layer is slightly rotated with respect to the substrate causing an 
incommensurate structure. (b) STM-image of reconstructed Au(111) [1.20]. The height 
corrugation of the primary reconstruction (Fig. 1.12) is seen as white stripes. The superim-
posed secondary "Herringbone"-reconstruction reduces the elastic strain energy in the 
substrate [1.21].  

reconstruction (Fig. 1.11) so that the density of atoms in the surface layer is 6/5 of 
the unreconstructed surface. Even higher atom densities ( 125%) are realized with 
the quasi-hexagonal but incommensurate overlayers on Pt(100) and Au(100) 
[1.22-24].  

Of the {111} surfaces of 5d-metals, only the Au(111) reconstructs. The recon-
struction involves an uniaxial compression of the surface layer along a 110 -

direction by about 4.5% to a (1 22) unit cell (Fig. 1.12). 

Fig. 1.14. The (1 2) reconstruction on {110} surfaces of Ir, Pt and Au. 



  1.2  Surface Structures __________________________________________________________________________ 17

Superimposed on the (1 22) reconstruction is a secondary reconstruction, the 
"Herringbone" reconstruction which helps to reduce the elastic energy in the sub-
strate [1.21] (see also Sect. 3.4.3). The reconstructions on the {110} surfaces of Ir, 
Pt and Au are of a different nature: By removing every second row of atoms, (111) 
microfacets are formed (Fig. 1.14) [1.25-27]. The reconstruction involves a multi-
layer reconstruction consisting of a buckling in the third and fifth layer and a row 
pairing in the second and fourth layer. 

1.2.2 Body Cubic Centered (bcc) Structure 

Typical metals with bcc-structure are tungsten (W), molybdenum (Mo), niobium 
(Nb), and iron (Fe). Spurred by the interest in their use as thermionic electron 
emitters, surfaces of tungsten have drawn the attention of researchers since the 
early years of the 20th century. Studies included measurements of the work func-
tion of various crystal faces and the influence of adsorbates, in particular of alkali 
atoms, on the work function. Later on, tungsten surfaces were considered as a 
model for surface phenomena in general, partly for that history, partly because the 
metallurgy of single crystal preparation was well developed for tungsten, and last 
not least, because tungsten surfaces are comparatively easy to prepare clean in 
ultra-high vacuum vessels made from glass (Sect. 2.2.3). 

111100110

Fig. 1.15. Top and side view of the {110}, {100}, and {111} surfaces of a bulk terminated 
bcc-structure. The very open {111} surface is formed by three layers of atoms that are 
missing some of their nearest neighbor bonds. 

The bulk-terminated surfaces of bcc-crystals are displayed in Fig. 1.15. The atom 
density on the most densely packed {110} surface amounts to 91.8% of a hexago-
nal close packed surface. The atoms form a compressed hexagon with each atom 
surrounded by four atoms in nearest neighbor distance, and two atoms in the 
15.5% larger second nearest neighbor distance. The {100} surfaces possess 65.1% 
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of the density of a hexagonal close packed face, which amounts to 70.9% of the 
density of {110} surfaces. The {111} surfaces have a very open structure. The 
atom density is down to 41.1% of a close packed surface, or 44.7% of {110} sur-
faces. Atoms in three layers are missing nearest neighbors. Since the distance to 
the second nearest neighbors is merely slightly larger than to the first neighbors, 
an estimate of the surface energies based on the coordination numbers is not 
meaningful. 

Fig. 1.16. Structure of the W(100) surface at 150K. The (2 2) unit cell is indicated by 
dashed lines. The surface atoms in the cell are pair wise displaced along one diagonal (solid 
line) of the (2 2) cell which produces a glide plane orthogonal to the diagonal. The recon-
struction has two equivalent domains. 

For a long time it was believed that neither surface of the bcc-metals would recon-
struct. However, a careful structure analysis of the W(100) surface performed at 
150 K [1.28, 29] revealed a (2 2) reconstruction of the space group pmg 
(Fig. 1.16). The reconstruction of the W(100) surface escaped detection for ex-
perimental reasons. Firstly, the majority of surface studies were performed at 
room temperature and above where the reconstruction is disordered and the sur-
face therefore appears as being unreconstructed with a high Debye-Waller factor. 
Secondly and probably more importantly, adsorbed hydrogen produces a c(2 2) 
structure (Sect. 1.2.4). The pmg diffraction-pattern is easily mistaken for a c(2 2) 
pattern since it has the same extinctions along the h, k-axes as the pmg. The addi-
tional reflexes along the four diagonal (|h| = |k|) directions exist for both 
structures, for the pmg-structure because of the two equivalent domains. (The 
structure as drawn in Fig. 1.16 would have extra reflexes for the h = k direction, 
not for the h = k direction). Hydrogen adsorbs dissociatively with a high sticking 
coefficient on the W(100) at room temperature and below. Hydrogen is also the 
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prime residual gas in stainless steel vacuum chambers (Sect. 2.2.1). As tungsten 
surfaces are prepared by high temperature oxidation and annealing and some time 
is required to cool the crystal down to 150 K, hydrogen adsorption is hard to avoid 
unless special precautions are taken. Hence, even when researchers found a low 
temperature (2 2) might have attributed it to a hydrogen induced reconstruction. 
Presently, also the clean Mo(100) surface is believed to reconstruct at low tem-
peratures, but no structure analysis is available at this time. 

1.2.3 Diamond, Zincblende and Wurtzite 

The group IV-elements carbon, silicon and germanium crystallize in the diamond 
structure in which each atom is surrounded by a tetrahedron of neighboring atoms, 
providing optimum overlap of the sp3-type covalent bonds. The diamond structure 
can be viewed as two fcc-structures displaced along the cubic space diagonal by a 
vector (1/4,

1/4,
 1/4)a0 with a0 the lattice constant (Fig. 1.17a). The structure has its 

name from the diamond phase of crystalline carbon although diamond is not the 
most stable phase of carbon, which is graphite. The III-V and II-VI compounds 
are likewise primarily covalently bonded in a tetrahedral configuration. The III-V 
compounds and some of the II-VI compounds crystallize in the diamond structure 
with each of the two atoms of the compound occupying one of the fcc-
substructures. The structure is then named zincblende, after the mineral name of 
the II-VI compound ZnS. A ZnS-crystal has four polar axes oriented along the 
tetrahedral bonds. A dipole moment can arise if the tetrahedral symmetry is dis-
torted, e.g. by shear stresses. Crystals with ZnS structure therefore have merely 
non-diagonal components of the dielectric tensor. 
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Fig. 1.17. Structure of (a) zincblende and (b) wurtzite. The zinblende structure reduces to 
the diamond structure if A- and B- atoms are identical. The zincblende structure has eight 
the wurtzite structure 4 atoms in the unit cell. 
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Most of the II-VI compounds crystallize in the hexagonal wurtzite structure. In 
wurtzite, the local configuration is as in zincblende (Fig. 1.17b). The arrangement 
of the tetrahedrons in space differs, however. When build with ideal tetrahedrons, 

wurtzite has a c/a ratio of 633.13/8 . However, the symmetry of the structure 
is compatible with the tetrahedrons being distorted along the c-axis. Since the c-
axis is a polar axis, wurtzite crystals are pyroelectric (pyroelectricity denotes a 
variation of a permanent polarization with temperature), and possess one non-zero 
diagonal and off-diagonal elements of the piezoelectric tensor.  
 Because of the covalent nature of the bonding (with some ionic character in the 
III-V and II-VI-compounds) the termination of the bulk structure at the surface 
means broken bonds, also called dangling bonds. To minimize the energy associ-
ated with the dangling bonds nearly all surfaces of the group IV elements and of 
the III-V and II-VI compounds reconstruct in one or another way. In order to be 
able to describe and understand nature of the various reconstructions involved it is 
necessary to know the reference frame of the low index bulk terminated structures. 
We therefore depict the surfaces as they arise from the truncated bulk structures of 
zincblende and wurtzite, before entering the discussion concerning reconstruc-
tions.  

]011[

]211[

(111) (100)

]010[

(110)

]001[
]101[]001[

Fig. 1.18. Top and side view of the low index surfaces of the zincblende structure. Pictures 
also represent the surfaces of the diamond structure if the dark and lightly shaded atoms are 
identical. For zincblende the ideal (111) surfaces are polar, as the surface layer consists of 
one type of atoms. Full lines indicate the boundaries of the (111), (100) and (110) planes as 
drawn into the bulk cubic cell. The dashed lines are the surface unit cells.  

Figure 1.18 shows top and side views of the {111}, {100} and {110} surfaces of 
the zincblende structure, as they arise from the truncated bulk structure. The sur-
face layer of a {111} surface consists of only one type of atoms and has therefore 
a polar character. The )111(  and )111( surfaces are not identical. On {111} and 
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{110}, surfaces atoms have one dangling bond, on {100} surfaces each surface 
atom has two. The illustrations in Fig. 1.18 represent the surfaces of the diamond 
structure when dark and light atoms represent the same element. 

Figure 1.19 shows top and side views of two surfaces of wurtzite. As for the 
{111} surfaces of zincblende, the surface layer of the {0001} surfaces consist of 
atoms of one type; the surfaces are therefore polar. Because of the arrangement of 
the tetrahedrons, wurtzite appears as rather open when viewed along the c-axis, 
compared to the zincblende and diamond structure. 

(0001) (1110)

Fig. 1.19. Top and side view of surfaces of wurtzite surfaces. 

The Si(111) surface 

Some of the early work in surface science is associated with the Si(111) surface 
prepared by cleaving a silicon crystal along the (111) plane in ultra-high vacuum. 
Low energy electron diffraction (LEED) revealed that the surface is reconstructed 
to a (2 1) unit cell [1.30] and transforms to a surface with a (7 7) unit cell upon 
annealing. For a long time, research concentrated on the (2 1) surface for various 
reasons. Firstly, cleaved surfaces are easily prepared and one could rest assured 
that the surface was clean (Sect. 2.2.3), whereas it was debated for a long time 
whether the (7 7) reconstruction was really a property of the clean surface. Sec-
ondly, strong Fermi-level pinning was found on the (2 1) surface [1.31], 
providing evidence for a high density of surface states. The high density of states 
was directly associated with the dangling bonds on the silicon surface. Further-
more, the (2 1) surface displayed interesting spectroscopic features, both with 
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respect to surface vibrations [1.32] and optical properties [1.33, 34]. Much of this 
early work remained speculative with respect to the interpretation of the experi-
mental results, because the surface structure was unknown. When surface structure 
analysis became feasible and the structure of the (2 1) surface was solved around 
the mid 80-ties of the last century, interest in the (2 1) surface had already de-
clined in favor of the (7 7) reconstructed surface. The structure of the (2 1) 
surface as determined by Sakama et al. is shown in Fig. 1.20 [1.35]. The structure 
is characterized by chains of surface atoms, which are -bonded by the electrons 
in the dangling bonds. The hybridization reduces to sp2, so that the surface atoms 
form a more planar structure. 

Fig. 1.20. Perspective side view on the reconstructed Si(111)(2 1) surface. Electrons in 
dangling bond establish a -bonding between surface atoms, so that they arrange in chains 

(marked by arrows) along a 011 - direction. The size of the unit cell along a 211 -
direction is thereby doubled (double headed arrow). 

Unlike the Si(111) (2 1) surface, the Si(111)(7 7) surface is an equilibrium phase. 
The structure involves a rearrangement of the position of many atoms as well as 
additional atoms. A migration of atoms from an atom source, e.g. steps, is there-
fore necessary to build the (7 7) structure which explains that the structure is not 
formed directly after cleaving the crystal at room temperature. The complexity of 
the structure has challenged researchers for a long time. Hundreds of papers were 
published proposing and considering possible elements of the structure without 
getting a grasp on the full complexity of the problem. Even advanced techniques 
of LEED-intensity analysis could not solve the puzzle, as a successful structure 
analysis by LEED requires a trial structure fairly close to the final one. At last, 
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scanning tunneling microscopy provided decisive clues that narrowed the number 
of possibilities for the structure. Figure 1.21 shows an STM-image of the 
Si(111)(7 7) surface. Within the unit cell, STM finds 12 bright spots. If these 
bright spots are identified with atoms, this means the structure features twelve 
atoms in a particular elevated position. These atoms were later identified as extra 
silicon atoms (adatoms) sitting on three dangling bonds of silicon atoms, thereby 
reducing the number of dangling bonds by a factor of three. The STM-image 
shows further one deep, wide hole per unit cell.  

Fig. 1.21. STM-image of a Si(111)(7 7) surface. Dashed lines mark the unit cell. The im-
age shows twelve bright spots and one deep and wide hole per unit cell. The bright spots 
correspond to silicon adatoms bonding to three dangling surface bonds. 

With these clues, a further one stemming from medium energy ions scattering 
stating that the structure should involve a stacking fault, and his own Patterson 
analysis of high energy electron diffraction data, Takanayagi et al. were able to 
propose the currently accepted model [1.36]. The model has been termed the 
Dimer-Adatom-Stacking fault (DAS) model after its key structural elements. The 
structure is shown in Fig. 1.22. The atom coordinates are taken from the LEED- 
structure determination of Tong et al. [1.37]. We begin the discussion of the vari-
ous structural elements with the stacking fault. The top view on the two uppermost 
Si-double layers in the right and left side of the rhombic unit cell differs. In the 
right half, the structure is as in bulk silicon, in the left half the arrangement of the 
first two double layers is as in wurtzite. Hence, this section is faulted with refer-
ence to the silicon structure. At the domain boundary between the faulted and non-
faulted area six silicon atoms pair up to form three dimers (textured arrows in 
Fig. 1.22). The adatoms are best seen in a side view. The side view in Fig. 1.22 
displays the three sheets of atoms that lie between the dotted lines drawn in the top 
panel. This section of the unit cell has four adatoms between the large holes at the 
apices of the rhombic unit cell. The positions of these adatoms correspond to the 
white spots along a line connecting the two apices of the unit cell in the STM-
image Fig. 1.21. Four more adatoms exist on either side, above and below the 
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dotted lines in Fig. 1.22. While the adatoms reduce the number of dangling bonds 
per unit cell, some of the silicon surface atoms retain their original dangling 
bonds. Four of them are shown in the side view. These surface atoms are called 
rest atoms.

Fig.1.22. Structure of the Si(111)(7 7) surface according to the Dimer-Adatom-Stacking 
fault model (DAS). The lower panel displays a side view of the atoms residing between the 
dotted lines shown in the top panel. Four adatoms sitting on a triplet of Si-atoms mark 
positions of height maxima that are the salient feature in STM-images (Fig. 1.21). The 
(7 7) unit cell (dashed lines) comprises 12 adatoms. The top view shows clearly that the 
arrangement of tetrahedrons in the first two double layers is as in wurtzite on the left hand 
side of the rhombic unit cell. Hence, the stacking of layers is faulted with respect to the 
silicon structure. Dimerization of surface Si-atoms occurs along the domain boundary be-
tween the faulted and non-faulted section of the (7 7) unit cell (textured arrows). 
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The Ge(111) surface

The cleaved Ge(111) surface exhibits the same (2 1) reconstruction as the Si(111) 
surface. The (2 1) reconstructed surface transforms irreversibly into a stable 
structure around 200 °C [1.30]. Again, minimizing the number of dangling bonds 
is the driving force for the reconstruction. For germanium the resulting equilib-
rium structure is, however, much simpler since the reconstruction involves merely 
an ordered array of adatoms on the otherwise unreconstructed, though distorted 
Ge(111) surface. Figure 1.23 shows the c(2 8) structure that is obtained after an-
nealing the surface [1.38]. 

Fig. 1.23. Perspective view on the topmost layers of the reconstructed Ge(111)c(2 8) sur-
face. Each unit cell (dashed lines) contains three adatoms. The adatoms cause a distortion 
of the germanium structure, clearly visible in the panel. The distortions extend several 
layers deep into the bulk. 

The Si(100) and Ge(100) surface 

Atoms on the {100} surfaces of the tetrahedral coordinated crystals would have 
two dangling bonds each if the surface existed as a truncated bulk (Fig. 1.18). 
Clearly, such a surface must be even less stable than the ideal (111) surface, and 
reconstructions, which reduce the number of dangling bonds, are expected. The 
geometry of a {100} surface permits a way to saturate 50% of the dangling bonds 
by pairing the surface atoms (Fig. 1.24). The moderate energy needed to distort 
the bond angles of the sp3-bonded surface atoms is overcompensated by the gain 
in energy due to the formation of dimers. The symmetric dimer has still two dan-
gling bonds, i. e. half-filled electron states of the same energy. Breaking the 
symmetry lifts the degeneracy of the electrons states, which allows for the filling 
of the lower energy state with two electrons whereby the electronic energy is re-
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duced (Fig. 1.24). This general principle of energy reduction by symmetry  
breaking is called Jahn-Teller effect. In this particular case, the Jahn-Teller effect 
involves a partial transfer of one electron to one of the two atoms in the dimer. 
Electrons of that atom then form a p3-configuration with 90° natural bond angles. 
The electrons of the donating atom form a planar sp2-hybrid. The state of lowest 

Energy

sp3

pz

sp2

Fig. 1.24. Illustration of the dimer formation on the {100} surfaces of tetrahedral coordi-
nated structures. Surface atoms can be brought into bonding distance by a distortion of the 
sp3-bonds of the surface atoms. Partial electron transfer from the left to the right atom 
changes the sp3-hybrids to a planar sp2-hybrid and a p3-configuration with 90°-angles, giv-
ing the dimer an asymmetric structure (buckled dimers).

Fig. 1.25. Top and side view of the Si(100)(2 1) reconstructed surface. 
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energy is therefore an asymmetric dimer (buckled dimer). Note that the buckled 
dimer has no half-filled electron orbitals and therefore no remaining dangling 
bonds. 
 The electrons in the filled and empty states form bands of surface states [1.39] 
that are energetically located in the band gap between the valence and the conduc-
tion band (Sect. 8.2.4). The total density of these states is two states per surface 
atom (Sect. 3.2.2). Many different ordered structures can be realized with the 
asymmetric dimers as building blocks. The simplest structure is with all dimers 
tilted in the same direction. The resulting reconstruction is a (2 1) structure which 
exists in two domains. An example is shown in Fig. 1.25 with the Si(100)(2 1) 
reconstructed surface. The structure analysis was performed using LEED at 120K 
[1.40]. A simple structure with an equal number of dimers of either orientation is 
the c(4 2) reconstruction which can exist on Si(100) as well as on Ge(100). Fig-
ure 1.26 shows top and side view of Ge(100)c(4 2). The unit cell (dashed 
rectangle) contains two asymmetric dimers of either type. The energies of the 
various arrangements of the asymmetric dimers differ only because of elastic in-
teractions between different dimers. These interactions are comparatively weak. 
Entropy plays therefore an important role in the free energies of various surface 

Fig. 1.26. Top and side view of the Ge(100)c(4 2) reconstructed surface. For clarity, the 
side view displays merely three planes of atoms along the dotted line. The unit cell (dashed 
rectangle) contains two asymmetric dimers of each type.  
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configurations. Phase transitions between the ordered structures occur as a result. 
Another consequence of the weak interactions between dimers is that at room 
temperature dimers flip back and forth between the two asymmetric states. STM-
images average over the two configurations so that the dimers appear to be sym-
metric in such images. 

Surfaces of zincblende and wurtzite 

The truncated bulk {111} and {100} surfaces of zincblende and the {0001} sur-
faces of wurtzite are polar, that is the outermost surface layer consists of one of 
the two types of atoms only (Fig. 1.18). Because of the ionicity of the bonds in 
zincblende and wurtzite, the outermost layer would bear an uncompensated sur-
face charge. A zincblende crystal terminated by a (111) surface on the one end and 
a )111( -surface on the other, or a wurtzite crystal terminated by (0001)  and 

)1000( -surfaces would bear a net permanent polarization giving rise to electric 
fields in the adjacent vacuum. If, furthermore, the surfaces were planar extended, 
there would be no countercharge to terminate the electric field, which means that 
the field energy adds an infinite amount of energy to the surface energy (see also 
Sect. 4.2.1). For the wurtzite structure the permanent polarization P is easily cal-
culated with the help of Fig. 1.17. The dipole moment p per unit cell is qc/4 when 
q is the ionic charge and c the length of the c-axis of the unit cell. The polarization 
P is P = p/cFb, with Fb the area of the base of the unit cell. The polarization P is 
therefore equivalent to a surface charge density of q/4Fb. The polarization is com-
pensated by placing counter charges on the surfaces, which amount to the ion 
charges of 1/4 of a monolayer, or by removing 1/4 of the atoms in the surface 
layer, that is by introducing 25% surface vacancies. The same argument applies to 
the zincblende crystals. In other words, the nominally polar surfaces are prone to 
reconstruct. The reconstruction may also involve a relaxation of the bond lengths 
and a change of bond angles.
 Figure 1.27 shows the Ga-terminated GaAs(111) surface as an example. As 
suggested by the considerations above every fourth Ga-atom is missing. Further-
more, the first double layer of Ga- and As-atoms is relaxed to a nearly planar sp2-
type configuration.  

The {100} surfaces of zincblende crystals tend to form dimers like the diamond 
type structures. However, with the surface stoichiometry as a free parameter, 
many complex ordered structures are realized which involve several atom layers. 
A relatively simple generic reconstruction occurs on the {110} surfaces of 
zincblende crystals and on 0110  surfaces of wurtzite which is displayed in 
Fig. 1.28 for the example GaAs. The GaAs pairs in the top layer are tilted by an 
angle of about 28°, which gives the Ga-atoms a nearly planar sp2-type bonding 
and the As-atoms a p3-type configuration. Both electronic configurations are natu-
ral for neutral Ga- and As-atoms with their three and five valence electrons, 
respectively.
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Fig. 1.27. Top and side view of the GaAs(111)(2 2) surface. Ga-atoms are displayed in 
light grey. One quarter of the Ga-surface atoms is missing, i. e. one Ga-atom per unit cell 
(dashed line). Furthermore, the first double layer of Ga- and As-atoms is relaxed to an 
almost planar sp2-type configuration (side view). 

Fig. 1.28.  Top and side view of the GaAs(110) surface. Light grey shaded balls represent 
Ga-atoms. The tilt in the surface bonds by about 28° is caused by the different hybridization 
of the electrons of the surface atoms. Ga-atoms assume a sp2- and the As-atoms a p3-
configuration. 



 1  Structure of Surfaces __________________________________________________________________________ 30

1.2.4 Surfaces with Adsorbates

The large diversity in the structures of bare surfaces is surpassed by the diversity 
of structures of adsorbates covered surfaces. Adsorbates can have three different 
effects on the structure of the substrate surface. By saturating the dangling bonds, 
adsorbates may eliminate the reason for a reconstruction of the bare surface and 
thereby restore the unreconstructed surface. Secondly, adsorbates may cause a 
restructuring of the substrate. This happens in particular for strongly bonded ad-
sorbates. Thirdly, adsorbates may leave the substrate surface largely unaltered and 
merely form ordered commensurate or incommensurate superlattices on top of the 
substrate. In this section, we briefly consider these general aspects. Specificities of 
individual adsorbates are presented in Sect. 6.4.  

Lifting of reconstructions by adsorbates 

Except for the case of very weak bonding, adsorbates alter the reconstruction of 
bare surfaces. Frequently the effect of adsorption is a lifting of the reconstruction 
and a return to the unreconstructed substrate. For covalently bonded substrates, 
this is the case if the adsorbate bonding involves merely the dangling bonds of the 
truncated bulk structure. A well studied and illustrative example is the hydrogen 
covered Si(111) surface with one hydrogen atom bonding to each surface atom. 
Such a surface can be prepared in air by wet chemistry, inserted into a vacuum 
chamber and investigated at length under vacuum conditions without becoming 
contaminated. In addition to being non-reconstructed, surfaces thus prepared are 
rather flat and stable even in air. The physical properties of this ideal surface serve 
as a benchmark for intrinsic surface properties in general. Electronic as well as 
phonon properties have been studied therefore. Hydrogen terminated Si(111)(1 1) 
surfaces also serve as a template for deposition of nanostructures.  

For metal surfaces, the difference in the free surface energies of the recon-
structed and unreconstructed states is significantly smaller than for covalently 
bonded materials. Occasionally, it is therefore possible to lift the reconstruction by 
adsorption and subsequent removal of the adsorbate by gentle heating or by a 
catalytic reaction and preserve thereby the unreconstructed surface as a metastable 
state. An example is the Ir(100) surface [1.41]. The metastable Ir(100)(1 1) is 
obtained by exposing the (5 1)-surface for 2 min to O2 at 475 K, followed by 
annealing to 750 K. The oxygen is removed by exposure to 5 10 7 mbar H2 at a 
temperature of 530 K. The (1 1) surface thereby obtained persists at room tem-
perature. The metastable (1 1) surface is converted back into the stable (5 1) 
surface by annealing to 800 - 900 K. This conversion requires the incorporation of 
20% additional Ir-atoms, which have to be generated from kink site at steps. The 
generation of adatoms from kink sites requires energy which explains that the 
(1 1) surface is metastable. The measured activation energy for the conversion of 
0.9 eV [1.41] appears to be a reasonable number for the formation energy of sur-
face adatoms from kink sites.  
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The (2 1) missing row reconstructions of the 5d-metal (Fig. 1.14) can also be 
removed by adsorption processes, e. g., on the Pt{110} surface by adsorption of 
CO [1.42]. The considerable relaxation times associated with the transport of Pt-
atoms over large distances which is required to lift the reconstruction gives rise to 
oscillatory catalytic reactions under steady state conditions and fascinating spatio-
temporal patterns [1.43, 44]. 

Restructuring of substrates by adsorbates 

In the early days of surface crystallography, substrate surfaces were considered 
rigid templates, merely providing specific sites on which adsorbate lattices would 
unfold. It was not before methods of surface analysis had progressed and the coor-
dinates of many atoms per unit cell could be determined with accuracy that the 
restructuring of substrate lattices under the influence of adsorbates was revealed. 
The hydrogen covered W(100) surface is an interesting example. Hydrogen pre-
fers adsorption in bridge sites, however with the tungsten atoms closer than they 
would be on a (100) surface with a truncated bulk structure. The fact that on the 
clean surface the tungsten atoms are laterally displaced from their bulk positions 
(Fig. 1.17) shows that the atoms on the W(100) surface have some degree of flexi-
bility with respect to sideward motion. With half a monolayer of hydrogen atoms 
the tungsten atoms pair under upon adsorption of hydrogen in bridge sites, and 
these pairs order into a c(2 2) pattern (Fig. 1.29). Upon adsorption of two hydro-
gen monolayers, all possible bridge sites become occupied with hydrogen atoms 
and the tungsten atoms return to their bulk positions with respect to lateral dis-
placements.

Fig. 1.29. The W(100)c(2 2) structure with half a monolayer of hydrogen atoms. Hydrogen 
adsorbs in bridge sites with the tungsten atoms paired.  
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While the restructuring of the W(100) surface upon adsorption of hydrogen is 
revealed only by quantitative structure analysis, the massive restructuring of the 
Ni(100) surface upon adsorption of nitrogen and carbon becomes apparent by the 
systematic extinctions in the diffraction pattern due to the glide planes involved in 
the restructuring. The resulting p4g-structure was already shown in Fig. 1.9.  

Adsorption of alkali atoms likewise habitually induces major reconstructions 
and can give rise to very complicated ordered structures with alkali atoms in the 
outermost surface layer as well as in layers buried in deeper layers. The resulting 
structures are better described as ordered surface alloys than as adsorption struc-
tures (Sect. 6.4.6). 

Adsorbate lattices on rigid substrates 

In cases when the substrates structure does not change upon adsorption, save for a 
minor rearrangement of the atom coordinates, the structure and periodicity of the 
adsorbate lattices is determined by the interplay of the site specificity of the ad-
sorption energy and the interaction between the adsorbate atoms. The distinction 
between these two energetic contributions is somewhat artificial as the interaction 
potential also depends also on the adsorption site. The interaction between adsor-
bates can be purely repulsive, but more typically consists of a combination of 
attractive forces at longer distances, and repulsive forces at shorter distances. In 
many cases, the adsorption energy has a pronounced maximum for one particular 
type of adsorption site, so that only this site is taken at any coverage. An example 
is the adsorption of oxygen and sulfur on transition metals where the oxygen and 
sulfur atoms assume the site of highest coordination, the fourfold hollow site on a 
{100} surface and the threefold hollow site on the {111} surfaces. The resulting 
ordered lattices (Fig. 1.6), e.g. the p(2 2) lattice, are usually observed at coverages 
below the nominal coverage required for forming a perfect lattice. This means that 
islands of ordered structures are formed, which is indicative of attractive interac-
tions. On the other hand, the occupation of nearest neighbor sites (Fig. 1.6) is 
excluded. Thus, at least some form of a hard-core repulsion must exist.  
 Rare gases on metals represent systems with a small, though not vanishingly 
small, site specificity. The lateral interactions are of the van-der-Waals type. Or-
dered commensurate as well as incommensurate structures exist in that case.

1.3 Defects at Surfaces

Ever since researchers thought about properties of surfaces, defects have played a 
prominent role in their considerations. In 1925, Taylor [1.45] proposed that cata-
lytic reactions at surfaces would occur at special active sites. Defects also play an 
important role in crystal growth. A pair of screw dislocations of opposite sign of 
the Burgers-vector, a Frank-Read source, promotes nucleationless growth at the 
step sites on surfaces. The relevance of steps and defects at steps in epitaxial 



  1.3  Defects at Surfaces __________________________________________________________________________ 33

growth was discussed in the seminal work of Burton, Cabrera and Franck [1.46]. 
In this early work, defects were discussed mostly from the standpoint of theory 
since hardly a technique was available whereby defects could be made accessible 
to experimental investigation. The only possibility  decoration of steps and point 
defects by large Z-elements (mostly Au) and imaging the decorated defects in an 
electron microscope  produced images of "dead" defects: After decoration, steps 
cannot change position with time, nor are steps catalytically or otherwise active. 
The invention of the scanning tunneling microscope (STM) and the subsequent 
development of other scanning microprobes changed that situation completely. 
Not only that line and point defects have become visible objects, one can even 
track their motion as they migrate across the surface, in the course of thermal fluc-
tuations, catalytic reactions, epitaxial growth, or abrasion. A remaining, yet 
essential limitation is the large discrepancy in the time scale of the scanning 
probes and the time scale of defect migration. 

1.3.1 Line Defects

Line defects on surfaces are steps, boundaries between different domains of ad-
sorbate structures, and dislocations, but also non-structural defects as the 
boundaries between magnetic or ferroelectric domains. Although these line defects 
are of a very different nature, they also have certain things in common. For exam-
ple, work is required to create the defect and the work depends on the orientation. 
In a coarse-grained description, the static and dynamic properties of all different 
line defects are therefore treated by the same statistical theory. 

Steps

The easiest access to steps of defined orientation, conceptually as well as techni-
cally is via surfaces that are inclined with respect to a low index surface by a small 
angle. These surfaces are called vicinal surfaces (Fig. 1.30). If all steps are one 
atom layer high, which is the generic form of bare vicinal surfaces after prepara-
tion in ultra-high vacuum, the mean number of steps per length is unambiguously 
determined by the angle of inclination . Figure 1.30 shows a schematic view of a 
vicinal surface, together with the most important point defects. For particular azi-
muthal directions, the steps are oriented along a direction of dense atom packing. 
They are nominally free of kinks. In the following, we consider vicinal orienta-
tions on cubic materials. We begin with the vicinals of the {100} surfaces. These 
have Miller-indices of the type {1 1 n}. The surface consist of terraces, each n/2 
atom diameters wide, separated by monatomic steps along a 110  direction. The 
110  direction is the direction of nearest neighbors on {100} surfaces. Steps along 

this direction are therefore (ideally) free of kinks. Figure 1.31 shows a ball model 
of the (1 1 9) surface as an example. The illustration shows that the steps form 
{111} microfacets. A nomenclature for stepped surfaces, that is more descriptive 
than the Miller indices denotes vicinal surfaces by the type of microfacets and the 
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number complete of atom rows on the terraces: the (1 1 9)-surface, e.g., is de-
scribed as 4(100) (111) in this convention. The latter notation immediately 
conveys the atomic picture. The Miller-index notation, on the other hand, is 
unique, and the 

Steps

Vacancy

Adatoms at step

Kink

Adatom

Island

Fig. 1.30. Schematic illustration of a vicinal surface with one-atom layer high steps, kinks 
in steps, adatoms on terraces and at steps, vacancies and islands formed by a group of ada-
toms. 

Fig. 1.31. Ball model of the (1 1 9) surface of an fcc-crystal. The surface consist of 4.5 
atom wide terraces, separated by monatomic step along a 110  direction. 
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rotation angle  with respect to the low index surface can be calculated exactly 
from the scalar product of the normal vectors. For the (111) vicinals one has 
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For small angles 

n/2 (1.10) 

is a useful approximation. The error is smaller than 4% for n > 4. 
Two different types of close packed steps exist on the vicinals of the {111} sur-

faces of fcc-crystals. Depending on the direction of inclination with respect to the 
111  direction, steps can display either {100} microfacets (A-steps) or {111} 

microfacets (B-steps). Figure 1.32 and 1.33 show the (7 7 9) and (9 9 7) surfaces 
as examples. The notation for general {111} vicinals with A-steps is 2nnn .

The width of the terrace is n+2/3 atomic rows, each having a width of  

0|| 6
4

1
3

2

1
aaa (1.11) 

in which a|| is the atom diameter or the atomic length unit parallel to the step direc-
tion and a0 is the lattice constant. The angle of inclination with respect to the (111) 
surface is 
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A good approximation for the angle   is  

)1(3/32 n (1.13) 

The error is smaller than 5% for n > 4. 
The notation for general {111} vicinals with B-steps is 111 nnn . The 

terrace width is an 3/1 . The angle of inclination with respect to the (111) 

surface is 
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   (1.14) 



 1  Structure of Surfaces __________________________________________________________________________ 36

Fig. 1.32. Ball model of the (7 7 9) surface with steps showing {100} microfacets (A-
steps). 

Fig. 1.33. Ball model of the (9 9 7) surface with steps showing {111} microfacets (B-
steps). If one more atom row on the terrace is included in the consideration then the
local structure at a B-step is as on the (110) surface (Fig. 1.10). 
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Here  is approximated by 

n3/2  (1.15) 

The error is below 5% for n > 6.  
The {100} surfaces of the fcc- and bcc-structure have fourfold rotation symme-

try. On the {100} surfaces of the likewise cubic diamond structure the symmetry 
is reduced to a two-fold rotation axis. Vicinal surfaces of the (1 1 n) type have 
therefore two types of terraces, one with the dangling bonds oriented parallel 
[ 011 ] the other parallel to [ 011 ] (Fig. 1.34). Consequently, two types of 
monolayer high steps exist, one with the bonds on the upper terrace perpendicular 
to the step (Sa-steps), the other with the bonds parallel to the step (Sb-steps). We 
note that vicinal Si(100) surfaces with a miscut angle around 4° form double steps 
so that only a single reconstruction domain exists with the dimer rows perpendicu-
lar to the step orientation [1.47].  
 An even larger variety of steps exists on zincblende surfaces since the top layer 
consists of different elements on adjacent terraces. This makes the n11 - and the 

n11 -surfaces nonequivalent. Sa- and Sb-step atoms can be either of the Zn- or 
the S-type atoms. The pairing row reconstructions on Ge(100) and Si(100) leads to 
rows which are parallel to the step on the upper terrace of an Sa-step and perpen-
dicular for an Sb-down step (Fig. 1.35 [1.48]). The two types of steps have 
different equilibrium morphology because of the different energies associated with 
the formation of kinks on the two types of steps [1.49].  

Sb-step Sa-step Sb-step

Fig. 1.34. Ball model of the unreconstructed (1 1 17) surface of the diamond structure with 
one atom layer high steps. Steps descend from left to right. The dangling bonds are drawn 
as triangles. They are rotated by 90° with respect to each other on adjacent terraces. The 
paired surface atoms in the reconstructed phase are like wise mutual orthogonal.  
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Fig. 1.35. STM image of a Si(100) surface with steps. The Sb-steps are rougher than the Sa-
steps since the kink energy is lower on Sb-steps (image from [1.48], original reference B. 
Swartzentruber et al.) [1.49] . 

Domain walls

Ordered periodic structures exist in patches of finite size, called domains. A sim-
ple form of finite size domains is illustrated in Fig. 1.36. Patches of ordered (2 2) 
superstructures are displaced with respect to each other by one base vector of the 
substrate lattice. The line defects between the different domains are called domain 
walls. Depending on the density of atoms in the wall, one distinguishes light and 
heavy walls. Structural domains may also differ in the type of superstructure. For 
example, ordered domains of a (2 2) and c(2 2) superstructure may coexist 
(Fig. 1.37). Domain patterns of this type are typical for systems which realize one 
type of superlattice at one particular coverage and another at a higher coverage 
(  = 0.25 and  = 0.5 in the example) when the coverage is between the two lim-
its. The transition region between one domain and the next in Figs. 1.36 and 1.37 
is abrupt, in other words, the thickness of the walls is only an atomic distance. 
This is typical for adsorbate systems for which the corrugation of the adsor-
bate/substrate potential is large compared to the adsorbate/adsorbate interaction, 
so that all adsorbate atoms reside in the same defined sites. If the corrugation of 
the adsorbate/substrate potential is small compared to the lateral interaction, then 
the thickness of the domain wall increases. An example are the walls between the 
domains of fcc- and hcp-site occupancy on the reconstructed Au(111) surface 
(Fig. 1.12/1.13) which are several atoms wide. If the corrugation of the adsor-
bate/substrate potential is very small compared to the lateral interaction potential, 
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the structure eventually becomes incommensurate. The structure of Au(111) is on 
the borderline between the latter two situations. 

heavy
wall

light
wall

Fig. 1.36. Schematic illustration of light and heavy domain walls in an adsorbate lattice. 
Atoms in the domains are displaced only in one direction. More realistic is a displacement 
also along the vertical direction, permitting the formation of heavy domain walls in which 
the atoms are less close. 

[110]
domain wall

[100]
domain wall

Fig. 1.37. Domains of (2 2) and c(2 2) superstructures on a (001) fcc/bcc-surface with 
domain walls oriented along the [110] and [100] direction.  
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The problem of finding the equilibrium position of atoms in and near a domain 
wall can be mapped onto a simple one-dimensional mathematical model, the 
Frenkel-Kontorova-model (see e.g. [1.50, 51]). The model considers the equilib-
rium states (and in an extension the dynamics) of a linear chain of atoms coupled 
by springs in a sinusoidal potential. The Hamiltonian is of the form 

n
nnn bxUaxxkH )/cos(2-1)(

2

1 2
1   (1.16) 

Here, a and b are the natural lattice constant of the chain (without the potential) 
and of the potential, respectively; k and U are the spring constant and the potential 
depth; the atom positions are denoted by xn. Despite its simplicity, the model is 
very rich in properties (in particular if a kinetic energy term is added [1.51]) and 
describes essential features of domains, domain walls and transitions between 
commensurate and incommensurate phases. Here, we discuss merely the static 
solutions of the model that are relevant for domain walls. By differentiation with 
respect to the atom position xn one obtains the condition for equilibrium as 

0)2(sin)2(2( 11 /bx/bU)xxxk nn-nn . (1.17) 

We consider the case where the number of atoms is half the number of minima of 
the potential, that is a coverage of  = 0.5 and assume that the springs are not 
loaded if the atom distance equals 2b (a = 2b). Then the equilibrium condition is 
fulfilled when the atoms reside in every second potential minimum. We now insert 
one extra atom into the system and assume that the spring constant is very soft, 
kb2 << U. The inserted extra atom then assumes a position close to the potential 
minimum adjacent to another atom, which is thereby pushed out of the position of 
minimum potential (Fig. 1.38a). For symmetry reasons, the displacements u of the 

-u +u(a)

(b)

b

Fig. 1.38. Illustration for two limiting solutions of the Frenkel-Kontorova-model. (a) The 
heavy wall solution for very soft springs (kb2 << U, (b) the incommensurate solution for 
very hard springs kb2 >> U.
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two atoms have the same magnitude, but are of opposite sign. The change in en-
ergy with respect to the energy where all atoms sit in the potential minimum is 

)2cos(12)2(
2

1 22 u/bUubkkuE   (1.18) 

Expanding E for small displacements u one obtains 
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The displacements u which lead to a minimum in E are 

)31/( 22
min rrbu , (1.20) 

with  

U

kb
r

2

2

4
(1.21) 

The displacement u vanishes when the spring constant approaches zero, as they 
should. The energy associated with the two displaced atoms, the domain wall en-
ergy is 

)31(2

)21( 22

w r

rbk
E . (1.22) 

The solution has acceptable accuracy as long as r < 0.5.  
The other extreme case, infinitely stiff spring constants, keeps the atom distance 

at a, and the adsorbate lattice becomes incommensurate with the substrate lattice 
(Fig. 1.38b). However, an analytical solution exists for an interesting intermediate 
case for which the displacements of the atoms un differ from zero over a wider 
range of n, but deviate little from one atom to the next. In that case, the difference 

nn-n uuu 211  can be replaced by the second derivative of u(n) with respect to 

n, n now considered as a continuous variable. Inserting xn = 2b+un into 1.17 one 
obtains the sine-Gordon equation 
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This non-linear differential equation is solved by a trick. One multiplies with 
du/dn to obtain 
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Partial integration yields 
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We are looking for a particular solution which satisfies the boundary condition 
that u(n)  0 for n  and u(n) b for n . Hence K = U/k. Further cal-
culation yields  
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After integration and solving for u(n) one obtains 

))/(exp(tan)2()( -1 rnb/nu  (1.28) 

Figure 1.39 shows solutions for r = 1 and r = 5. The width of the domain wall is 
about 4r. The domain wall energy in this case is 

)/(2 22
w rkbE  (1.29) 

The solution has acceptable accuracy for r > 1. 
Because of the periodicity of the potential, the domain wall has the same ana-

lytical form if the center is shifted to any arbitrary value of n. Localized non-
harmonic excitations like this are generally called solitons. More than one soliton 
and a periodic arrangement of solitons are further possible solutions of the sine-
Gordon equation (1.23).  
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Fig. 1.39. Relative displacement u(n)/b of the atom positions according to the continuum 
solution (1.28) of the Frenkel-Kontorova model. The width of the domain wall increases 
proportional to r.

Dislocations 

Domain walls in adsorbate lattices (Figs. 1.36, 1.37) may be considered as special 
forms of dislocations, which have their core at the interface between the adsorbate 
and layer and the first substrate layer. The direction of the dislocation line coin-
cides with the direction of the domain wall. A ball model of the solution of the 
Frenkel-Kontorova-model discussed in the previous section is shown in Fig. 1.40. 
 The Burgers-vector of the dislocation as constructed by a closed lattice path 
(Burger's circle) is perpendicular to the dislocation line (and parallel to the inter-
face). The dislocation is therefore an edge dislocation. Interface dislocations are 
ubiquitous in the heteroepitaxial systems.  

b

Fig. 1.40. Ball model of a dislocation at the interface between a substrate (large dark balls) 
and an epitaxial pseudomorphic layer (small light balls). The Burgers vector b is parallel to 
the interface and perpendicular to the direction of the dislocation line. 

Dislocations cannot end inside bulk material. The dislocation depicted in Fig. 1.40 
could extend (perpendicular to the plan of drawing) until it ends at the boundary of 
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the crystal, which is unlikely because of large lateral extension of the film com-
pared to its thickness. Alternatively, the dislocation may form a closed loop at the 
interface, or it could bend upwards, go through the deposited film and end at the 
surface. In the latter case, one speaks of threading dislocations. As threading dis-
locations exist inside the film, they may have detrimental effects on its electronic 
properties. One therefore attempts to keep the dislocations at the interface, if pos-
sible. 
 On the reconstructed Au(111) surface, the surface layer atoms alternate be-
tween fcc- and hcp-sites (Fig. 1.12). In the language of dislocation theory, this 
type of dislocation is called a Shockley partial dislocation, "partial" because the 
glide vector amount to a fraction of a lattice unit. Two of these partials make one 
full displacement from one fcc-site to the next (Fig. 1.12). The atom positions of 
the Au(111) system may be described by a Frenkel-Kontorova type of model with 
an alternate sequence of two different potential valleys [1.14]. Similar cases that 
have been studied extensively are the monolayer deposits of Ag on Pt(111) [1.52] 
and Cu on Ru(0001) [1.53].  

(a) (b)

(1)

(2)

Fig. 1.41. STM images (50 nm  50 nm) of dislocations at Ag(111) surfaces. (a) A step 
originates at the point where the core of a screw dislocation meets the surface. The step 
height increases gradually to the height of one atom layer. When this height is reached, the 
step appears fuzzy due to rapid kink motion along the step. The sharp lines forming a 60° 
angle are due to Shockley partial dislocations, i.e. due to stacking faults in the )111( and 

)111(  planes inside the bulk. (b) STM image displaying the full base triangle of a tetrahe-
dron with stacking faults in the )111( , the )111( , and the )111(  plane. The step height 
from the lower terrace onto the triangular plane is 2/3 of step height of a monolayer, the 
step height from the triangle to the next terrace amounts to 1/3 of a monolayer. 

Surface line defects are also produced when a dislocation line of a bulk screw 
dislocation or of a dislocation with some screw character emerges at the surface. A 
step originates at the point where the dislocation core meets the surface. Such 
steps are frequently observed in STM images of metal surfaces, in particular when 
the samples have experienced a longer history of sputtering and annealing cycles, 
a procedure prone to generate dislocations in ductile metal crystals. An early re-
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port on dislocations concerns the Ag(111) surface [1.54]. Figure 1.41 shows STM 
images of an Ag(111) surface with several features caused by dislocations. In 
Fig. 1.41a a step emerges on the surface (arrow (1)) which increases in height until 
the height of a monolayer is reached at (2). From thereon the step appears rough 
due to the rapid motion of kinks along the step edge on Ag-surfaces at room tem-
perature (Sect. 1.4.2). The sharp lines forming a 60° angle are due to Shockley 
partial dislocations. These consist of stacking faults in the )111( and )111(  planes 
inside the bulk. In Fig. 1.41b a full base triangle of a tetrahedron next to a normal 
step is visible. The tetrahedron is terminated by )111( -, )111( -, and )111( -
planes in the bulk of the material along which a plane of atoms reside in hcp-sites. 
These stacking faults give rise to non-integer steps (in units of a monolayer). The 
step height from the lower terrace to the plane of the triangle is 2/3 of a 
monolayer, the step height from the triangle to the next layer 1/3 of a monolayer. 
Since the non-integer steps represent the protrusion of a bulk defect, no kinks exist 
on these steps. The edges of the triangle appear therefore sharp in the STM-image. 
 Bulk defects, which appear as protrusions on the surface are frequently ob-
served on lattice-mismatched, epitaxial films. Thin films of Cu grown on the 
Ni(100) surface are an example [1.55]. The compressive strain in the Cu- 

(111) (111)

1 ML 2 ML 3 ML

Fig. 1.42. Epitaxial growth of copper on Ni(100). Strain in the first monolayer is relieved 
by displacing a row of Cu-atoms (light balls) with respect to the other Cu-atoms. An addi-
tional row of Cu-atoms is inserted with each further layer, whereby internal {111} facets 
are formed. The faulted areas are higher at the surface and are therefore visible in STM-
images as rectangular shaped area of slightly larger height (after Müller et al. [1.55]).  
films due to the 2.6% misfit of the lattice constant is relieved by the introduction 
of stacking faults into the first Cu-layer, and a gradual build-up of internal {111} 
facets. The process is illustrated in a ball model in Fig. 1.42. 
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1.3.2 Point Defects

Kinks

The most important point defect on surfaces is the kink. Figure 1.43 shows kinks 
in a step running along the direction of dense atom packing. Atoms in this particu-
lar site have the coordination 6. In German, this site is called a Halbkristallage
(literal translation: half crystal position). A Halbkristallage is a very special site 
indeed: it takes exactly the cohesive energy per atom to move one atom from this 
site into the vacuum. The reason is that the kink reproduces itself when an atom is 
removed. By taking one atom after another, firstly an entire row of atoms is re-
moved, until one comes to the end of the surface, then one might start on the next 
step. Every once in a while, one removes an atom of higher or lower coordination 
in the process, but for an infinite crystal the number of such atoms is vanishingly 
small compared to atoms at kink sites. The atoms in kink sites representing a 
Halbkristallage therefore determine the vapor pressure of solids.  
 Kinks in steps exist as thermal excitations. Their equilibrium concentration 
depends on the energy1

k required to generate a kink (Fig. 1.44). For a densely 

Fig. 1.43. Ball model of a (100) surface with a step along the [011] direction, which has 
kinks: two single atom kinks of opposite sign and a kink, which has a length that corre-
sponds to three atom diameters. 

packed step, this amounts to half the energy required to break one bond, alterna-
tively, the energy involved in the reduction of the coordination number of a step 
atom by one. If the energy were a linear function of the coordination, then the kink 
energy would be one 12th of the cohesive energy. For copper that would amount 
to 290 meV, much larger than the experimental values ( k{100}= 129 meV and 

k{111}= 117 meV [1.56]). 

1 More precisely, it is the work required to generate a kink (See Sect. 3). For a 
surface in vacuum, the work is the change in the Helmholtz-free energy, which is 
approximately equals the energy if the temperature is low. 
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Fig. 1.44. Two kinks are generated by shifting a row of step atoms sideways. On the {100}  
and {111} surfaces of an fcc-material step atoms at densely packed steps have the coordina-
tion 7 and a kink atom has coordination 5. Two atoms are therefore brought from 
coordination state 7 to 6 in the process depicted above.  

A better estimate for defect energies is obtained by scaling the binding energies of 
atoms with a fractional exponent of the coordination 

)/()( bulkcoh CCECE . (1.30) 

Figure 1.45 shows the binding energy of an atom as a function of the coordination 
number relative to the cohesive energy for Cu, Ag, and Au according to the effec-
tive medium theory (EMT) in lowest level of approximation [1.57]. The theory is 
equivalent to the embedded atom model (EAM) [1.58].  
 The good fit of the "data"-points in Fig. 1.45 to the solid curve (  = 0.3) should 
not be overrated; it is a consequence of the basic structure of the model, and not 
necessarily realistic in detail. By applying (1.30) with  = 0.3 to Cu (cohesive 
energy 3.49 eV) one obtains for the kink energy k{100} = k{111}= 134 meV, which 
is close to the experimental numbers. 
 Since the kink energy is merely a small fraction of the cohesive energy, a con-
siderable concentration of kinks exists at steps even at moderate temperatures. The 
concentration of kinks of either sign is  

)/exp(2 Bkk TkP (1.31) 

in which kB is the Boltzmann constant and T the temperature. Eq. (1.31) holds if
kBT is a fraction of k so that Pk << 1. To stay with the example copper the kink 
concentrations are Pk(111) = 0.022 and Pk(100) = 0.014 at 300 K. 
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Fig. 1.45. Binding energy of atoms vs. coordination number for Cu, Ag, and Au, according 
to effective medium theory (EMT) in its lowest order approximation [1.57]. The solid line 
is a fit according to (1.30) with an exponent  = 0.3. 

In Fig. 1.35 a vicinal Si(100) was displayed with two different types of steps, the 
Sa-steps parallel to the dimer rows on the upper terrace, and the Sb-step perpen-
dicular to the dimer rows on the upper terrace. Both steps contain kinks 
corresponding to an equilibrium concentration at about 600 °C [1.49]. The kink 
concentration on the Sb-steps is significantly higher than on the Sa-step, calling for 
a lower kink energy on the Sb-steps. In addition to kinks of one dimer unit there 
are many kinks which have a length of several dimer units, in particular on the 
rough Sb-step. Swartzentruber et al. have fitted the observed concentrations of 
kinks of various lengths to a model, which assumes that the kink energy is propor-
tional to its length plus a corner energy.  

nn kcorner)( (1.32) 

with n the length of the kink in dimer units. The corner energy corner was deter-
mined to 80 meV, and the kink energy per length k = 28 meV and 90 meV, for the 
Sb- and Sa-steps, respectively. The kink energies on Si(100) are much smaller than 
for Cu, in particular in relation to the cohesive energy (3.5 eV/atom for Cu, 
4.6 eV/atom for Si). This is because no nearest neighbor bond breaking is required 
to generate kinks on the Si(100) surface due to the reconstruction.  
 In addition to kinks in thermal equilibrium, forced kinks exist on surfaces if 
steps run along a direction off the direction of dense atom packing. One possible 
reason is pinning of steps by impurities. Another typical case is a step as a bound-
ary of a two-dimensional island. The step has then has segments of all directions 
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and the concentration of forced varies along the perimeter of the island. A system-
atic way to produce steps with a uniform orientation in a particular direction is to 
cut the surface as a vicinal surface. Figure 1.46 shows a ball model and an STM-
image of a Cu(5 8 90) surface as an example [1.59]. By virtue of these forced 
kinks, surfaces acquire a chiral character, which can be exploited to achieve enan-
tioselectivity in catalytic reactions [1.60, 61].  

110

(a) (b)

Fig. 1.46. Ball model of a (5 8 90) surface of fcc (a) and a STM image of the Cu(5 8 90) 
surface (b). The real surface has a concentration of forced kinks according to the angle of 
cutting. Locally, the kink concentration fluctuates. Note that the surface has a chiral charac-
ter (courtesy of Margret Giesen, [1.59]).  

We note further that the product of the equilibrium concentrations of the kinks of 

the majority and minority type is )/2exp( Bkkk TkPP . The equation is the 

same as for the product of electrons and holes in semiconductors (eq. 3.14): in 
both cases, a thermal activation process creates an equal number of species of 
either type (positive and negative kinks, electrons and holes). For kinks, the law of 
mass action has little practical value as hardly any kink of the minority type is 
found in STM-images (Fig. 1.46). 
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Adatoms and vacancies 

Atoms in kink sites (Halbkristallagen) determine the vapor pressure since the kink 
reproduces itself in the process of evaporation. By the same argument, the "vapor 
pressure" of a dilute two-dimensional lattice gas, in other words the concentration 
of atoms on a terrace is determined by the energy EA required to bring an atom 
from a kink site onto the terrace. Expressed in units of available sites, the equilib-
rium concentration of adatoms on terraces adatom is

)exp( BAadatom T/kE . (1.33) 

The same equation hold for the equilibrium concentration of vacancies when the 
energy required taking an atom out of the surface and moving it to a kink site is 
inserted in (1.33). Note that the equilibrium concentration is independent of the 
position of the adatom or vacancy on the terrace, as long as the energy does not 
change as a function of position. The equilibrium concentration of adatoms and 
vacancies is very low at room temperature: On Cu-surfaces 10-12 (EA = 0.7 eV) is a 
typical number. Despite their low concentration, adatoms and vacancies mediate 
noticeable mass transport processes on Cu-surfaces at room temperature because 
of their rapid movement. For the same reason, adatoms and vacancies cannot be 
observed in STM-images unless the surface temperature is very low (Sect. 1.4.2). 
Then, however, only atoms deposited at low temperature or vacancies generated at 
low temperature, e.g. via sputtering can be seen. The equilibrium concentration 
escapes observation. Thus, there is no direct experimental access to the equilib-
rium concentration and the energy of formation for these defects, in contrast to 
kinks in steps. Vacancies in surfaces can be made visible by decoration experi-
ments. Deposition of a small amount on Mn or In leads to a decoration of 
vacancies as Mn or In atoms move into the empty sites and appear as an immobile 
protrusion of the surface there. Since vacancies are generated at steps, the deco-
rated, immobilized vacancies form a spotted band along both sides of steps [1.62, 
63]. These experiments reveal something about the kinetics of vacancy generation 
and diffusion, but not about their equilibrium concentration.  

Cluster, Islands, Mounds 

A two- or three-dimensional compound of a few identical or different atoms on 
surfaces is called a cluster. The term cluster is used in particular when the unit 
forms a chemically different species, such as a C60-cluster. Sometimes, in particu-
lar in theory, the term is also employed for units of a very few atoms (2-10) of the 
same element or compound as the substrate. The term island is used for an ensem-
ble of many atoms (> 100) on a surface.  If the island is only a monolayer high, 
then it is called a two-dimensional (2D) island. Three-dimensional islands are 
sometimes called stacks, mounds or hillocks depending on their shape. 
 Cluster, islands, and mounds on surfaces escape the scheme of classification 
employed here, insofar as their physical properties have 0-3 dimensional aspects. 
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Islands may trap an electron wave function, in particular that of a surface state 
(Sect. 8.3.3), thereby bearing the property of a quantum dot, hence a 0D property. 
The outer boundary, a step is a 1D feature. Larger islands have an extended, in 
case of heteroepitaxial islands possibly strained surface, giving them a particular 
2D aspect. Finally, large multilayer islands represent 3D solid matter in a particu-
lar state.  

1.4 Observation of Defects 

Scanning probe microscopies, in particular the STM, have become the most im-
portant tool to observe and investigate defects on surfaces. Their great advantage 
is obvious: the nature and shape of the defects is identified from the images, their 
atomic structure can be seen directly, and their motion on the surface can be 
tracked. Nevertheless, diffraction techniques stand their ground. At elevated tem-
perature, often even at room temperature, defects migrate across the surface far 
too fast to be imaged by the comparatively slow scanning microprobes. Diffrac-
tion techniques can still provide information on average properties, such as the 
mean concentration of defects or the mean shape of islands. For these reasons, 
diffraction, primarily electron diffraction, is still employed in surface defect analy-
sis (for a review see [1.64]).  

1.4.1 Diffraction Techniques 

Stepped surfaces 

A classical diffraction experiment concerns vicinal surfaces with regular step ar-
rays. Such a surface has two periodicities, one is the atomic periodicity of the flat 
terraces, and the other one is the periodic array of steps and terraces. Diffraction 
therefore requires constructive interference with respect to both periodicities: a 
LEED spot arising from the surface unit cell can only appear as a (single) spot if 
one has constructive interference also with respect to diffraction from different 
terraces. This amounts to a third Laue condition concerning the wave vector com-
ponents perpendicular to the terraces. 

/hn20 Gkk (1.34) 

Here, n is an integer, h is the vertical distance between terraces and 0k  and k

are the components of the wave vector of the incident and the diffracted electron 
perpendicular to the terraces (not to the macroscopic surface!). If one has destruc-
tive interference (n = 1/2, 3/2...) then the intensity is zero at the position of the 
beam diffracted from the flat surface. The diffracted intensity then appears in two 
spots, symmetric on both sides of the original spot. Figure 1.47 displays the 
Ewald-construction for diffraction from a vicinal surface with periodic steps. The 
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spot intensities can be calculated in kinematic approximation in a little model. The 
model considers only s-wave scattering from the surface atoms. The surface atoms 
are assumed to be arranged in rows oriented parallel to the step direction. We are 
interested in the case in which the scattering vector K = k k0 is perpendicular to 
the steps.  

(00) (01) (02)(01)(02)

k0

k

Fig. 1.47. Ewald-construction for diffraction from a vicinal surface with periodic steps. 
Diffracted intensity occurs when the scattering vector K = k k0 ends in the shaded areas. 
Diffraction spots alternate between singlet and doublets. 

The position of the atom rows on the surface rn,m are denoted by the vector  

zn,m hman eer x (1.35) 

with ex and ez the unit vectors along and perpendicular to the surface of a terrace, 
respectively, and a the distance between the atom rows. The scattered intensity is 

2
ie

n,m

n,mI rK  (1.36) 

We assume a regular array of M terraces each possessing N atom rows and obtain. 
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The second term in (1.37) is the stringent interference condition describing the 
spot size if the number of interfering terraces M is large compared to the number 
of atoms on an individual terrace N. The smoother interference function of the N
atoms modulates the intensity of the spots. Figure 1.48 illustrates the two terms for 
N = 5 and M = 50, for the case of destructive and constructive interference be-
tween terraces, respectively. For constructive interference between terraces, that is 
for a particular energy, a diffracted beam appears as a single sharp diffraction 
peak. As the energy is lowered or increased the relative position of the sharp peaks 
(short-dashed lines in Fig. 1.48) and the broad peak (long-dashed line) shift with 
respect to each other. The product function then has its peaks shifted either to-
wards the left or to the right of  = 0. Eventually a second peaks appears, and 
gains intensity. Under condition of destructive interference between terraces the 
two peaks have the same intensity and appear symmetric around  = 0. The width 
of the splitting is a measure of the terrace width: The magnitude of the splitting in 
units of the distance between diffracted spots is the inverse of the width of the 
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Fig. 1.48. Diffracted (00) intensity for perpendicular incidence from a vicinal surface with 
50 terraces possessing 5 atoms each for destructive (top) and constructive (bottom) interfer-
ence between the terraces (solid line). The long-dashed line is the scattered intensity from a 
single terrace (first factor in eq. (1.37)). The short-dashed line represents the interference 
between the terraces (second factor in eq. (1.37)).  
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terraces measured in number of atom rows. We have assumed that the terrace 
widths are all the same. Then, the sharpness of the spots depends only on the 
number of terraces contributing coherently to the scattering. In the calculated ex-
ample 5 50 = 250 atoms contributed coherently. In reality, one has a distribution 
of terrace widths. The broader the terrace width distribution, the broader are the 
spots. The terrace width distribution can therefore be determined by measuring the 
intensity of diffracted spots with high accuracy. Due to the finite angular and en-
ergy resolution, conventional LEED-display systems (Fig. 1.2) do not suffice for 
that purpose. Spot Profile Analysis Low Energy Electron Diffraction (SPALEED) 
requires special equipment, which is commercially available.  

Diffraction from other defects

Each type of defect gives rise to a particular diffraction pattern according to the 
structure of the defect and its embedding into the surface matrix [1.64]. This spe-
cific diffraction pattern can be used to identify the nature of the preponderant 
surface defect and to analyze its shape, size and concentration. However, with the 
availability of scanning microprobes, diffraction patterns have lost importance in 
studies of surface defects. Presently, diffraction techniques are mainly employed 
in cases where the defects exist merely on a very short time scale, move rapidly 
about on the surface in the temperature range of interest, or exist only under ex-
perimental conditions where scanning microprobe cannot be brought to bear. We 
therefore focus our discussion on one situation of this type and the typical defects, 
which are encountered there, and consider a surface that is subject to exposure by 
a constant flux of atoms or molecules. In order to ensure the epitaxial growth of a 
smooth surface the substrate temperature is typically chosen such that adatoms 
and other defects have a high mobility. With the exception of a very short period 
of nucleation, steady state concentration of the deposited atoms is small since they 
are quickly captured by the already existing nuclei (Sect. 11.1.1). The deposited 
single atoms have therefore no effect on the scattering. The preponderant defects 
during steady state growth are three-dimensional crystallites or monolayer high 
islands of deposited material. We consider the case of layer-by-layer growth:
Then, the surface alternates between two limiting states, a flat surface and a sur-
face covered with half a monolayer of islands of a particular size. The island size 
is determined by the nucleation density on the flat surface (Sect. 11.1.1). In the 
latter state, the surface has therefore a high concentration of steps that form the 
perimeter of the islands. In contrast to vicinal surfaces, these steps have all orien-
tations. Constructive and destructive interference between scattered beams 
therefore concern all directions. Depending on the energy, the lattice diffraction 
spots would therefore alternate between the sharp spots and rings. As the islands 
generated in a nucleation process have a distribution of sizes, the diffraction spots 
alternate between sharp spots for constructive interference, and blurred spots for 
destructive interference between terraces. The mean size of the spots when they 
are blurred, measured in terms of the distance to the next reciprocal lattice rod, is 
the inverse of the mean island size, measured in terms of corresponding surface 
lattice. The shape of the blurred spot reflects the shape of the islands: square 
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shaped-islands produce square-shaped spots. If the islands have rectangular shape, 
the spot are likewise rectangular with their long edge in the direction of the short 
edge of the islands in real space.  
 Since the time scale of the interaction of the electron with the solid is of the 
order of 10 16 s, which is much shorter than the time scale of any configuration 
changes on the surface, the scattering pattern reflects an average over snapshot 
images of the surface structure under the particular growth conditions.  

1.4.2 Scanning Microprobes 

The first instrument that enabled the imaging of surfaces with atomic resolution 
was the Field Ion Microscope (FIM) developed by E. W. Müller [1.65]. Though 
this technique is applicable only to the low index surfaces of a limited number of 
materials, many results of persistent importance on the diffusion of single atoms 
and of clusters consisting of a few atoms were obtained by this technique [1.66]. 
The major drawbacks of the method are the restrictions concerning sample mate-
rial and crystal faces and the smallness of the surface areas that can be 
investigated. The Scanning Tunneling Microscope (STM) invented by Binnig and 
Rohrer in 1982 [1.67] does not suffer from those shortcomings. Over the years, 
STM has been developed to become the instrument for the investigation of surface 
morphologies on all length scales as well as of atom-size surface defects. It is no 
overstatement to talk about a Surface Science before and after the appearance of 
STM. Before the advent of STM, the focus was on the periodic, crystallographic 
structure of surfaces. The STM has opened our eyes to the richness of large scale 
morphological (mostly non periodic) features on surfaces and also to the fact that 
there is a rapid migration of atoms on surfaces at room temperature or above, even 
on those surfaces which appear as totally calm and rigid in their diffraction pat-
tern. STM and other microprobes are not confined to vacuum environment. The 
Electrochemical STM has become a standard tool for atomic scale studies of proc-
esses on surfaces in contact with an electrolyte. STM is even more dominant in 
that field than in vacuum surface science because most classical surface probes 
that employ electron-, atom-, or ion-beams are not applicable in an electrolyte 
environment.  
 In the more recent years, various derivatives of the STM such as the Spin Po-
larized Scanning Tunneling Microscope (SPSTM) have debuted. The Atomic 
Force Microscope (AFM) originally suffering from a lower, non-atomic resolu-
tion has now a lateral resolution comparable to the STM, and has found 
widespread application in the investigation of insulator and soft matter surfaces. 
Nevertheless, for the surfaces addressed in this volume, STM remains to be the 
most important microprobe. We briefly describe the experimental technique in the 
following, as well as some particular features, which have to do with the time 
scale of the STM imaging process in relation to the persistence time scale of sur-
face phenomena, and consider tip surface interactions.  
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The scanning tunneling microscope 

The basis of the STM is the quantum mechanical tunneling process and its ex-
treme sensitivity on the width of the tunnel gap. A sharp metallic tip (ideally 
terminated by a single atom) is immersed into the evanescent electron wave func-
tions outside the solid surface. For small tunneling voltages, the tunneling current 
is proportional to the density of those electrons in the tail that have their energy at 
the Fermi-level. As the electron density decreases exponentially with the distance, 
the tunnel current also decreases exponentially with the distance. In the standard 
mode of operation, the tunnel current is held constant by a feedback loop, so that 
the tip follows the contour of constant density of electrons at the Fermi-level. An 
alternative mode of operation is the constant height modus. The latter is employed 
in particular for fast scans (video frequency) over small and mildly corrugated 
surface areas.

piezoceramic
actuators

studs support

sample

sample holder

tunneling tip

ramp

stainless steel balls

Fig. 1.49. The STM of Frohn, Wolf, Besocke and Teske [1.68]. 

The lay-out of tunnel microscopes has changed considerable since the first design 
of Binnig and Rohrer [1.69]. Here, we review the design of Frohn et al. [1.68] 
(frequently also referred to as the Besocke-microscope) which has the advantage 
of a very small temperature drift due to its built-in compensation of thermal ex-
pansions. The microscope is shown in Fig. 1.49. The central piezoelectric actuator 
carrying the tunnel tip is fixed to a tripod of three further piezoelectric actuators of 
the same type each resting on a 120° ramp. Oxidized stainless balls are mounted 
on the latter three actuators. The central position of the actuator carrying the tip 
and the fact that all four actuators are alike ensures an almost perfect thermal 
compensation, so that the tip has very little thermal drift with respect to the sur-
face, neither laterally nor vertically. Scanning along the xy-directions is performed 
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either by bending the actuators of the tripod or by bending the central actuator. In 
order to operate the STM in the latter mode the central actuator must feature two 
pairs of metal plates for bending (preferably, in the upper part close to where the 
actuator is fixed to the tripod) in addition to the tube metal plating for the vertical 
motion of the tip. The STM is positioned onto the sample holder by lowering the 
entire four-actuator unit by the support ring. Because of the tripod arrangement, 
the system is mechanically quite stable and insensitive to vibrations. Atomic reso-
lution is obtained with a minimum of vibration insulation, e.g. by placing the 
sample on a stack of metal plates with Viton  dampers in between. Better insula-
tion, in particular against sound, is obtained by placing the microscope on a base 
plate that is suspended by soft, damped springs. 
 The microscope works also in an inverted form: the four-actuator unit is 
mounted on a base plate with the tip pointing upwards while the ramp/sample unit 
rests on the three stainless steel balls of the outer three actuators. This latter ver-
sion recommends itself in cases where in-situ samples changes via a transfer 
system are required. Controlled heating of the sample to temperatures above room 
temperature is also possible in that case. One has the additional technical advan-
tage that the STM head with its large number of electric leads need not be moved 
about. The version shown in Fig. 1.49 is more suitable if cooling of the sample 
below room temperature is desired.  
 Despite its undisputable advantages, the Besocke-microscope has also the dis-
advantage that the coarse approach is delicate and requires a good match of 
sample and tip adjustment within a margin of a few tenth of a millimeter. Com-
mercial microscopes for standard applications tend to trade off stability and small 
thermal drift for easier handling by employing xyz-linear motors for the tip ma-
nipulation and a sample mount that permits an easy exchange of samples. 

The time structure in scanning probe images 

The time required for a single STM image ranges between 50 ms and a few min-
utes. The shortest times per frame are obtained by using the constant height mode 
with the feedback loop shut off. A video-frequency repetition rate of STM-frames 
is thereby achieved. However, even a video STM is a slow instrument the time 
scale of atom diffusion, unless the temperature is correspondingly low. Imaging 
single atoms requires therefore cooling of the sample, in many cases down to the 
liquid helium range. The situation is different when the atoms are part of a peri-
odic structure. Then the lateral interactions keep the atoms in place even at room 
temperature and above. Atomically resolved images of periodic adsorbate struc-
tures are therefore readily obtained.  
 Similar considerations apply to images of other morphological features. In all 
cases, the effect of the relative time scales of the imaging process and of possible 
structural changes on the surface have to be taken into account. A good example 
for the importance of the time scale is the fuzzy appearance of monatomic steps 
(Fig. 1.41 and 1.46). The STM tip finds the step at a different position in each scan 
line (see also Sect. 10.5). 
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Tip surface interactions 

The original use of the STM was to investigate surface structures. In the course of 
these investigations, researchers frequently found that the tip had an effect on the 
image. Atoms appeared to be dragged along with the tip and occasionally entire 
steps were drawn from one position to another [1.70]. These effects frequently 
depend on tunneling voltage and current, unfortunately not always [1.71]. The 
very presence of a tip above an atom can have an effect on the activation energy 
for diffusion. Papers have been published which called the entire use of STM for 
quantitative analysis of surface diffusion studies into question, but this is throwing 
the child with the bathtub. In many cases, the tip has no effect on the observed 
processes and there are simple test to prove that this is so. One simply has to make 
sure that no quantitative aspects of the data depend on the time the tip spend over 
the investigated area and also not on the number of times the STM tip had visited 
the area in question. Such test are performed by comparing data obtained with 
different scan speeds, or even better, with data that are obtained by introducing a 
variable pause in the scan process after each scan line, and compare that data with 
those obtained in continuous scanning. 
 There is also a good side to tip/surface interaction: the tip can be used to ma-
nipulate atoms on surface, move them about and place them into patterns in a 
controlled way [1.72, 73]. In these days, it seems that every university or research 
institute likes to see its logo made with atoms using STM-tip manipulation. Atoms 
can be moved by using the tip as a push rod. One can also employ attractive forces 
between the tip and an adatom or adsorbed molecule [1.73]. Alternatively, an ad-
sorbed molecule can be attached to the tip by applying a suitable potential, and 
then dropped at the desired place on the surface. Aside from making logos one can 
do other, scientifically more interesting things with atom manipulation. Studying 
and inducing chemical reaction on a single molecule [1.74, 75] is one, building 
special quantum structures [1.76, 77] another (see Sect. 8.3.3). 

1.5 The Structure of the Solid/Electrolyte Interface

This section is brief for two reasons. One reason is that experimental results on the 
crystallographic structure of the solid/electrolyte interface are scarce. Secondly, 
some structures of solid surfaces in vacuum as discussed in the preceding sections 
persist in an electrolyte environment. For example, the reconstructions of the 
Au(100), (110) and (111) surfaces exist also when the surface is in contact with an 
electrolyte. However, one feature is unique to the interaction with the electrolyte 
and the associated charging of the surface. That is the phase transition to an unre-
constructed state of the surface at positive potentials of the gold sample. The 
potential induced phase transition is a consequence of the interfacial thermody-
namics, which is discussed in detail in Section 4.2.3. The definition of an 
electrode potential and the standard experimental setup in electrochemical work is  
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Fig. 1.50. Model for an electrolyte near a solid surface. See text for discussion. 

described in Section 2.3. Basic properties of the electrolyte in the vicinity of the 
solid are described in Section 3.2.3. Here, we focus on a general introduction to 
structural properties at the solid/electrolyte interface.  
 It is convenient to divide the interfacial region conceptually into three zones 
(Fig. 1.50), the solid, a layer of strong electrolyte/solid interaction called Stern 
layer (circumscribed by dashed lines), and the electrolyte in the vicinity of the 
solid but far enough to maintain its character of a bulk liquid electrolyte (circum-
scribed by dotted lines). We assume the electrolyte to be an aqueous one. Within 
the electrolyte, ions are dressed by solvation shells of polarized water molecules, 
which screen the fields originating from the ions (Fig. 1.50). The ions with their 
solvation shell carry a net charge, which moves in an electric field. A space charge 
layer can build up near the solid surface, with a characteristic decay length de-
pending on the ion concentration in the electrolyte. The electrical properties of this 
zone can be treated in a continuum approximation (Sect. 3.2.3). 
 The Stern layer consists (i) of water molecules, (ii) of ions, which have kept 
their solvation shell and (iii) ions in a chemisorbed state. Electrochemists call 
these adsorbed species specifically adsorbed ions to distinguish between species 
that adsorb directly on the solid surfaces and those ions that keep their solvation 
shell. The term is somewhat unfortunate as it carries the connotation that the ions 
retain their ionic character at the surface, which is not at all the case (see Sect. 
3.1.3). It is a well-known result of Solid State theory (although not always appre-
ciated in full consequence) that the electrons of the solid screen the ions almost 
completely leaving only a modest polarization, which gives rise to a modification 
of the work function. Examples for "specifically adsorbed ions" are Cl, Br, or SO4,
to name a few. When these species are adsorbed on the surface, they form struc-
tures and superlattices, in principle as known from vacuum physics. For a limited 
number of systems a structure analysis with a limited scope has been performed 
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using GIXRD (see e.g. [1.78]). The surface concentration and thereby the struc-
ture is controlled by the surface charge on the solid. This aspect is considered later 
in Sect. 6.2.5. 

(a) (b)

(c) (d)

Fig. 1.51. (a) The bi-layer structure of water in densely packed adsorbate layers as pro-
posed in 1980 [1.79] from vibration spectroscopy. In order to form a 2D-network three of 
the hydrogen atoms pointing upwards or downwards have to be committed to bond oxygen 
atoms to neighboring rings. In 2002 Meng et al. [1.80] showed that the structures shown in 
(b) and (c) with hydrogen and oxygen lone pair bonding to the surface have nearly the same 
energy. According to Ogasawara et al. [1.81] the oxygen atoms should be nearly coplanar 
and bond to the surface alternatively by the oxygen-lone pair orbital and by hydrogen bond-
ing (d).

The bonding of water molecules has been investigated theoretically and experi-
mentally for metal surfaces. The bonding of single water molecules is discussed in 
Sect. 6.4.4. More relevant to the solid/electrolyte interface is the structure of water 
that forms at higher coverage. From vibration spectroscopy is was concluded that 
water molecules form hexagonal rings of bi-layers and that the water molecules 
bond to the Pt-surface in two ways, via the oxygen lone pair bonds and via hydro-
gen bonding with the hydrogen atoms pointing downwards [1.79] (Fig. 1.51a). In 
order to form a defect free 2D-network three of the hydrogen atoms pointing up-
wards or downwards have to be committed to bond the oxygen atoms of neighbor-
ing rings. The lateral position of the oxygen atoms in the network is as in graphite 
[1.82, 83]. In 2002 Meng et al. [1.80] showed that the structures displayed in 
Fig. 1.51b and 1.51c with hydrogen and oxygen lone pair bonding to the surface 
have nearly the same energy on Pt(111). In the same year, Ogasawara et al. pro-
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posed [1.81] that the oxygen atoms should be nearly coplanar with a buckling of 
merely 0.25Å (Fig. 1.51d). According to their model, the oxygen atoms bond to 
the surface alternatively by the oxygen-lone pair orbital and by hydrogen bonding. 
There is consensus that the oxygen atoms are placed in the a-top position on 
Pt(111). For the case of Ru{0001} a structure involving a partial dissociation of 
water was proposed [1.84, 85]. However, the structure was not confirmed for other 
surfaces. It is therefore probably less relevant for solid/water interfaces at room 
temperature.
 The theoretical and experimental studies cited above concern adsorbed water 
layers on surfaces in vacuum that are stable only at temperatures below 150K 
because of the small binding energy. There is also consensus that the energy dif-
ferences between the various proposed structures are small. As neither theoretical 
calculation involves entropy, which should be relevant as the binding energy of 
water is small, theory cannot convincingly converge on one particular structure 
model, not even for one particular surface. With regard to the solid/water interface 
at room temperature, possible entropic contributions to the free energy and the 
volatility of the hydrogen bond make it likely that all structure elements consid-
ered above are simultaneously present at the solid/water interface with a rapid 
flipping back and forth between various configurations. At room temperature, 
water at the interface is therefore in a state that is between a solid and a liquid. The 
models for the ice-layer predict the oxygen atoms to be at distances between 
1.31Å and 1.98Å from the boundary of the Pt-atoms which is consistent with the 
pronounced peak in the mean density of the oxygen atoms in a water layer as a 
function of the distance from a solid surface [1.86]. Hydrogen bonding by water 
molecules is presumably also important in the ordered structures formed by "spe-
cifically adsorbed ions" on surfaces. This concerns in particular the oxygen con-
taining species ClO3, SO4, and structures investigated by STM and infrared 
spectroscopy have been interpreted that way.  



2. Basic Techniques 

2.1 Ex-situ Preparation  

2.1.1 The Making of Crystals

Surface Science is built on single crystals. The starting point for experimental 
work on surfaces is therefore the preparation of oriented surfaces on single crys-
tals. Either that surface is the object of study or it serves as a template on which 
the material to be investigated is grown epitaxially. Depending on the material, 
single crystals are commercially available or are grown by research institutions for 
specific purposes. Rarely does a surface scientist grow crystals for her/himself. 
The interest in the surfaces properties of a material usually encompasses the bulk 
properties of the material as well, and should so, because the understanding of 
surface properties requires a good knowledge of bulk properties. For some materi-
als, semiconductors in particular, the commercial interest has created a market for 
semi-finished products in the form of large area wafers of a particular surface ori-
entation. The technology of crystal growth and wafer preparation is most advanced 
for silicon. Wafers with 12-inch diameter represent the current industrial standard. 
Wafers are also available for III-V compounds. Because of the stringent require-
ments of industry, the surfaces of these wafers are extremely flat, oriented with a 
high precision, and free of contaminants. The wafers are typically coated by a 
protective coating, which is easily removed after insertion into an ultra-high vac-
uum (UHV) chamber. For silicon, the coating is a thermally grown SiO2-layer. The 
oxide layer is removed by heating to about 1000 °C in UHV and a well-ordered 
surface is the result. Creating a clean surface that way is not only easy, but also 
superior to any conceivable homemade preparation method, because of the enor-
mous industrial R&D-efforts that went into silicon wafer technology.  
 The situation is different for metals surfaces. Here, the typical starting point is a 
single crystal from some commercial source. For some materials however, small 
single crystal beads are grown easily from high-purity wires. This is by far the 
cheapest method of crystal growth, and even superior the conventional methods 
regarding the purity and absence of dislocations. The method is therefore de-
scribed in the following. 
 Figure 2.1 displays the equipment schematically. The end of a pending metal 
wire of 0.5-1 mm diameter is molten by a propane/air or a hydrogen/air flame to 
form a droplet of 2-5 mm diameter. A stream of argon coming from the side serves 
two purposes; one is to surround the metal droplet with inert gas, the other to push 
the flame gently to the side. By varying the argon flow and/or the gas supply to the 
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burner the temperature of the droplet can be controlled accurately. Upon cooling, 
the solidification begins at the wire. With lowering temperature, the solid/liquid 
phase boundary moves away from the top (Fig. 2.2) until the entire drop is solidi-
fied. The result is not necessary a single crystal. However, by processing the 
crystal repeatedly between melting and solidification, and by beginning the solidi-
fication process at the wire end very slowly one eventually may grow the crystal 
from a single nucleus, and thereby grow a single crystal. 

argonhydrogen 
propane

Fig. 2.1. Growing single crystal beads from a wire. 

Fig. 2.2. Growing a bead crystal from a molten droplet. The pictures show a platinum bead. 
The lower light part is the melt. Upon cooling, the solidification begins at the wire (left) and 
eventually the entire droplet is solidified. The clearly visible {111} facets indicate the 
growth of a single crystal. The bright ring-like structure at the top is some dirt that accumu-
lates in the transition area between the wire and the bead crystal in the course of repeated 
melting and solidification (courtesy of Udo Linke).  

By repeated melting and solidification, one may further drive impurities contained 
in the original material upwards to the wire end of the bead and accumulate the 
impurities there: a poor man's way of refining by zone melting! Single crystals of 
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high purity are obtained for Au, Pt, Ir, Rh and Pd. Propane gas is used for Au; 
hydrogen for the other materials. Palladium dissolves large concentrations of hy-
drogen. Repeated zone melting avoids an accumulation of hydrogen, however. 
Bead crystals can also be grown from other metals, e.g. Ag and Cu, however only 
in vacuum. The wire is then heated at the end by electron bombardment. Single 
crystals of alloys, e.g. Pt/Rh alloys, can likewise be grown.  
 The final single crystal beads displays {111} facets (Fig. 2.2) as the {111} fac-
ets do not undergo a roughening transition below the melting point (Sect. 4.3.1).  

Fig. 2.3. Bead crystals can be oriented to within 1°-2° by bending the wire such that the 
reflection of a laser beam from the {111} facets is in the desired direction. Subsequently the 
entire sample is embedded into meta-acrylate or an epoxy-resin.  

2.1.2 Preparing Single Crystal Surfaces  

In order to prepare surfaces of the desired orientation from bulk single crystal ma-
terial the crystal has to be first oriented and then cut along an oriented plane, and 
finally polished to a shiny surface.  

Bead crystals 

An approximate orientation is easily arranged for bead crystals with the help of the 
{111} facets: The bead crystal is mounted by fixing its wire to the head of the 
goniometer that is used later for x-ray orientation and polishing (see below). If the 
bead crystal is illuminated by laser beam that has a diameter larger than the bead 
crystal, the {111} facets exposed to the beam produce defined reflected beams 
(Fig. 2.3). A rough orientation to the desired direction is then obtained by simple 
bending the wire by hand. Once the rough orientation is achieved, the wire and the 
bead crystal is fixed by embedding it into meta-acrylate (or into an epoxy resin). 
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The embedded bead crystal is mounted on a polishing jig as shown in Fig. 2.4. The 
jig is designed for fine adjustment of the orientation within a range of 6° for the 
polar angle and 360° for the azimuth.  

Fig. 2.4. A polishing jig that allows for adjustment of the tilt angle in an arbitrary azimuthal 
direction (courtesy of Udo Linke). A bead crystal is mounted for illustrative purposes. The 
bead crystal is embedded into meta-acrylate before polishing. 

The embedded crystal together with the resin is abraded using SiC abrasive paper 
to expose the bead. The polishing jig is then fixed to an X-ray equipment to check 
and further adjust the orientation of the crystal according to the Laue pattern, or 
the diffraction pattern obtained by characteristic X-ray emission lines. After this 
final orientation, the polishing procedures can begin. These typically comprise the 
following steps: 

1. Wet grinding with SiC- paper, grain size 400, 800, 1200. 
2. Cleansing to remove SiC particles. 
3. Wet polishing on silk cloth with diamond paste, grain size 6
4. Wet polishing on nylon cloth with diamond paste, grain size 3
5. Wet polishing on velvet cloth with diamond paste, grain size 1
6. Wet fine-polishing on velvet cloth with Al2O3 paste, grain size 0.03
7. Cleansing and drying with alcohol. 
8. Final check on orientation using X-ray methods (e.g. rocking curves). 



  2.1  Ex-situ Preparation __________________________________________________________________________ 67

9. Removing the resin. 
10. The cleaned and dried crystal is placed into a quartz furnace and annealed 

in an H2/Ar or an O2/Ar atmosphere (depending on the material) to heal-out 
surface defects and to leach-out common bulk impurities like sulfur and 
carbon.

11. The sample is probed in a scanning electron microscope using Selected
Area Channeling Patterns (SAPS) 

An example of the final product is displayed in Fig. 2.5.  

Fig. 2.5. The ready-to-use bead Pt-crystal exposing a (111) surface. Note the other {111} 
facets on the side in trigonal symmetric arrangement (courtesy of Udo Linke). 

Fig. 2.6. Two common forms of ready-to-mount metal crystals. The left form is for use with 
a tungsten or molybdenum wire loop. The hut-crystal is fixed to the sample holder by 
clamping the crystal on the rim of the hut. The thereby induced plastic deformations stay 
away from the surface, at least for some time. 
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Samples cut from bulk single crystals

A few additional steps are required if metal samples are to be prepared from a 
bulk single crystal. These crystals come from the manufacturer in the form of 
oriented rods with diameters between 5-20 mm. The first preparation step is a 
rough orientation using the Laue pattern. A disk is then cut off the rod using a 
spark erosion wire saw or an acid wire saw for ductile metals. Brittle materials are 
cut using a peripheral saw or an annular saw with diamond or SiC fortified blades. 
The use of spark erosion has the advantage that the sample form can be chosen 
more freely. After cutting, the damaged surface layer is removed by etching. The 
crystal is annealed as described in step 10 above. After that, the crystal is mounted 
on the polishing jig using dental wax, oriented, and polished following the proce-
dures described before. Figure 2.6 shows two commonly used forms of metal 
crystals. 

Preparation of Si-wafers by wet chemistry

Single crystal surfaces of silicon are best obtained directly from wafers as they 
are provided by industry for commercial purposes. No further polishing is re-
quired, but a final treatment using wet chemistry may be recommended. Such 
preparation procedures were developed by the electronic industry for the purpose 
of wafer cleaning prior to device fabrication. Originally, the main goal was to 
achieve a surface free of metal contaminants. Nowadays, wafer quality assurance 
concerns the control of many impurities such as O, C, F and H, as well as the 
control of the roughness of surfaces. The silicon preparation methods split into 
two categories as they generate either hydrophilic or hydrophobic surfaces. Hy-
drophilic surfaces are terminated by polarized bonds, such as Si-O or Si-OH, 
which bind water molecules via hydrogen bonding. Hydrophilic surfaces are 
used as intermediates to prepare well-defined Si/SiO2 interfaces. Hydrophobic 
surfaces are covered mostly by Si-H, i.e. by non-polarized bonds. 
 Among the methods that employ hydrophilic surfaces, the most widely used 
method is the so-called “RCA cleaning”, which involves a set of different clean-
ing steps specifically designed to remove a particular contaminant or a particular 
class of contaminants. All steps contain hydrogen peroxide as oxidizing agent, 
and other chemicals to eliminate a selected contaminant. Three basic steps are: 

1. H2O2 + H2SO4, 10 minutes at 80°C, (Removes the residues of a photo re-
sist or other organic contaminants, and forms a 1 nm layer of SiO2).

2. H2O2 + 1 NH4OH + 5 H2O, 10 minutes at 80°C (Removes organic con-
taminants and some metals and forms a 1nm layer of SiO2).

3. H2O2 + 1 HCl + 5 H2O, 10 minutes at 80°C (Removes heavy metals and 
forms a 1nm layer of SiO2).

In each step, a 1nm layer of SiO2 is formed which serves to protect the surface 
against reactive contaminants from air such as unsaturated hydrocarbons. The 
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1nm SiO2 must be removed before the next cleaning step. This is done by a hy-
drophobic etch procedure which is customarily a HF-dip (hydrofluoric acid) 
followed by rinsing with ultra-pure, de-ionized water. 
 It is known for a long time that HF etches SiO2 very effectively. The polar-
ized Si-O bonds are broken by the polarized HF molecule. The F -ion binds to 
the positively charged Si-atom and the proton is captured by the O-atom. The 
reaction mechanism can be described as 

  (  Si O Si ) + 2HF  2( Si F) + 2H2O

It had been suggested initially that the resulting chemical stability of the silicon 
surface is due to a passivation of silicon by fluorine. This hypothesis was sup-
ported by the fact that the Si-F bond strength (  6.0 eV) is much greater than 
that of Si-H (  3.5 eV). Nevertheless, fluorine has been observed to be a mi-
nority species on the etched surface. The surface is terminated mostly by 
hydrogen, but hydrocarbons and oxygen have also been found [2.1-4]. Several 
investigations showed the latter to be contaminants so that the surface is genu-
inely H-terminated. This striking fact has been explained on the basis of reaction 
kinetics by Ubara et al. [2.2]. They postulate that fluorine terminated silicon 
complexes are unstable in HF solution due to strong polarization of the Si-Si 
back bonds and are removed from the Si-surface by releasing SiF4 into the solu-
tion, leaving a H-terminated surface behind. 
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Quantum chemical calculations of the activation barriers for these types of reac-
tions [2.5] show that a reaction such as  SiH + HF  SiF + H2, though 
exothermic, has an activation barrier, which is significantly higher than that of 
the Si-Si bond cleavage reaction. As the hydrogen termination results from kinet-
ics it is clear that some fluorine remains on the surface. The amount depends on 
the concentration of the hydrofluoric acid and varies between 6% and 12 % for 
HF concentrations between 24% and 48% [2.6]. 
 The HF-dip not only produces unsatisfactory results concerning the H-
termination but also a considerable surface roughness. Smoother surfaces are 
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obtained when HF-solutions buffered at higher pH-values are employed. The 
following recipe produces very smooth, H-terminated Si(111) surfaces. Si(100) 
surfaces produced that way are rougher and the H-termination is less perfect. All 
agents must be "electronic grade". The water must be de-ionized and free of 
hydrocarbons (total hydrocarbon concentration, TOC < 3 ppb). 

1. Oxidize wafer thermally (900°C, under O2 flow, oxide thickness 100 nm). 
2. Rinse sample using trichloroethylene, acetone and alcohol. 
3. Place teflon beaker and tweezers in a glass beaker and clean to remove the 

residual organic substances, using H2O:H2O2:NH4OH 4:1:1 at 80±2°C 
for 10 minutes. 

4. Repeat step 3 with the sample inside the glass beaker. 
5. Pre-etch the thermal oxide in H2O:H2O2:HCl 1:1:4, 5 minutes at 80°C. 
6. Rinse thoroughly in water. 
7. Remove remaining oxide using buffered HF (pH = 5.0), 5 minutes in the 

teflon beaker. 
8. Rinse. 
9. Oxidize the sample softly: H2O:H2O2:HCl 4:1:1, 10 minutes at 80°C. 
10. Rinse. 
11. Remove oxide layer built in the preceding step and H-terminate surface 

using 4 % NH4F (pH = 7.8) for 6.5 minutes in the Teflon beaker. 
12. Rinse thoroughly. 

It is very important that samples have no contact with air after step 5, or at least 
after step 7. Pulling the sample through a liquid-air interface surely contaminates 
the surface, since hydrophilic organic contaminants decorate the surface of the 
liquids. Thus, solutions are removed by diluting with water and the sample is 
brought into the active agents while being covered with water. This is far more 
important than keeping the exact concentrations. 
 The sample is now H-terminated and largely inert. It contaminates only very 
slowly in air, mainly through an uptake of unsaturated hydrocarbons. Storing the 
sample in hydrocarbon-free argon or nitrogen helps to keep the sample clean for 
a longer time if desired. The sample can be inserted into a vacuum-chamber via 
an air lock pumped by an oil-free pumping system. It has been recommended 
that the initial pumping down from atmospheric pressure should be performed
slowly via a leak valve to avoid turbulences, as these turbulences could bring 
organic compounds onto the surface. The importance of this procedure presuma-
bly depends on the cleanliness of the air lock and the pumping system used.  
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2.2 Surfaces in Ultrahigh-Vacuum  

2.2.1 UHV-Technology  

Basic issues 

Solid surfaces are investigated in Ultra-High Vacuum (UHV) environment in or-
der to minimize the interaction with foreign materials. The number of molecules 
that arrive on a surface per time on an area A equals the number of molecules con-
tained in cylinder of a height |vx|  with the base area A. The mean velocity |vx|  of 
gas molecules with a velocity direction towards the surface is 

mTkvx 2/|| B  (2.1) 

Here, m is the mass of the molecule, kB the Boltzmann constant and T the tempera-
ture. With the state equation of the ideal gas of pressure p, pV = NkBT the number 
of molecules in the said cylinder is 

TkmApAv
V

N
x B2/|| . (2.2) 

The flux F of molecules impinging on the surface per area and time is therefore 

TkmpF B2/  (2.3) 

A standard time span for surface studies is about 104 s. If one wishes to have less 
than 1013 molecules per cm2 on the surface (corresponding roughly to 1/100 of a 
monolayer) a pressure of 5 10 10 Pa (Nm 2) ( 5 10 12 mbar) is required. A pres-
sure as low as this is in the range described as Extremely High Vacuum (XHV). As 
most of the residual gas molecules are harmless to the surface, a pressure of about 
10 8 Pa suffices for most experiments. The density of molecules in a "vacuum" of 
that pressure is 106 cm-3 and the free mean path of the molecules is about 106 m. A 
typical UHV-vessel may have a volume of 100 l and an inner surface area of 1 m2.
The total number of molecules in the gas volume is then 1011. Because of the large 
mean free path, these molecules never meet each another in the gas phase; rather 
they traverse the vessel from wall to wall. Hence, the walls of the vessel determine 
the properties of the gas phase in the UHV-regime. The walls also host the vast 
majority of the molecules inside the vessel in the form of an adsorbate phase. Let 
us assume for the purpose of illustration that the walls are covered by a monolayer 
of molecules. The total number of molecules on the walls is then about 1021, which 
exceeds the number of molecules in the volume of the vessel by ten orders of 
magnitude! If all these atoms would desorb and be in the gas-phase, the pressure 
would increase by ten orders of magnitude, i.e. to 100 Pa. Even though the cover-
age of the walls may be much less than a monolayer, it is clear from the example 
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that the walls control the pressure in a UHV-vessel. This has important conse-
quences: if a part of the surface of the vacuum vessel is heated, molecules desorb 
from there in enormous quantities, giving rise to a pressure burst. Maintaining 
UHV-conditions during heating some parts of the vessel or the sample in its sam-
ple-holder requires a careful out-gassing of those parts by heating during the initial 
pump-down. The de-gassing process as such cannot take place once the pressure is 
already in, or near UHV-range. Staying with the example above and assuming a 
pumping speed of 100 l/s, it would take 1010 seconds to remove the monolayer of 
gas from the walls if pumping were performed at 10 8 Pa, but it takes merely one 
second at 100 Pa. The natural coverage of air exposed surfaces with gases, in par-
ticular water, is removed and UHV-pressures are eventually achieved only by 
baking the entire vacuum chamber while pumping the vessel at moderately low 
pressures of 10 2-10 4 Pa.  
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Fig. 2.7. Mass spectrum of the residual gas in a UHV-vessel (logarithmic scale) before and 
after bake-out (solid line and dashed line, respectively). Before bake-out, the mass spectrum 
is dominated by water (mass 18 plus some 17). After bake-out the spectrum contains hydro-
gen (mass 1 and 2) methane (mass 16), CO (mass 28), and CO2 (mass 44) as well as some 
cracked hydrocarbons as evidenced from the peaks to the left and right of mass 28. 

Typical bake-out temperatures are 150-250 °C. Construction materials must with-
stand these temperatures and must have a low enough vapor pressure. Because of 
its zinc content, brass is not a suitable UHV-material, for example. Other unsuit-
able materials comprise rubber, plastics including Teflon (because of its fluorine 
content), solders containing Cd and porous materials which tend to release gases 
forever. Classic construction metals for UHV are stainless steel for most parts of 
the vacuum chamber, copper for gaskets and as a good heat conducting metal, 
tungsten for filaments, molybdenum and tantal for parts to be heated to high tem-
peratures, and aluminum/magnesium alloys for those parts of the construction for 
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which low weight is required. Suitable insulating materials are sintered, impervi-
ous ceramics made of Al2O3, sapphire for good heat conduction combined with 
electrical insulation, and machinable ceramics such as Macor . A good flexible 
material for electrical insulation is Kapton , which withstands heating in vacuum 
up to 250 °C. 
 The standard construction material for UHV-vessels is stainless steel. In its 
natural state, stainless steel contains large quantities of dissolved hydrogen. This 
hydrogen outgases only very slowly during normal bake-out procedures so that the 
walls of the vessel keep their hydrogen inventory over a lifetime of many years. 
This dissolved hydrogen therefore determines the residual pressure of a well-baked 
system. Figure 2.7 displays mass spectra of the residual gas in a vacuum chamber 
before and after bake-out. Before bake-out, the spectrum is completely dominated 
by the water peak at mass 18 and its cracking pattern. After bake-out, hydrogen is 
the prevailing residual gas. The atomic hydrogen originates from hydrogen mole-
cules dissociated at the hot filaments of the mass spectrometer and the Bayard-
Alpert pressure gauge. Further components in the residual gas are CO, CO2 and 
hydrocarbons. A peak at mass 32 (O2) would be a sure indication of a leak. A 
UHV-vessel never contains oxygen unless there is a leak because oxygen is re-
duced to water by atomic hydrogen.  

Pumps

Pumps fall into two categories, roughening pumps to evacuate the vacuum vessel 
down to a pressure of 100-10 2 Pa and the pumps for the UHV-regime. Roughen-
ing pumps are oil lubricated rotary pumps or oil-free pumps that use bellows and 
valves. In the early days of UHV-technology, oil or mercury diffusion pumps were 
employed for the high-vacuum regime. These are now completely replaced by 
turbo-molecular pumps or ion getter pumps. Turbo-molecular pumps (called 
turbo-pumps in the following) are mechanical pumps. Their active part is a fan of 
rotating blades (Fig. 2.8). The pumping action results from an asymmetry of the 
molecular flow between the left and the right side of the fan. In order to calculate 
the flux of molecules from left to right and from right to left we need to consider 
the velocity distribution with respect to the reference frame of the rotating blades. 
The spaces between the blades form long channels so that only the molecules in 
the direction b (Fig. 2.8) can pass. In the rotating reference frame, the thermal 
velocities of those molecules are shifted by vbcos b (Fig. 2.8), with vb the circum-
ferential speed of the blades. 

cosbvvv  (2.4) 

The current density j of molecules possessing a particular velocity is given by the 
product of the velocity and the density . The current densities from left to right 
and right to left are therefore 
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in which l and r are the densities left and right of the rotor, respectively. 

vb

Rotating blades

b

Fig. 2.8. The figure illustrates the pumping effect of a molecular pump. The blades move 
with a circumferential speed vb (upwards in the figure). The arrows illustrate the thermal 
velocity of gas molecules relative to the moving blades. 

The lower boundary for the integral is where the velocity towards the channel 
between the blades is zero. F(v) is the Maxwell velocity distribution of particles 
moving in a particular direction 
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In steady state condition jj  and the ratio of the particle densities and there-

fore the ratio of the pressures, the compression ratio is then 
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After some algebra one obtains 
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The coefficient  is essentially the square of the ratio of the circumferential speed 
of the blades and the mean velocity of the gas molecules (2.1). For small  the 

Gaussian integrals can be approximated by /2 , and K is then approximated 
by

2)66(1K  (2.9) 
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Fig. 2.9. Compression ratio K as a function of the coefficient . The dashed curve is the 
approximation (2.9). The shaded areas mark the ranges obtained by a commercial pump 
(Leybold 340M). 

Figure 2.9 shows the compression ratio as a function of . For a significant pump-
ing effect, the circumferential speed vb must be of the order of the mean thermal 
velocity of gas molecules (120 m/s for N2, 450 m/s for H2). Materials of sufficient 
mechanical strength for the rotors and suitable ball bearings for operation became 
available only in the last decades. The shaded areas in Fig. 2.9 mark the ranges of 



 2  Basic Techniques __________________________________________________________________________ 76

compression ratios realized by the rotor of a commercial turbo-pump (Leybold 
340M) which features magnetic bearings of the System FZJ  developed in the 
Research Center Jülich. The upper and lower limits correspond to the circumferen-
tial speeds of 350 m/s and 175 m/s at the outer and inner diameters of the rotor 
blades. To bridge the pressure gap between UHV and the vacuum provided by the 
roughening pump the turbo-pump posses a stack of 11 bladed wheels. The total 
compression ratio for nitrogen is more than sufficient. The overall compression 
ratio for hydrogen of about 2.0411  2500 is less impressive. The turbo-pump with 
magnetic bearings is free of lubricant. Backed by an oil free roughening pump a 
completely oil free pumping system can be realized. Since the final pressure of oil-
free roughening pumps is about 10 Pa a molecular drag pump (working on the 
principle of an archimedian screw) is placed between the turbo-pump and the 
roughening pump.  

Ion getter pumps come as diodes or triodes. Figure 2.10 shows a triode consist-
ing of a collector, an anode and a cathode made from titanium. Titanium combines 
good mechanical properties with a high reactivity to most residual gases, except 
the noble gases. A freshly prepared titanium films absorbs all but the noble gases 
readily and can therefore be employed as a getter. A voltage of about 5-7 kV is 
applied between anode and cathode. The high voltage in combination with the 
shape of the cathode causes high local electric fields at the cathode surface, and 
electrons are field-emitted from there. The magnetic field forces these electrons 
into an orbital path, which enhances the probability for collisions with the residual 
gas molecules. The electrons ionize the molecules and the positive ions are accel-
erated towards the cathode. Their path is nearly straight because of the larger mass. 
Due to the geometric arrangement and the shape of the cathode, the ions strike the 
cathode at grazing incidence. Titanium material from the cathode is thereby sput-
tered mostly in forward direction and deposited on the collector. The amount of 
sputter-deposited titanium is proportional to the number of molecules hitting the 
cathode, i.e. proportional to the pressure. This ensures that the supply of titanium 
atoms freshly deposited on the collector matches the number of adsorbed atoms 
from the residual gas. The steady stream of titanium atoms onto the collector bur-
ies the adsorbed residual gas molecules or atoms inside the growing bulk material. 
In that way, not only reactive gases are effectively gettered but also non-reactive 
gases in particular noble gases which normally would reside only briefly on the 
collector surface and be released into back into the gas phase. A triode ionization 
pump is therefore capable of pumping also noble gases. Unlike the turbo-pumps, 
ion getter pumps do not remove the gas from the vessel. Rather the gas accumu-
lates in the titanium matrix. Ion getter pumps therefore tend to have a memory 
effect. If the high voltage is switched off, e.g. to stop the pumping during a gas 
inlet, the pump releases less tightly bound gases like methane and ethane. In order 
to minimize memory effects the majority of the gas inventory of a UHV-vessel 
released during bake-out should be removed from the vessel by a turbo-pump, so 
that the ion pump is used only in the high vacuum regime. The ion getter pump is 
also regenerated to some extent by baking the pump elements at 300-400 °C dur-
ing bake-out while pumping with a turbo-pump. If used only in this way, ion getter 
pumps practically last forever. A characteristic defect that can occur after some 
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time is an unstable operation in the high-vacuum regime with pressure bursts from 
time to time. This is due to needles and flake of material that grow on the cathode. 
These needles and flakes can give rise to sudden events of electron field emission, 
which release so much heat locally that titanium material with its gas inventory is 
evaporated. The pressure bursts can bring the pressure temporarily from 10 8 Pa to 
10 4 Pa. A remedy is to raise the operating voltage cautiously to about 20 kV, 
which burns off the flakes and whiskers. After that, a complete bake-out cycle is 
required. 
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Fig. 2.10. Schematic drawing of a triode ion getter pump. 

Pumping by an ion-pump is frequently supported by an additional getter film, 
which is deposited from a heated titanium wire in regular intervals. The intervals 
are matched to the pressure. The large area of that deposited films provides a high 
pumping speed for gases that are gettered by titanium. The titanium film is particu-
lar effective if it is deposited on a wall cooled by liquid nitrogen. The pumping 
speed of a perfectly absorbing film is calculated from (2.1) by noting that A vx  is 
the volume, which is pumped per time by an absorbing area A. For nitrogen, a 
100 cm2 area has a pumping speed of 1200 l/s. A typical vacuum chamber 
equipped with titanium getter pump that covers the entire bottom of the chamber 
with the titanium film is emptied about a hundred times per second. Unfortunately, 
the gas phase is replenished from the permanently out-gassing walls. The consid-
erations above apply also to the layout of the roughening pumps and the 
dimensions of pump lines. In the regime of molecular flow, a long tube has a con-
ductance that corresponds to its cross-sectional area multiplied by the ratio of the 
diameter d and the length L. The conductance is therefore approximately 
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The characteristic time constant for evacuation of a chamber having a volume V is 
is  = V/C. It then takes  ln10=2.3  for every decade of pressure reduction. To 
pump a volume of 120 l in a characteristic time of 100 s through a tube of 1 m 
length requires a tube diameter of 2.1 cm.  

Vacuum gauges

Measuring the pressure in different pressure regimes requires different gauges. 
Classical mechanical manometers work down to 100 Pa. The range of mechanical 
pressure measurements is extended to about 10 2 Pa by the Baratrons in which the 
pressure induced deflection of a membrane is measured as a change of capaci-
tance.

Atmosphere            Vacuum

Permanent Magnet

Rotating
field coils

Stabilization field coil

Permanent Magnet

Stabilization field coil

Fig. 2.11. Schematic drawing of the spinning rotor gauge. A stainless steel ball is magneti-
cally suspended in vacuum. The friction with the residual gas molecules is measured.  

A simple instrument for the range between atmospheric pressure and 10 1 Pa is the 
Pirani-manometer in which the loss of heat of a fine wire due to convection and, 
in the low-pressure regime, due to heat conduction is measured. 
 A very accurate instrument for pressures between atmospheric pressure and 
10 4 Pa is the spinning rotor gauge (Fig. 2.11). The instrument measures the fric-
tion of a magnetically suspended stainless steel sphere by the residual gas. The 
sphere is magnetically suspended in the equilibrium position between two perma-
nent magnets. The equilibrium is stable with respect to lateral displacements of the 
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sphere, but instable with respect to a vertical movement. An additional electro-
magnetic field that is controlled by the instantaneous position of the sphere in a 
feedback loop stabilizes the vertical position. The magnetic suspension is practi-
cally frictionless, save for the gas friction. To measure that friction, the sphere is 
first driven to a certain rotation speed (400-800 Hz), then the drive is shut off and 
the slow decay in the rotation speed is accurately measured by monitoring the 
electromagnetic signals induced in the driving coils by the rotating magnetic mo-
ment of the sphere. At higher pressures, the power consumption of the rotating 
magnetic field required to keep the rotation speed constant is measured. The in-
strument is completely inert and works in corrosive and hot environments. It 
represents also the certified international transfer standard for vacuum measure-
ment. The determination of the pressure via the gas friction requires some data 
accumulation time. The time is longer for lower pressures. For every day use, the 
friction rotor gauge is therefore unpractical. Furthermore, the friction gauge does 
not cover the UHV-range.  
The standard instrument in a wide range of pressures from 10 2 10 9 Pa is the 
ionization gauge after Bayard-Alpert (Fig. 2.12). Electrons emitted from a hot-
filament cathode are accelerated by the positive voltage on the anode, which con-
sists of a cylindrical wire mesh. A thin wire is placed in the center of the anode as 
the ion collector. The potential on the ion collector is negative with respect to the 
cathode by about 25 V. Gas molecules ionized by the accelerated electrons inside 

Cathode

Ion collector

Grid anode

Fig. 2.12. Bayard-Alpert ionization vacuum gauge on a metal flange. 

inside the anode cylinder travel to the central collector. The current on the collec-
tor is therefore proportional the concentration of gas atoms and therefore a 
measure of the total pressure. Since molecules have a different ionization probabil-
ity, the pressure reading depends on the type of gas. The ultimate pressure limit is 
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given by the X-ray limit: electrons arriving at the anode cause the emission of soft 
X-rays from there. The X-rays in turn cause the photoemission of electrons from 
the surface of the ion-collector. Since this current has the same sign as the current 
of the collected ions, it fakes a pressure. The photocurrent is proportional to the 
surface area of the central wire, which is therefore kept as thin as possible. The X-
ray limit is typically about 10 9 Pa.  

Residual gas analysis

Mass spectroscopy of the gas in an UHV-chamber is required  
to define sources of malfunction of the vacuum system,  
to control the exposure of surfaces with specified gases,  
and to monitor desorption from surfaces. 

Fig. 2.13. Sketch of a quadrupole mass spectrometer. See text for explanation. 

The most commonly used type of mass spectrometer is the quadrupole mass spec-
trometer. This spectrometer consists of an ionization chamber, a system of four 
metallic rods between two apertures, and a detector for the ions (Fig. 2.13). The 
quadrupole is a mass-selective filter, which works on the principle of dynamic 
stabilization. Ions produced in the ionization chamber via electron impact ioniza-
tion are accelerated to a potential eU0 by the positive bias on the two apertures and 
the quadrupole. An additional oscillating voltage is applied to the four rods such 
that opposite rods have the same potential. Ions traveling along the center path 
between the rods are in equilibrium with respect to the oscillating potential, in 
stable equilibrium with respect to one pair of rods and in an unstable equilibrium 
with respect to the other. Ions embarked on trajectories that pass the entrance aper-
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ture at a small angle experience a potential that is proportional to the square of the 
deviation from the center path, and oscillating in its sign. Ion trajectories oscillat-
ing around the center path (Fig. 2.13) occur if the phase of the ion path is matched 
to the phase of the oscillating voltage such that the potential repels the ions to-
wards the center path when the ion is further away from the center and vice versa. 
Without solving the mathematics in detail one can therefore write down the focus-
ing condition  

/2n
v

L
(2.11) 

in which  is the time during which the ion traverses the distance L between the 
two apertures, v is the ion velocity,   is the frequency of the ac-voltage and n is 
an integer number. Since the velocity of ions possessing the mass m is 

mZeUv /2  with Ze the ion charge, the focusing condition (2.11) selects a 

mass, which is proportional to 2.

2.2.2 Surface Analysis 

Monitoring surface structure during preparation 

Sample preparation in UHV requires in-situ control of the surface structure and 
chemical composition. Experimental tools for an in-depth study of surface struc-
ture and morphology were already discussed in chapter 1. Low energy electron 
diffraction (LEED) is also used for qualitative checks on the surface order. For 
monitoring the surface structure during preparation procedures, in particular dur-
ing epitaxial growth Reflection High Energy Electron Diffraction (RHEED) is 
more suitable since the equipment is not in the way of evaporation sources and 
other tools. The experimental arrangement is sketched in Fig. 2.14a. Electrons with 
energies in the range between 10-100 keV strike the surface at grazing incidence, 
and the diffraction pattern is observed in reflection. Because of the higher energy, 
the diffraction spots are closer together compared to LEED. Sharp diffraction spots 
occur either if the surface is very flat or if the surface is covered with small three-
dimensional crystallites. More often, however the diffraction pattern consists of 
vertical streaks. Upon surface disorder, the reciprocal lattice rods assume some 
fuzziness, and this fuzziness elongates the diffraction spot along the vertical direc-
tion (Fig. 2.14b). The experimental set-up provides means to characterize the 
growth-mode. If electron energy and the angle of the incident beam are chosen so 
that a particular beam, e.g. the (00) beam experiences destructive interference from 
the beam reflected by consecutive monolayers then layer-by-layer growth causes 
oscillations in the diffracted intensity (cf. Sect. 11.1). Whenever a layer is com-
plete, the intensity is maximal, and minimal for half a completed monolayer 
because of the destructive interference. The effect is best seen for medium electron 
energies (500-1000 eV) because of the higher surface sensitivity of these electrons. 
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By counting the oscillations, one has an accurate measure of the deposited number 
of monolayers that can be used to calibrate the evaporator for a particular ingot. 

k0

k

(a) (b)

SampleElectron gun Screen

U
Evaporator

Fig. 2.14. (a) Experimental set-up for Reflection High Energy Electron Diffraction
(RHEED) during epitaxial growth. (b) The Ewald-construction for high-energy electrons in 
reflection geometry.  

Monitoring surface cleanness and composition 

The most common methods for the analysis of the element composition of surfaces 
are based on the emission of core electrons either by photoemission or via the Au-
ger-process (Fig. 2.15). In both cases, the kinetic energy of the emitted electrons is 
characteristic of the elements. The spectroscopy of the kinetic energies therefore 
provides information on the sample composition. The spectroscopy based on the 
photoemission process is either called X-ray Photoemission Spectroscopy (XPS) 
or, as named somewhat misleadingly by its inventor K. Siegbahn, Electron Spec-
troscopy for Chemical Analysis (ESCA). The spectroscopy based on the Auger-
process is termed Auger Electron Spectroscopy (AES). The kinetic energy of the 
photo-emitted electron is determined by energy conservation 

)1()( NENEhEkin  (2.12)

Where E(N) and E(N 1) denote the energies of the system with N and N 1 elec-
trons, respectively. To a rough approximation, the energy difference can be 
expressed in terms of the electron energy levels of the N-electron state so that in 
case of photoemission from the K-shell one obtains 

Kvackin EEhE  (2.13) 
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The Auger-process is the radiationless filling of a core hole after ionization by an 
electron from an upper shell or the valence band, with the energy transferred to a 
second electron of the upper shell (Fig. 2.15). The final state in the Auger-process 
is a two hole-state. The energy of a two-hole system differs from a single hole-
system. To a crude approximation the kinetic energy of the Auger-electron is 

If2f1kin EEEE . (2.14) 

in which Ef1 and Ef2 are the energies with the electron holes in the final state and EI

is the energy of the state that is ionized initially. It is customary to denote the Au-
ger-electron by the notations of the three electron shells involved in the process, 
KLL, LMM, etc. The valence band is denoted as V. Since electrons of medium 
kinetic energy are most suitable for surface analysis (see below), Auger-transitions 
between the higher electron states, including the valence band are employed. For 
the second row elements from Li to Ne, including the typical surfaces contaminant 
C, these are the KVV-Auger electrons. For the third row elements (Na  Ne) these 
are the LVV transitions. For the 3d-transition elements, the 3s, 3p-shells are sev-
eral tens eV below the 3d/4s valence band. The LMM, LMV, and LVV Auger-
electrons form a characteristic triplet. 
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vacLVkin 2,3
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E2s,2p, EV
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C,O,N Fe,Ni,Cu

Fig. 2.15. Illustration of the Photoemission and Auger-process. Shown are K-shell photo-
emission (left) and a KVV-Auger-emission (center) for second row elements, and a LVV-
Auger-emission for 3d-transition metals (right).
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Neglecting the many-body nature of the excitation, the intensity of an Auger-line 
is described by the matrix element  

2
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12,1
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2
)(

1 |/1| ffii
Auger rI  (2.15) 

in which )(
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f , and )(
2

f  are the wave function of the two electron in 

the initial and final state, respectively and 1/r1,2 is the Coulomb interaction be-

tween the two electrons. The matrix element vanishes if )(
1

f  is an s-state and the 

initially occupied state is a p-state, vice versa. The intensity of the Auger-lines also 
reflects the number of participating electrons is a state. For example, the LVV 
Auger-line for the 3d-transition elements is roughly proportional to the number of 
electrons in the valence band. The LVV-line is the strongest line in the L-triplet for 
Cu and becomes very weak in the case of Sc.  
 Photoemission-spectroscopy and Auger-spectroscopy gain their surface sensi-
tivity from the fact that electrons have a high cross section for inelastic scattering. 
The information depth for surface spectroscopies is given by the mean distance, 
which the electron can travel in the material without loosing a significant amount 
of energy. Energy losses due to phonons do not count in this regard, as their en-
ergy is too small! Because of the inelastic scattering events the flux of electrons of 
certain energy decays exponentially as  

)/exp(0 xII  (2.16) 

where  is the mean free path. The mean free path is inversely proportional to the 
imaginary part of the electron self-energy [2.7, 8] which may be calculated in the 
Random Phase Approximation (RPA) from the dielectric response function 
1/ ( , q) with  the frequency and q the wave vector. The inverse of the mean free 
path , the stopping power for electrons with the energy E and wave vector k is 
given by [2.9] 
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Emin is the Fermi energy or the conduction band edge in case of an insulator and aB

is the Bohr radius. The Heavyside -function takes care of energy conservation. 
The upper frequency limit max  corresponds to the maximum energy loss for a 

given q-vector that occurs when the q-vector is oriented opposite to the k-vector of 
the electron. In that case, energy conservation requires that 
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If damping is disregarded the response function has a q-independent pole at the 
plasmon frequency  = p and can be represented by 

)(
2)(

1
Im ppq,

. (2.19) 

This simple expression is a good representation of the response function for all 
materials as long as the electron energy is large and if the plasmon frequency is 
calculated from the density of valence electrons n as 
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with 0 the absolute dielectric permeability. The result for is
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Fig. 2.16. Mean free path of electrons with respect to plasmon excitations according to 
(2.18) for Ge, Si and Al (dashed, dash-dotted and solid line, respectively) together with 
selected data points (circles, triangles and squares, respectively) [2.10-12]. 

The maximum wave vector can be taken as the wave vector where the plasmon 
ceases to be a well-defined excitation, which is the case when the phase velocity of 
the plasmon qp /  is equal to the Fermi-velocity vF. The minimal wave vector 
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qmin is obtained, if q is oriented anti-parallel to the wave vector of the electron k in 
which case (2.18) holds. After insertion of qmax and qmin (2.21) becomes 
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 (2.22) 

The result for  is plotted in Fig. 2.16 for the elements Ge, Si and Al together with 
experimental data. The model describes the general energy dependence quite well, 
underestimates however the stopping power as it neglects surface plasmon excita-
tions and core excitations (relevant for E  >> p) as well as electron hole pair 
excitations (relevant for E < p). Auger and photoelectrons which involve the 
upper shells and have therefore energies between 100 and 1000 eV are particular 
suitable for surface elemental analysis as their mean free path is small. 

-metal shield

Outer cylinder

Sample

Lens
Cathode
+Wehnelt
cylinder

Metallized
ceramic for

graded potential

Channeltron
electron
multiplier

e-beam

Trajectories of
Auger electrons

Fig. 2.17. Cylindrical mirror electron Auger-spectrometer with an integrated electron gun 
for electron impact ionization. 

For the purpose of surface elemental analysis, Auger-spectroscopy has gained 
more acceptance than XPS for two reasons. One is that Auger spectrometers can 
be built rather compact as add-on devices. The other is that Auger-spectroscopy in 
combination with a highly focused electron beam has spatial resolution. Fig-
ure 2.17 shows the standard form of a cylindrical mirror analyzer with a coaxial 
electron gun for primary ionization. The beam energy for ionization ranges be-
tween 3 and 10 keV. The Cylindrical Mirror Analyzer (CMA) consists of two 
coaxial metallic cylinders. The inner cylinder has entrance and exit pupils, which 
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define the angular aperture of about 6°. The magnitude of this angle is chosen to 
match the third order angular aberration of the cylindrical mirror analyzer to 
achieve a good compromise between resolution and transmission. To minimize 
perturbations on the potential the openings in the inner cylinder are covered by a 
high-transparency wire mesh. The inner cylinder is on ground potential, as the 
sample. The outer cylinder is negatively biased. For a given bias, electrons of a 
particular kinetic energy are focused on the exit aperture. The entrance aperture is 
provided by the diameter of the focused electron beam used for ionization. To 
avoid perturbations from the fringe fields at the ends of the two cylinders two par-
tially metalized ceramic plates provide roughly the same ln r -dependence of the 
potential as in the interior of the cylinder analyzer. The use of a separate grazing 
incidence electron gun instead of the integrated gun enhances the surface sensitiv-
ity.  
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Fig. 2.18. Auger-spectrum obtained from a cylindrical mirror analyzer of a Cu(110) surface 
before cleaning [2.13]. Electron beam energy for primary ionization is 3 keV. The dashed 
line is the spectrum after correcting for the analyzer transmission.  

Since the Auger-analyzer scans through the energies by changing the deflection 
voltage, the energy width of transmitted electrons is proportional to the pass en-
ergy. The intensity of the transmitted signal is therefore also proportional to the 
pass energy. The current at the detector is therefore proportional to the product of 
the pass energy E and the intensity of electrons emitted from the sample N(E).
 Figure 2.18 displays a spectrum obtained from a contaminated Cu(110) surface. 
The characteristic Auger-lines of Cu and of the contaminants S and C ride on top 
of a large background of secondary electrons. The dashed line is the response cor-
rected for the increasing transmitted bandwidth. One sees that the intensity of 
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secondary electrons increases for very low energies. The cut-off at about 20 eV is 
caused by a loss of analyzer transmission due to stray electric and magnetic fields. 
 Auger-spectra as displayed in Fig. 2.18 are used for quantitative analysis after 
subtracting a suitable function to describe the background. For qualitative analysis, 
differentiated spectra are more convenient. Figure 2.19 displays differentiated 
spectra of a Cu(110) surface before and after cleaning. On the contaminated sur-
face, the intensities of the high energy Cu-lines are reduced to about 45%. 
Considering the mean free path of about 1.3 nm and the emission angle of 45°, one 
can estimate the thickness of the contamination layer to be of the order of 1 nm. 
The low energy Cu-peak is not suitable for this type of estimate since (i) the mean 
free path within the dirt layer is uncertain at low energies, and (ii) the Cu-Auger 
peak involves surface valence band states of Cu, which change due to the chemical 
bond with carbon and sulfur atoms in the contamination layer. 
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Fig. 2.19. Differentiated spectra of a Cu(110) surface before (dashed line) and after cleaning 
(solid line) [2.13]. The Cu-signal is smaller on the dirty surface as the contaminant layer 
reduces the thickness of the Cu-layer that contributes to the spectrum.  

2.2.3 Sample Preparation in UHV

Preparation by removing a protective layer 

Si-surfaces prepared by wet chemistry have a protective layer of Si-H bonds, so 
that the surface stays clean in air for some time (Sect. 2.1.2). Si-surfaces may also 
be covered by a protective oxide layer, produced either by wet chemistry or by 
thermal oxidation in a quartz-furnace. Those samples can be introduced into the 
vacuum system via an air lock and transferred to the sample holder. Once mounted 
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on the sample holder and after reestablishing UHV-condition the protective oxide 
layer can be removed by heating the crystal. This preparation method produces 
well-ordered and clean surfaces. For thick oxide layers a temperature above 900°C 
is required. Heating is performed either by electron bombardment heating or by 
passing the heating current through the sample. In the case of silicon, the proce-
dure requires the application of high voltages and low heating currents in the 
beginning and of high currents at low voltages at high temperatures because of the 
temperature dependent resistance of the semiconductor silicon.  
Occasionally, surfaces or thin film systems are prepared in a separate UHV-
chamber, coated by protective layer and the transferred to the analysis chamber. 
The suitable type of coating depends on the material to be investigated. High-
temperature metals are best coated by a layer of gold. Metals that cannot be heated 
to high enough temperatures to flash-off the gold may be coated with iodine or 
bromine. An established coating for GaAs is arsenic capping.

Preparation by mechanical means 

The traditional and safe method to prepare clean surfaces in UHV is cleaving. The 
method has lost importance in recent years, but still has its place in the preparation 
of some materials. 

Fig.2.20. Crystals are cleaved by driving a wedge into prepared notches that mark the in-
tended cleaving plane. 

To facilitate the cleaving in UHV the crystals are cut into a particular shape with 
little notches on both ends of the intended cleavage plane (Fig. 2.20). Cleaving is 
performed by driving wedges into the notches to the point of contact, followed by 
a sudden blow of a hammer. If large single crystals are available, longer bars with 
several pairs of notches can be prepared for multiple cleavage of one sample. 
While surfaces prepared by cleaving are clean and maintain the stoichiometry of 
the bulk crystal, the surfaces may contain an unspecified number of steps of vari-
ous heights. Furthermore, crystals cleave only along particular crystallographic 
planes. Ionic crystals cleave along the neutral planes that contain an equal number 
of cations and anions (e.g. the {100} planes for alkali-halides, the {110} planes for 
III-V compounds). The II-VI compounds cleave likewise well along the neutral 
{110} planes, but also along the {0001} planes. Si and Ge cleave along the {111} 
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planes, though not very well. Layered crystals such as intercalates and graphite can 
also be cleaved by fixing and removing an adhesive tape.  
 Another way of preparing clean surfaces with bulk stoichiometry, albeit with 
defects, is by grinding. The technique has been employed in the analysis of the 
electronic surface structure of perovskites.  

Preparation by sputtering and annealing 

Sputtering with noble gas ions is most frequently employed method to remove 
contaminants from the surface. The method is therefore given a more detailed 
consideration. Noble gas ions used for sputtering are generated in an ion gun 
(Fig. 2.21) by electron impact ionization, accelerated to the desired energy and 
focused onto the sample. The noble gas supply is provided either by feeding the 
gas into the ion gun housing via a leak valve or by backfilling the entire chamber 
with the gas. For cleaning, the broad focus of the ion gun depicted in Fig. 2.21 (a 
few mm diameter, depending on ion energy and sample distance) suffices. For a 
very homogeneous sputter rate across the sample the beam of a fine-focus ion gun 
is swept over the sample area.  

cap
on ground
potential

Ne, Ar

Anode cage

circular
cathode

+Uion-Uel +Uion

Ne+, Ar+

Fig. 2.21. A simple ion gun featuring an annular cathode, a cage-anode for the electrons and 
an outer cap with a hole. Electron emitted from the cathode are accelerated towards the 
cage-anode, which is at Uel = +150 V with respect to cathode potential and at +Uion with 
respect to the grounded cap. The electrons travel back and forth in the cage until they hit a 
noble gas atom and finally disappear in the cage-anode. The positively charged ions are 
accelerated towards the cap and a moderately well focused beam of ions leaves the orifice.  
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Three different processes contribute to the removal of contaminants (Fig. 2.22) 
[2.14, 15]: The direct knock-off process by the collision of the ion with the con-
taminant, the knock-off by a reflected ion, and a process in which the contaminant 
atom receives enough energy for desorption from the outwards flux of sputtered 
substrate atoms. The cross sections for the three processes are of the same order of 
magnitude. The cross section of first two decay slowly with energy, the cross sec-
tion of the last increases with energy and surpasses the cross section of the first 
two mechanisms at about 1.5 keV [2.14]. Significant sputtering of substrate atoms 
normally is an undesirable side effect since it disorders the substrate and inter-
mixes the contaminants with the substrate. Ion energies of 500 to 1 keV are 
optimal for cleaning the substrate of surface contaminants. The cross sections for 
sputtering adsorbates are of the order of 10 15 cm-2 for 500 eV argon and neon 
ions. The use of neon has the advantage that a liquid nitrogen cooled getter pump 
can be operated during sputtering which keeps the background pressure of reactive 
gases in the chamber low (neon does not adsorb at 77 K, argon does!). 

(a) (b) (c)

Fig. 2.22. Schematic illustration of the three different sputter processes that contribute to the 
removal of surface contaminants: (a) Direct energy knock-off collisions, (b) knock-off after 
recoil of the ion from the substrate, and (c) energy transfer from sputtered substrate particles 
(after Taglauer [2.14]) 

The sputter rate for contaminants on the surface is proportional to the cross section 
 and the ion current j

jN
dt

dN
 (2.23) 

so that the number of contaminant particles decays exponentially in time 

/
0 e tNN , (2.24) 

with a time constant  

1j . (2.25) 
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The time constant  is of the order of a minute for typical ion currents of 5 A/cm2.
One might therefore expect to have the surface free of contaminants after a few 
minutes of sputtering. Unfortunately this is not so! Inevitably, contaminant atoms 
are pushed into the substrate matrix during sputtering and are removed only by 
sputtering off a few monolayers of substrate material, in the course of which a 
fraction of contaminant atoms get pushed deeper into the substrate, and so forth. 
This slows down the cleaning process considerably. The typical contaminant on 
metal surfaces, carbon and sulfur, can be brought back to the surface by mild an-
nealing of the sample. Sequences of alternate sputtering and annealing are 
therefore recommended to remove these surface contaminants effectively. Sulfur 
and carbon contamination arises not only from surface processes. These atoms are 
also contained in the bulk single crystals with a concentration of the order of ppm. 
As the surface disorders during sputtering, the crystals have to be annealed to 
higher temperatures (e.g. up to 0.9 of the melting temperature) in order to restore 
surface order after sputter cleaning. During this annealing procedure, the bulk 
impurities can diffuse towards the surface, and segregate there if the free enthalpy 
in the adsorption sites is lower than in the bulk. In a simple model for segregation  
the surface equilibrium concentration  is given by 

TkHHc Bbulksurf /)(e
1

. (2.26) 

Here, c is the bulk concentration, and Hsurf and Hbulk are the enthalpies per con-
taminant atom on the surface and the bulk, respectively. In the high temperature 
limit, the surface coverage is smaller or at most of the order of the bulk concentra-
tion. At lower temperatures and if bulksurf HH  (i.e. the surface sites are 

energetically preferred) the surface equilibrium coverage can approach one, even 
for low bulk concentrations. This is the typical situation for the common metal 
contaminants C and S (for a detailed discussion see Sect. 5.4.3). Consequently, the 
sputter-annealing process has to be repeated over and over, until the entire crystal 
is leached completely. This may take as many as 100 cycles, depending on the 
required state of cleanliness. Detrimental to effective leaching of the crystal is that 
the surface concentration of segregated contaminants at a particular temperature, 
once it is smaller than one, decreases with the decreasing bulk concentration. One 
therefore frequently abstains from complete leaching and terminates the cleaning 
procedures with a final long sputter session, followed by a mild annealing to a 
temperature, which is sufficient for re-crystallization, but too low to let the bulk 
impurities diffuse to the surface. The surface cleaning procedures can be speeded 
up by using thinner crystals or by heating the crystals in a hydrogen atmosphere 
for a longer time prior to mounting in the UHV-chamber. 
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Preparation by in-situ chemical reactions  

Because of the considerable deficiencies of the sputter-annealing process, alterna-
tive methods of cleaning should be considered, if possible. One of them is cleaning 
by chemical reactions in vacuum. Surfaces of the refractory metals, tungsten, mo-
lybdenum and niobium, e.g., are cleaned by high temperature oxidation. This 
process burns off surface carbon deposits as well as the dissolved carbon, which 
tends to segregate to the surface even more readily in an oxygen environment since 
the reaction product CO is a state of lower chemical potential. Oxygen also reacts 
with the substrate material to form oxides. For the refractory metals, these oxides 
have a higher sublimation pressure than the substrate material. They are therefore 
removed by heating without evaporation of substrate material. The required tem-
peratures are listed in Table 2.1. The comparatively high temperatures are 
achieved by electron bombardment. Since only refractory metals withstand such 
temperatures, the sample holder, at least the parts that become hot, must be manu-
factured from the same materials. The temperatures can be measured either by 
using a pyrometer or by spot welding a W/Re thermocouple to the sample. 

Table 2.1. Recipes for cleaning by oxidation and reduction for W, Mo, Nb and Re. 

Material Oxidation Reduction 

W 24 h, 1x10 4 Pa, 1000 K 2500 K 
Mo 5x10 6 Pa, 1400 K 2000 K 
Nb 1x10 4 Pa, 1000 K 2h at 2300 K 
Re 90 s, 1x10 4 Pa, 1600 K 2100 K 

In order to maintain UHV-conditions during sample heating, the sample holder 
must be degassed during and after chamber bake-out by heating the sample to the 
same temperatures as during the cleaning procedure. Successful degassing requires 
that the electrons emitted from the cathode during electron bombardment only 
strike the intended target. Otherwise, electrons hitting the chamber walls or the 
sample manipulator would cause electron stimulated desorption, with negative 
consequences for the vacuum. A simple recipe to avoid electron stimulated desorp-
tion is to bias the cathode positively with respect to ground by about 50-100 V. In 
that way even electrons that are elastically scattered from the target cannot arrive 
on the chamber wall or at those part of the sample mount, which are not on high 
positive voltage. A positive bias is automatically obtained by using a power supply 
for the cathode heating current that floats with respect to ground and by connecting 
the cathode to ground by a resistor. The resistance R is calculated as 50 V/Iemission

with Iemission the cathode emission current required to heat the sample to the desired 
temperature. Depending on the sample size, temperature and the heat loss via con-
duction to the sample holder, up 100 W electric power may be required. 
 Cleaning by oxidation has also been used for cleaning Pt-surfaces. Oxygen 
burns off carbon very effectively. After prolonged heating in an oxygen atmos-
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phere, Auger-spectra of Pt-surfaces tend to display an oxygen peak that cannot be 
removed by heating to temperatures where adsorbed oxygen would desorb. This 
stable surface oxide is due to Si or Ca contaminations in the bulk, which segregate 
to the surface under the influence of the chemical potential of oxygen. Since Si and 
Ca are difficult to detect by Auger spectroscopy in the presence of the many Pt-
associated peaks, the oxygen signal was mistaken for a form of stable platinum 
oxide for some time. SiO2 and CaO do not desorb. They are best removed by sput-
tering. Hence, a combination of oxygen treatment and sputtering appears to be the 
optimum cleaning procedure for platinum. 
 Another method of chemical cleaning that works rather effectively without 
being too aggressive is cleaning with atomic hydrogen. The method can be used to 
remove most common contaminants from the surface: carbon, nitrogen, sulfur, 
chlorine, fluorine, etc.. Silicon and germanium surface are etched by atomic hy-
drogen by the production of SiH4 and GeH4. On II-V and II-VI compounds, the 
stoichiometry is affected. Atomic hydrogen is produced by dissociation of molecu-
lar hydrogen on a hot tungsten filament that is placed near the sample. A better 
method is to employ a beam of hydrogen atoms. A beam of up to 100% atomic 
hydrogen is obtained by passing molecular hydrogen through a hot tungsten capil-
lary. Figure 2.23 shows a calibrated source of atomic hydrogen (after K. 
Tschersich [2.16, 17]).  

H2O

H2
H + H2
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Fig. 2.23. Source for atomic hydrogen. Molecular hydrogen is dissociated at the hot walls of 
a resistively heated tungsten capillary. 
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Cleaning by atomic hydrogen is a standard method in semiconductor industry. It is 
less common in research labs, mostly because it is only lately that good sources of 
atomic hydrogen became commercially available. It is not advisable to use ineffec-
tive means of making atomic hydrogen from molecular hydrogen and compensate 
the ineffectiveness by introducing massive amounts of molecular hydrogen into 
the chamber: The hot oil in the turbo-pump and the rotary-pump may be crack-
reacted to hydrocarbon products that can be disastrous to the vacuum system! 

Preparation by epitaxial growth 

For many years, surfaces were considered clean when "the Auger spectra showed 
no traces of contaminants". The sensitivity of Auger-spectroscopy is not very high, 
however. The detection limit is 1% of a monolayer, in favorable cases 0.1%. That 
still means that on a linear scale every tenth to thirtieth atom is a foreign atom. 
While this contamination level may suffice for some studies of the electronic 
properties and for structure analysis it would be intolerable for studies on the vi-
brational properties, on the morphological features of surfaces after annealing, on 
catalytic surface reactions, or on the growth modes in epitaxial growth, to name a 
few issues of current research interests. Contamination levels, as e.g. seen in STM-
images are frequently of the order of 10-6. These low contamination levels cannot 
always be achieved by the classical techniques mentioned before. An alternative at 
least for element crystals is to evaporate the material and grow several monolayers 
of the material onto the pre-cleaned crystal surface to bury the remaining contami-
nant atoms. To obtain a smooth and contamination free surface the substrate 
temperature need be chosen high enough to facilitate interlayer transport 
(Sect. 11.1.4), but low enough to avoid segregation of the buried impurities. Natu-
rally, the evaporation source has to be out-gassed carefully, and sufficiently high 
purity ingots have to be used to achieve good results. 

2.3 Surfaces in an Electrochemical Cell 

2.3.1 The Three-Electrode Arrangement 

When a piece of material is immersed into an electrolyte, the ions of the electro-
lyte react with the surface and transfer their charge to the solid. If the solid is 
electrically isolated otherwise, the electric potential of the solid changes until it 
reaches an equilibrium value that is characteristic of the electrode/electrolyte 
combination. The ion/surface reaction can be controlled by applying a potential 
from an external source. That is why electrochemistry of the solid/electrolyte in-
terface is the science of solids in an electrolyte under potential control. The 
potential is defined with respect to some reference redox system (see Sect. 3.1.3). 
Thus, the experimental set-up involves always a reference electrode, which is in 
equilibrium with the electrolyte. Equilibrium means that no current should flow 
between electrolyte and the reference. The potential of the working electrode (the 
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electrode of interest) with respect to the reference electrode must therefore be 
measured without drawing a significant current on the latter. The current load on 
the working electrode is picked up by a third electrode, the counter electrode.
Hence, electrochemical experiments require three electrodes.  
 We note that in electrochemistry the term potential is used synonymically for 
voltage and is therefore measured in units of volts, rather than electron volts. We 
stay in keeping with that custom throughout this entire volume. Furthermore, elec-
trochemists denote the potential by the letter E. To avoid confusion with the 
energy we use the symbol .

Thermostat
controlled

water

Water
outlet

Argon inlet
for pressurizing Argon inlet

for bubbling

Argon
outlet

Reference electrode

Counter
electrode

Working
electrode

Meniscus

Bead
crystal

Fig. 2.25. Electrochemical cell with reference electrode, see text for discussion. 

 Figure 2.25 shows a glass vessel used for standard electrochemical measure-
ments. The counter electrode is a sheet of platinum. The reference electrode is 
electrically connected to the electrolyte in the vessel via the Luggin-capillary. The 
capillary should end near the working electrode so that the measured potential is 
little affected by potential drop between the working electrode and the counter 
electrode. The Luggin-capillary is filled by introducing slightly pressurized argon 
into the inlet on the left side. This drives the electrolyte into the capillary once the 
valve is opened. Contact with the possibly different electrolyte in the reference cell 
is thereby established. To remove the dissolved oxygen, argon is bubbled through 
the cell prior to immersion of the working electrode. The working electrode is 
immersed into the electrolyte under potential control, which means that the poten-
tial of the working electrode is fixed with respect to the reference, regardless of the 
current between the working electrode and the counter electrode. Figure 2.25 
shows a bead crystal as the working electrode. The crystal is retracted a little after 
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immersion so that the electrolyte forms a meniscus with the perimeter. This en-
sures that only the prepared and oriented surface (see expanded view) is in contact 
with the electrolyte. 

2.3.2 Voltammograms 

The basic experiment in electrochemistry is the voltammogram: the potential of the 
working electrode with respect to the reference is swept at a constant rate up to a 
maximum and then backwards to the starting potential to complete a full cycle, 
and the current is measured during the entire cycle. This basic experiment is the 
starting point for practically all investigations on the solid/electrolyte interface 
because to the learned scientist the voltammogram immediately reveals the status 
of the surface in terms of order and cleanness. We discuss this with the voltammo-
gram of a Pt(111) surface as an example (Fig. 2.26). The vertical axis in Fig. 2.26 
is the area specific current, the horizontal axis the potential with respect to the 
Reversible Hydrogen Electrode (RHE). This electrode consists of a sheet of high 
surface area platinum (black platinum) with molecular hydrogen bubbling through 
the electrolyte. The electrolyte at the reference is the same as at the working elec-
trode. No continuous electrochemical reaction takes place in the entire potential 
range shown in Fig. 2.26. Hence, the current were zero if the potential were kept 
constant. The finite current arises from loading and unloading the interfacial ca-
pacitance (Sect. 3.2.3), from the charging and discharging of ions adsorbing and 
desorbing from the surface at a particular potential, and from phase transitions that 
may take place on the surface. The current density j arising from the capacitance is 

t
Cj

d

d
, (2.22) 

in which d dt is the sweep rate of the potential and C is the area specific interfa-
cial capacitance. The capacitance is about 50 F/cm2 (Sect. 3.2.3). The sweep rate 
in Fig. 2.26 was 50 mV/s. The capacitive current is therefore about 2.5 A/cm2.
Only the current between the peaks in the right half of the figure is therefore a 
capacitive current. Starting from the left, the nearly constant current is due to de-
sorption of hydrogen from an adsorbed layer of hydrogen on the surface. 
Hydrogen desorbs as a solvated, positively charged proton, hence the current. 
Electrochemists call the adsorbed layer of hydrogen underpotential deposited
(upd-layer, Sect. 6.2.4). Underpotential, because the bulk phase of hydrogen, the 
H2-gas, develops at a more negative potential. The small peaks in the otherwise 
monotonous current are due to desorption from A- and B-steps on the surface 
(Figs. 1.32 and 1.33). The magnitude of these peaks is therefore a good indicator 
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Fig. 2.26. Voltammogram of a Pt(111) crystal in 0.5 M H2SO4 (courtesy of Guillermo 
Beltramo). The potential is with reference to the Reversible Hydrogen Electrode (RHE). 
The sweep rate is 50 mV/s. See text for further discussion.  

of the amount of disorder on the surface. The fact that these peaks exist is indica-
tive of the cleanness of the sample and the electrolyte: contaminants would tend to 
sit in step-sites and block these sites for hydrogen. The assignment of these peaks 
to step-sites originates from comparative studies on Pt(110) and Pt(100) surfaces. 
For example, the voltammogram of Pt(110) exhibits shows a strong peak at 0.12 V 
RHE. Since the local atomic structure of a B-step together with two atom rows on 
the lower terrace is that of a (110) surface (Fig. 1.33) the small peak at 0.12 V 
RHE in Fig. 2.26 is assigned to hydrogen adsorption at B-steps. An interesting 
question is why desorption from the step sites gives rise to a sharp peak as opposed 
to desorption from the terraces. It is shown in Sect. 6.2.5 and 6.3.2 that the sharp-
ness of a desorption peak is related to the lateral interactions between adsorbates: 
sharp peaks occur when there are no interactions between adsorbates or attractive 
interactions, broad peaks or even featureless currents occur for repulsive interac-
tions. In the latter case the adsorption isotherm extends over a large potential range 
and correspondingly desorption extends over a broad range (see also Fig. 4.7). The 
broad hump at 0.35V RHE is the initial adsorption of -

4SO -ions. Further uptake 
causes a phase transition into an ordered sulfate adlayer, which manifests itself by 
the sharp spike at 0.45V RHE. The sharpness of the peak is an indicator of the 
domain size, hence of the order and cleanness of the surface. The final peak is 
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caused by the insertion of OH -ions into the sulfate layer. The peaks have their 
counterparts in the negative sweep. Except for the OH-peak, all peaks in the nega-
tive sweep are at the same potential as in the positive sweep and have the same 
shape. That means that adsorption/desorption processes were in equilibrium with 
the electrolyte at the corresponding potential. 
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Fig. 2.27. Voltammogram of Au(100) in 0.05 M H2SO4 (courtesy of Margret Giesen). The 
potential is with reference to the Saturated Calomel Electrode (SCE). Sweep rate is 
10 mV/s. See text for further discussion. 

The voltammograms of gold surfaces are less rich in features, nevertheless inter-
esting. Figure 2.27 displays the voltammogram of an Au(100) surface in 0.05 M 
H2SO4. Now, the potential is with reference to the Saturated Calomel Electrode
(SCE) (0V RHE corresponds approximately to 0.24V SCE). The sweep rate is 
10 mV/s. The surface was immersed into the electrolyte at 0.2 V SCE. At this 
potential the Au(100) surface is reconstructed (Fig. 2.28a, see also Sect. 1.2.1). 
The reconstruction is lifted when the potential is raised to positive values. Since 
the potential of zero charge (pzc) of the unreconstructed surface is lower by about 
0.3 V, the interface capacitor is suddenly charged upon lifting the reconstruction, 
which causes the peak in the current (for details see Sects. 3.2.3, 4.2.3 and 
Fig. 4.7). As for the Pt-surface, sulfate ions adsorb for positive potentials, how-
ever, the sulfate uptake extends over a wide potential range of 0.6V (Fig. 4.8, 6.19) 
and no peak arises from that. Instead, the gradual -

4SO -adsorption gives rise to the 
higher current. The beginning of the -

4SO -adsorption is seen as the onset of a 
higher current in Fig. 2.27. When the reconstruction is lifted, the surplus atoms 
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(a) (b)

(c) (d)

Fig. 2.28. Reconstructed Au(100) surface after immersion into the electrolyte at negative 
potentials (a). The reconstruction is lifted around 0.35 V SCE (b). The 25% surplus atoms 
(Sect. 1.2.1, Fig. 1.11) form adatom islands on the surface (c). The surface reconstructs 
again after sweeping back to negative potentials, however the process is kinetically hin-
dered. The reconstruction begins in streaks. Atoms at the island edges jump into the next 
layer underneath: the island is "eaten up by the streaks" (d). (Courtesy of Margret Giesen). 

form islands on the surface (Fig. 2.28b). When the potential is swept backwards, 
the islands do not instantaneously dissolve into the first layer. Rather, the recon-
struction is established along linear streaks that "eat" into the islands (Fig. 2.28c) 
causing the odd island shapes. Since the process of re-establishing the reconstruc-
tion takes time, the reconstruction peak in the negative sweep is broad and shifted 
towards negative potentials. Its shape depends on the sweep rate. 
 Voltammetry is sometimes seen as the equivalent to thermal desorption spec-
troscopy of surfaces in vacuum (Sect. 6.3). In thermal desorption spectroscopy, 
the species desorbing from the surface are observed while the temperature is 
raised at a constant rate. Upon a closer look the differences between voltammetry 
and desorption spectroscopy are however larger than the similarities. On the tech-
nical side, voltammograms differ because one runs a complete cycle of the 
potential with adsorption and desorption. Unlike the desorption in vacuum the 
desorbing species have to be transported away by diffusion which has a consider-
able influence on the kinetics and makes the quantitative interpretation of 
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voltammograms more complicated. As we have seen, the most significant features 
in voltammograms are those associated with phase transitions that occur at a par-
ticular potential for which is no equivalent in thermal desorption spectroscopy. 
Adsorption and desorption on the other hand mostly cause structureless currents. 
Finally, voltammograms show continuous reactions outside the realm of the ide-
ally polarizable electrode.  

2.3.3 Preparation of Single Crystal Electrodes 

There may be still one or the other surface scientist coming from the UHV-
background who would be inclined to denounce work on electrolyte surfaces as 
"dirty", or dismiss electrolyte surfaces as being less well defined than surfaces 
prepared in UHV. Latest with the advent of single crystal electrochemistry and the 
electrochemical STM there is no justification for such arrogance. Experiments on 
the solid/electrolyte interface can be just as clean and well defined as any UHV-
experiment. Merely, the methods by which that result is achieved differ: They 
largely involve chemical rather than physical preparation techniques. There is 
definite lack of methods to determine the state of cleanness of a surface in an elec-
trolyte. No equivalent to Auger- or photoemission spectroscopy to reveal 
impurities exists. With a well-equipped UHV-system at hand a physicists can 
teach himself how to prepare a surface by trial and error. The preparation of elec-
trochemical experiments and of electrochemical surfaces requires training and 
experience. This holds even more as the interpretation of the standard check on the 
experimental conditions, the voltammogram, requires expertise and the compari-
son to a reference voltammogram of an undisputedly clean and well-ordered 
surface. In the absence of other techniques, it has taken quite a while until re-
searchers could agree as to how a voltammogram of a clean and well-ordered 
surface of a specific material in a specific solution should look. Differences in 
voltammograms frequently concern very subtle features: the height and width of a 
narrow peak (e.g. the peak caused by the disorder-order phase transition in 
Fig. 2.26), the magnitude of defect-associated peaks (steps in Fig. 2.26), or the 
overall slope of the voltammogram ("hanging" voltammogram). Moreover, even if 
reference voltammograms are available, a deviation from the reference may be for 
more than one reason. For example, the absence of the small step-associated hy-
drogen desorption peaks in Fig. 2.26 could be due to a very low concentration of 
steps on the surface, which would be good. However, it also could (and may more 
likely) be due to contaminations blocking the step sites, contaminations that came 
from the crystal preparation procedure, from the electrolyte or from the walls of 
the glass vessels because of insufficient cleaning. To determine the cause for a 
failure, or rather to have the right thoughts about a failure, requires experience, 
skill and considerable training. These capabilities are not acquired in a do-it-
yourself training program. Rather the novice should enter a "school" and learn the 
trade there. 
 There is another important reason why self-training is not the thing to do, in 
particular not for a person with a background in physics, that is safety! Cleaning 
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procedures for the glassware require handling of extremely hazardous agents. 
Strongly oxidizing acids such as Carot's acid (also called Piranja acids since or-
ganic material such as ones finger is dissolved in seconds!) or a mixture of 
concentrated sulfuric and nitric acid are used in liter-quantities and boiling hot. 
Dealing properly with those hazardous materials requires special laboratory 
equipment, protective clothing and, above all, training in safe and disciplined 
working conduct, which is not necessarily one of the virtues of a physicist. It is 
therefore that we abstain from providing detailed recipes for cleaning procedures 
of the glassware and the preparation of electrolytes in this volume. In the follow-
ing, we concentrate on the pre-treatment of a few specific single crystal materials.  
 Platinum, gold and silver single crystal surfaces are prepared by flame anneal-
ing. The crystals are gently heated by a Bunsen burner fed by hydrogen and air. 
Platinum is heated yellow-hot ( 1300 °C), silver and gold to dark red-hot 
( 700 °C). Bead crystals are particularly well suited for flame annealing. The crys-
tals are held with tweezers by their wire end, which minimizes stress on the crystal 
during the process. The crystals are cooled down slowly in an argon/hydrogen 
atmosphere (with 5% hydrogen). Once the temperature is below 100 °C, the crys-
tals are immersed into the electrolyte under potential control. The silver crystal 
requires chemical treatment before flame annealing in H2O2/cyanide and H2O2

solutions. 
 Copper surfaces are in-situ electro-polished in 50-66% orthophosphoric acid by 
applying a potential of about 2 V between the copper electrode and a platinum 
sheet for 15-60 s.  



3. Basic Concepts

The section reviews some basic concepts of Solid State Physics, Chemistry and 
Electrochemistry in as much as they come to bear in this volume. Elastic proper-
ties of crystalline solids are treated more extensively since they have become 
rather important for surfaces and thin film systems lately. As an application, the 
elastic interactions between defects and strain-induced self-assembly are consid-
ered.

3.1 Electronic States and the Chemical Bonding in Solids

3.1.1 Metals

The simplest model for the quantum states of electrons in a metal is the particle-
in-a-box model, the box being represented by a potential wall. The model neglects 
all explicit electron-electron interactions. Each electron is considered as being 
completely independent of each other and described by a single particle wave 
function. According to the Pauli-principle, the single electron states (the energeti-
cally degenerate spin-up and spin-down states are counted as separate states!) are 
occupied by one electron up to a maximum energy, the Fermi-level. As simple as 
the model is, it accounts for many essential properties of the electronic structure of 
metals. In the context of this volume, the model also serves to introduce certain 
notations. It is therefore briefly sketched in the following. For details, the reader is 
referred to standard textbooks on solid-state physics. 
The electron states are particular simple if one assumes the potential box to pos-
sess infinitely high walls. 

elsewhere
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The Schrödinger equation inside the box and the boundary condition that the wave 
function be zero where the potential is infinite is fulfilled by the ansatz 

zkykxk
L

zyx zyx sinsinsin
2

),,(
2/3

(3.2)

with  



 3  Basic Concepts __________________________________________________________________________ 104

...3,2,1iii nn
L

k  (3.3) 

The energy E is 

222
222

22
)( zyx kkk

mm

k
kE

hh
 (3.4) 

in which m is the electron mass. The eigenstates labeled with the first four kx-
values are displayed in Fig. 3.1. For a bulk solid, these low-energy states are un-
important, since there are only a few of them and they remain occupied under all 
circumstances. The low-energy states do play a significant role in quantum well 
structures where only a small number of theses states exist below the Fermi-level 
(Sect. 8.3). For a box with finite potential walls (V = V0 outside) the wave function 
develops exponential tails which extend into the region outside the box with a 

decay length inversely proportional to the square root of mkV x 2/22h .
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Fig. 3.1. The wave function  for particles in a box for nx = 1,2,3,4; ny = nz = 1. The larger 
the wave vector, the more rapidly the electron density |  of the corresponding electron 
drops to zero at the boundary of the box. For k = kF the characteristic decay length is about 

/2kF.

Following the Pauli-principle, the single electron states are filled up to an energy 
EF, the Fermi-energy that is 
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with n the electron density and 2/32
F )3( nk  the wave vector of the electron 

with the energy EF. By counting the number of states in an energy window dE one 
can easily derive the density of electron states D(E) per energy and volume for the 
particle-in-a-box-model,  
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This expression is a very good approximation to the actual density of states of s-
electrons in metals. For metals with d-states in the regime of valence electrons e.g. 
the 3-5d transition metals, a contribution due to d-states is to be added. Because of 
the more localized character of d-electrons and the larger number of d-states per 
atom, the density of d-states is confined to a narrower energy range and the den-
sity exceeds that of s-electrons by far.  
 According to the Pauli-principle, the occupation of an electron state can be 
either zero or one. This principle also regulates the occupation of electron states at 
a finite temperature T. The probability for a state to be occupied f(E,T) is 

1
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with  the chemical potential of electrons and kB the Boltzmann constant. At 
T = 0K, f(E,T) is 1 for E <  and 0 for E > . The chemical potential is therefore 
equal to the Fermi-energy EF at T = 0 K. 
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Fig. 3.2. Fermi-function f(E,T) for E in the vicinity of for T = 0 K and T = 300 K. The 
Fermi-function is symmetric to both sides of E  = 0 with a width of 2kBT to either side. 
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For T > 0 K the Fermi function is a smooth symmetric function around (E- ) = 0 
with a width of about 2kBT to each side (Fig. 3.2). The concentration of electrons n

0

d)(),( EEDTEfn  (3.8) 

must remain constant with temperature. Since in genral the densities of states 
above and below the Fermi-level are not equal, and since the Fermi-function is a 
symmetric function, the chemical potential  changes with temperature. The shift 
with temperature is proportional to the negative slope of the density of states at the 
Fermi-level, hence downwards for a D(E) as in (3.6). The shift can become quite 
large for transition metals, which causes the larger thermo-electric power of such 
metals.  
 The Fermi-function has its name because it describes the occupation statistics 
of fermions. The derivation of the Fermi-function makes only use of the possible 
occupation numbers and not of the spin being ½! Fermi-statistics is therefore also 
the appropriate statistics for the occupation probability of all other particles that 
have either zero or one as the possible occupation numbers. Statistical problem of 
that occur also in other areas of physics, e.g. in the case of a non-interacting lattice 
gas (Sect. 5.4.1). The relation between the probability of a site being occupied, in 
other words the fractional coverage, and the chemical potential of the particles is 
the same as for fermions. This concept immediately leads to the Langmuir Iso-
therm (Sect. 6.2.1). 

3.1.2 Semiconductors

Metals are characterized by the fact that the Fermi-level falls inside a band of 
electron states. Electrons at the Fermi-level can therefore pick up energy in infini-
tesimal small amounts, and thus can gain kinetic energy in an electric field, which 
is the origin of the high electric and thermal conductivity of metals. Semiconduc-
tors and insulators possess a filled band of valence electrons, which is separated 
from a band of unoccupied states, the “conduction band” by an energy gap. This 
band structure is a consequence of the bonding and the electron configuration of 
the atoms forming the solid. Consider silicon as an example (Fig. 3.3): If one 
places the Si-atoms at the atom positions of the diamond structure (Fig. 1.17), 
however at distance r much larger than the equilibrium distance, then the electron 
orbitals initially remain as they are in the atomic 3s23p2-configuration. As the 
distance r is reduced the electron overlap, form bands and the electronic configu-
ration changes to sp3 hybrids, in order to maximize electron density in the regions 
of low potential energy in the bonding regions between the atoms. All four va-
lence electrons per atom stay in the lowest band, the valence band, which is fully 
occupied, while the upper band is completely empty. This immediately raises the 
question where does one have to place the Fermi-level, respectively the chemical 
potential at finite temperature. It seems that one might place EF arbitrarily any-
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where between the occupied and the unoccupied band. However, this is not so! To 
determine the position of the chemical potential at finite temperature and hence 
the Fermi-level by considering the limit T 0 one needs to consider the density of 
the valence and conduction band in more detail. Around the minimum of the con-
duction band, the electron energy can be expanded into a Taylor series with 
respect to the wave vector k. The lowest term is necessarily the k2-term. The elec-
tron energy can thus be described by 
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in which mx, my, and mz denote effective masses of the electron in the three direc-
tions and Ec is the edge of the conduction band. Near the conduction band 
minimum, the density of states has the same square-root dependence on the energy 
as for a metal (Fig. 3.4). The same argument can be made for the density of states 
at the upper edge of the valence band.  
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Fig. 3.3. Energy bands of electrons in solids formed by the group IV elements C, Si, and Ge 
as a function of the interatomic distance. Note that the equilibrium separation r0 is not at the 
minimum of the electron energy because the Coulomb repulsion between the ion cores 
needs to be balanced. 
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Because of the rapid decay of the occupation probability with energy, only the 
densities of states near the band edges are important (Fig. 3.4). The concentration 
of electrons n in the conduction band is 
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with the effective density of states  

2/3

2
B

*
cc

eff
2

h

Tkm
N . (3.11) 

Here *
cm  is a mean effective mass of electrons in the conduction band. In (3.10) 

the Fermi-function is approximated by a Boltzmann distribution, which is a good 
approximation as long as the chemical potential is several kBT below the conduc-
tion band. 
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Fig. 3.4. Density of states in the conduction and valence band of semiconductors (solid 
line) and the Fermi-function (dashed line). The chemical potential adjusts itself so that the 
total number of electrons in the conduction band equals the number of unoccupied states 
(holes) in the valence band. The chemical potential of electron has therefore a defined value 
even though there are no states at the energy that corresponds to the chemical potential. 

The concentration of unoccupied states, of “electron holes” is correspondingly 

Tk

EE

eNETEfEDp B

v
v

v
effc d),(1)(  (3.12) 

with  



  3.1  Electronic States and the Chemical Bonding in Solids __________________________________________________________________________ 109

2/3

2
B

*
vv

eff
2

h

Tkm
N  (3.13) 

the effective density of states at the top of the valence band. The product of the 
concentration of electrons n and holes p is 
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in which Eg = Ec - Ev is the energy gap between the conduction and valence band 
edge. Eq. (3.14) can be considered as the law of mass action for electrons and 
holes. 
 As electrons in the conduction band stem from the valence band the concentra-
tion of electrons n equals the concentration of holes p. By equating (3.11) with 
(3.12) and by solving for  one obtains the position of the chemical potential as a 
function of temperature. 
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Hence,  lies in the middle between the conduction and the valence band edge at 

T = 0 K, and it stays there if v
eff

c
eff NN . The chemical potential of electrons has 

therefore a defined value at all temperatures even though there are no states at the 
energy . This statement may appear trivial at this point, but is less trivial when 
extended to insulators or ionic conductors of solid or liquid phase. As long as the 
system has states for electrons to be occupied, one has a defined position of the 
chemical potential of electrons. For two systems in equilibrium, the chemical po-
tential determines the position of the energy levels with respect to each other. If 
the density of states is low around the chemical potential, the position of the 
chemical potential changes rapidly when the system is charged. For semiconduc-
tors e.g., the chemical potential can vary between the conduction band and the 
valence band, depending on concentration and sign of additional charges brought 
into the system by doping or by contact with a metal or another semiconductor. 
Local variations of the chemical potential are even more facile in insulators. In 
metals, on the other hand, the chemical potential of electrons hardly changes upon 
charging.  

3.1.3 From covalent bonding to ions in solids and liquids

Compounds made from group III- and V-elements and from II- and VI-elements 
are likewise bonded by sp3-hybrids. The structure of III-V compounds is the dia-
mond structure, albeit with the two atoms in the primitive unit cell occupied by 
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one atom each, whereby the Zincblende structure results (Fig. 1.17). An alterna-
tive structure in which the tetrahedral coordination is retained is the wurtzite 
structure that is predominantly realized for II-VI-compounds. Since the two atoms 
in the unit cell are different, the bonding has a partial ionic character. It is impor-
tant to state that the ionicity is really just a partial one. Considering the compound 
ZnO as an example, which crystallizes in the wurtzite structure, merely a fraction 
of an electron charge is transferred from zinc to oxygen in forming the bond, in-
dependent on how one defines atomic charges in a solid in detail. It is therefore 
misleading to say that the Zn atom is in the Zn2+ oxidation state in ZnO, or, to give 
another example, that Fe is in both the Fe2+ and Fe3+-oxidation states in the com-
pound magnetite, Fe3O4. Only in a few extreme cases of a purely ionic bonding as 
in the alkali-halides, electronic charge is transferred completely from one atom to 
another. Assigning spectroscopic energy levels as Xn+, Xm+ levels to characterize 
different electronic structure of an atom X in a different local environment, as it is 
done sometimes, is therefore a misconception. The situation is even more confus-
ing in chemistry where oxidation and reduction were traditionally conceived as 
removal and addition of one or more electrons from an atom, processes that actu-
ally do not occur. One might wonder how this concept of oxidation/reduction 
came about, as it evidently has no foundation in the physics of the solid state. It is 
presumably because chemistry was primarily the science of reactions, and reac-
tions may be accompanied by a charge transfer. This holds in particular for 
corrosion and galvanic deposition. A zinc atom, e.g., when dissolved in an acidic 
aqueous solution becomes an ion complex, and the process is accompanied by 
leaving behind two electrons on the solid zinc electrode.  
 In the previous section we have learned that electron have a defined a chemical 
potential even when no electronic states exist at the energy which corresponds to 
the chemical potential. A chemical potential and hence a Fermi-level exists there-
fore also in solids with partial or even purely ionic bonding which may be 
complete insulators with regard to electron transport. If a Fermi-level can be de-
fined there, it exists also in liquids with ionic but no electronic conduction, i. e. in 
electrolyte solutions. For a semiconductor we have found an easy way to relate the 
position of the Fermi-level to the electronic states of the system. It is less trivial to 
establish such a relation with respect to the energy scale of the multitude of redox 
reactions. The reference point to all redox reactions is the protonization of hydro-
gen in water. 

eHH
2

1
2  (3.16) 

Instead of writing H+ sometimes H3O
+ is used in textbooks to indicate that H+ does 

not exist by itself in water. According to more recent work, this again is a poor 

representation of the actual state, 25OH  being a better one [3.1]. The reaction 

(3.16) is a half-reaction, which cannot occur in water as such because water has no 
state to accommodate the free electron. A supplementing second half of the reac-
tion that takes care of the electron is 
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OHH
2

1
eOH 22 . (3.17) 

The sum of (3.16) and (3.17) is the water dissociation reaction 

OHHOH2 , (3.18) 

which requires a free enthalpy G (practically equal to the free energy F at at-
mospheric pressure) of 0.83 eV per atom. If one assigns by definition the energy 
level G = 0 to the half reaction (3.16) then G = 0.83 eV is to be assigned to the 
half reaction (3.17). One way to raise that energy in the appropriate form, namely 
as a free energy, is to place the electron on a metal with a negative voltage. With 
respect to the definition of the zero on the redox energy scale the voltage on the 
metal would have to be 0.83 V. By comparing equilibrium reaction energies of 
various reactions the complete scale of “Standard Potentials” (potentials in the 
sense of voltages, not energies) evolves. This energy scale can furthermore be 
matched to an absolute energy scale by considering certain reaction cycles (see 
e.g. [3.2]). Reference point of that absolute scale is the vacuum energy of an elec-
tron, which is the energy of an electron just out side the solid or liquid (to be 
specifically defined in the next section). For the water dissociation, we then have 
the following energy scales. 

Table 3.1.  Energy scales and standard potential for the water dissociation reac-
tion.

Reaction Chemical 

energy G / eV 

Absolute energy 
scale / eV 

Standard Poten-
tial U / V 

eHH
2

1
2

0 3.67±0.2 0 

OHH
2

1
eOH 22

+0.83 4.5±0.2 0.83 

OH2HO
2

1
22

+1.24 4.91±0.2 1.24 

The equilibrium concentration of the ions H+ and OH  are calculated from the 
formation enthalpy as 

Tk

G

BeOHOHH 2  (3.19) 

With [H+] = [OH ] one obtains for the relative concentration of protons in water at 
298 K almost exactly 1.0 10 7 which is nice as it provides a simple pH scale, 
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given by the negative logarithm of the H+-concentration: pH = 7.0 denotes neutral 
water. Equation (3.19) is identical to (3.14) relating the concentration of electrons 
and holes in an intrinsic semiconductor. The analogy goes even further. By doping 
the semiconductor with electron donors more electrons are created, the product of 
the concentration of electrons and holes remains the same. Similarly, when a base 
NaOH is added to water, more OH  ions reduce the concentration of H+-ions so 
that the balance (3.19) is maintained, and the pH shifts to larger numbers. A semi-
conductor doped with donors corresponds to a base, when doped with electron 
acceptors it corresponds to an acid. This correspondence can be exploited to de-
fine an electron chemical potential in an electrolyte. One may interpret the 
dissociation of H2O into the ions H+ and OH  as a transfer of an electron from one 
state to another with an activation energy of 0.83 eV. This defines the position of 
the Fermi-level as 

10lnpH B
eHH

2

1
2

TkE . (3.20) 

The standard potential scale is therefore a function of the pH-value. 

3.2 Charge Distribution at Surfaces and Interfaces

3.2.1 Metal Surfaces in the Jellium Approximation

The particle-in-a-box model describes the metal electrons in terms of single parti-
cle wave functions, which are standing waves. For a box with infinitely high 
potential barrier to the vacuum, all electron wave functions vanish at the surface, 
independent of the electron energy. The charge density is therefore zero at the 
surface (Fig. 3.1). Towards the interior, the charge density rises to the bulk value 
within a screening length which is of the order of a quarter of the shortest possible 
wave length, the Fermi-wavelength F = 2 /kF. The bulk charge density is ap-
proached in an oscillatory way because of the sharp cut-off at the Fermi-wave 
length. If the potential well is of finite depth, then the charge density is not zero at 
the surface. Rather it “spills out” into the vacuum with an exponential decay. The 
decay length  is determined by the work function , the difference between the 
energy of an electron in the vacuum Evac and the Fermi-energy EF.

m2

2h
 (3.21) 

While the particle-in-a-box model is reasonably realistic concerning the electron 
charge distribution near the surface, it cannot predict the work function  or, al-
ternatively the depth of the potential well. To this end, one has to move at least to 
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Fig. 3.5. Electron density at the surface of a metal in the jellium model [3.5]. The density is 
plotted for two different bulk electron densities represented by rs, which is the radius of a 
sphere in units of the Bohr radius a0 describing the volume associated with one electron. 
Values of rs range between 2 and 6. Low values correspond to high electron densities. The 
oscillations in the charge density are known as Friedel-oscillations. 

the next level of sophistication and include electron-electron interactions. The 
density functional theory [3.3, 4] applied to the “jellium-model” [3.5, 6] is the 
simplest approach. The electron density near a surface according to Lang and 
Kohn [3.5] is displayed in Fig. 3.5 for two different electron densities in the bulk. 
As common in the theory of metals, the electron density is described as the radius 
rs in units of the Bohr radius a0 of the sphere possessing the volume of one elec-
tron. Values of rs range between 2 and 6, which approximately correspond to the 
electron densities in aluminum and cesium, respectively. Figure 3.5 shows nicely 
the spill out of electrons beyond the boundary of the positively charged back-
ground of the ions (assumed uniform). Towards the interior, the density ap-
proaches the bulk value within about a quarter of the Fermi-wavelength F. Since 
the spill-out of the electron charge decays to zero exponentially, the self-consistent 
potential for an electron leaving the metal approaches the vacuum level within half 
a Fermi wavelength, according to the jellium model. In reality, the vacuum level is 
approached more slowly because of the classical image force, which is not ac-
counted for in the quantum mechanical jellium model. An electron in the vicinity 
of a metal surface experiences a force from its image charge inside the metal, 
which causes the image potential 
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Here, 0 is the vacuum permittivity. Quantum mechanically, the image force arises 
from a virtual excitation of surface plasmons. The relatively slow increase of the 
potential to the vacuum level has interesting practical and conceptual conse-
quences. On the practical side, the effective work of a metal electrode can be re-
duced by applying a high electric field, which leads to field-assisted thermionic 
emission. Conceptually, the existence of the image potential and the gradual, yet 
largely unknown transition into the quantum mechanical regime leads to the diffi-
culty that the potential for an electron a few tenths of a nm away from the surface 
is not well defined.  

+

-

+ +

- -

(a) (b)

Fig. 3.6. Illustration to the Smoluchowski-effect. The density of electrons cannot follow 
the sharp contour of the jellium-edge at a step site (a) or at a single adatom (b). The result 
is a dipole moment pointing with the positive end away from the surface leading to a reduc-
tion of the work function. As well as the model describes qualitatively the dipole moment 
associated with rough edges, it is an artifact of the jellium model and not the real cause for 
the dipole moment (see Fig. 3.7).  

The work function of a metal depends on the crystallographic structure of the sur-
face. In general, the more open the structure the lower is the work function. Fur-
thermore, a rough morphology leads to a reduction of the work function. This 
reduction is known as the Smoluchowski-effect. Within the framework of the 
jellium model, the Smoluchowski-effect has the same origin as the smooth contour 
of the electron density in response to the sharp contour of the potential (Fig. 3.5), 
the kinetic energy. The finiteness of the kinetic energy imposes a shortest screen-
ing length on the electrons. Because of the finite screening length, electrons can-
not perfectly screen a sharp structural contour on a surface such as given by a step 
(Fig. 3.6). Steps should therefore have a dipole moment pz, with the positive end 
pointing away from the surface, leading to a reduction of the work function for a 
given concentration ns of dipoles on the surface (see also section 4.3.5). 
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0s /npe z  (3.23) 

As well as the model describes qualitatively the dipole moment associated with 
rough surface features, it is an artifact of the jellium model and obscures the real 
cause for the dipole moments which are associated with surface roughness. On a 
real surface, the electrons “see” no sharp edges associated with steps or adatoms, 
the charge contours provided by the ion cores of the solid are already smooth. The 
real cause for the positive dipole moment, e.g. of an adatom has to do with the 
formation of bonds with the substrate surface atoms. Bond formation requires the 
occupation of empty states. The occupation of states right above the Fermi-level 
cost the least energy. The substrate provides more such states than the single ada-
tom, simply because it contains more atoms [3.7]. Hence, the valence charge den-
sity flows towards the surface, thereby creating a net positive dipole (if all atoms 
involved are of the same type). The effect is illustrated in Fig. 3.7. There, the dif-
ference in the charge density caused by the bonding of an adatom at the surface of 
a large cluster of gold atoms representing a (100) surface is plotted in a plane 
normal to the surface. Dashed and solid contour lines represent a reduction and 
enhancement of electron charge, respectively. One sees that in the outer region 
above the adatom, the electron concentration is reduced, and the charge is moved 
towards the surface on both sides of the adatom, giving rise to a dipole moment. 

Fig. 3.7. Contour lines of the difference in the electron charge density caused by the bond-
ing of an adatom on the Au(100) surface. The plot is a cross section in the (011)-plane 
through the adatom. Dashed and solid lines correspond to a reduction and increase of the 
charge density, respectively [3.7].



 3  Basic Concepts __________________________________________________________________________ 116

3.2.2 Space Charge Layers at Semiconductor Interfaces

Because of the (orders of magnitude) lower densities of charge carriers, screening 
in semiconductors involves much larger length scales than in metals and can there-
fore be treated semi-classically. This section is devoted to the problem of screen-
ing of a homogeneous surface by charge carriers, electrons or holes in the bulk of 
the semiconductor. Surface charges and their corresponding countercharges in the 
semiconductor bulk are frequently an intrinsic property of semiconductor surfaces 
because of the existence of surface states and a mismatch of the neutrality position 
of the chemical potential in the surface states and the bulk. We consider the 
Si(111) surface as an example.  
 The unreconstructed Si(111) surface would have one dangling bonds on each 
surface atom, i.e. each Si-surface atom has a nonbonding orbital which can ac-
commodate two electrons, is, however, occupied only by a single electron. Hence, 
the surface states form a band of metallic character, albeit of very low conductiv-
ity. The conductivity is low since the bands are flat in k-space because of the poor 
overlap between the surface atoms. The effective mass is therefore rather high. 
The (7 7) reconstruction reduces the number of dangling bonds by roughly a fac-
tor of two without changing the metallic character of the surface state band. The 
center of the corresponding metallic band is in the lower half of the band gap of 
bulk silicon. The neutrality position of the chemical potential for this band of sur-
face states is therefore also in the lower half of the conduction band. The surface 
states become negatively charged when the chemical potential rises above the 
natural level given by the occupation of the participating orbitals, and positively 
charged when it falls below. 
 Similar arguments can be brought forward for the Si(100) surface. For the un-
reconstructed Si(100) surface each surface atom would have two half-filled dan-
gling bond orbitals. One of the orbitals engages in the formation of dimer bonds 
between adjacent surface atoms (Sect. 1.2.3) leaving one single occupied dangling 
orbital per Si-surface atom. For symmetric dimers, the half-filled orbitals would 
represent again a metallic surface state band. As discussed in Sect. 1.2.3, the 
symmetric, metallic state is instable with respect to a Jahn-Teller distortion into 
asymmetric dimers. The metallic band then splits into a filled band of the dangling 
bonds of the "up-atoms" and the empty band of the "down-atoms" of the dimer. 
The surface state band has therefore semiconducting properties, again with a low 
conductivity because of the flat bands with high effective masses. The surface 
neutrality level lies between those two bands in the lower half of the band gap (for 
details on the surface band structure see Sect. 8.2.3). 
 Because of the high density of surface states, a small shift of the chemical po-
tential away from the neutrality level causes a large surface charge. Inside the 
semiconductor bulk, the chemical potential is determined by the neutrality condi-
tion for the bulk. The chemical potential is near the center of the band gap for 
undoped material, near the conduction and valence bands for n- and p-doped ma-
terial, respectively. Equilibrium between surface and bulk requires that the chemi-
cal potentials in the surface s and in the bulk b must be at the same energy. This 
is realized by bending the bulk band structure near the surface (Fig. 3.8) and by 



  3.2  Charge Distribution at Surfaces and Interfaces __________________________________________________________________________ 117

moving the chemical potential in the band of surface states. Since the interface 
must remain neutral as a whole and the density of surface states is large, the shift 
within the surface state band in negligible, the chemical potential is “pinned” by 
the surface states. The first experiment that demonstrated the pinning (denoted as 
Fermi-level pinning in the semiconductor literature) due to surface states was per-
formed in 1962 by Allen and Gobeli on cleaved Si(111) surfaces [3.8]. 
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Fig. 3.8. A high density of surface states causes a bending of the band structure of the 
semiconductor near the surface to match the chemical potential in the surface state s to the 
chemical potential in the bulk b.

The bending of the band structure corresponds to variation of the electric potential 
with the coordinate z. As the typical length scale for the band bending is much 
larger than the lattice constant, the dependence of the potential on the position z
can be calculated in the continuum approximation. In the following, we denote the 
electric potential (in the sense of a voltage) as (z), so that the energy levels of the 
band structure vary as e (z), with e the charge of an electron. The variation of 
the potential (z) is then obtained from a self-consistent solution of the Poisson- 
equation and the charge density (z) as given by the occupation of the various 
energy levels according to Fermi-statistics 

0
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d

)(d z

z

z
. (3.24) 

Here,  is the relative dielectric permittivity of the material. The charge density 
has contributions from the concentration of holes p(z), of electrons n(z), of ionized 

donors DN , and of ionized acceptors AN .

)()()()()( AD zNznzNzpez  (3.25) 
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A qualitative insight into the magnitude of the band bending and its dependence 
on the doping is provided by the Schottky-model. The model assumes a complete 
pinning of the chemical potential at the surface and one type of doping, n- or p-
type, in the bulk. Here, we consider the case of p-doping. The band bending is 
then as qualitatively depicted in Fig. 3.9a. In the bulk, the charge density (z) is 
zero and the chemical potential lies between the energy level of the acceptors and 
the valence band, provided the temperature is not too high and the p-type conduc-
tion is dominated by the doping. This is the typical situation for doped silicon at 
room temperature. Because of the position of the surface states, the bands must 
bend downwards near the surface and the chemical potential moves closer to the 
center of the band gap. Thereby, the acceptors become ionized and thus negatively 
charged in the band-bending region. 
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Fig. 3.9. (a) Band bending in the case of p-doping when the band of surface states is cen-
tered in the lower half of the band gap. (b) The charge density (z) can be approximated by 
constant value –eNA in the range between z = 0 and z = d (hatched area). 

The maximum charge density is given by the concentration of acceptors NA. Be-
cause of the exponential dependence of the occupation probability on the position 
of the energy levels the transition between charge density (z) = 0 and (z) = eNA

is confined to a narrow range (Fig. 3.9b). The charge density (z)  can therefore be 
replaced by a constant -eNA between z = 0 and z = d. The solution of the Poisson-
equation is then simply obtained by elementary integration as 

dzdz
eN

z 2

0
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2

)()(  (3.26) 

The total band bending is therefore  
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Under the assumption of a complete pinning of the chemical potential at the sur-
face s  is given simply by the difference between the neutrality levels in the sur-
face and the bulk, 

e/)( bss . (3.28) 

The thickness of the space charge layer d in terms of that difference is 

2/1

A
2

bs0 )(2

Ne
d . (3.29) 

Hence, the thickness of the space charge layer is inversely proportional to the 
square root of the acceptor concentration. For a typical doping of 1017 cm-3 and 
with  = 12 for Si, one obtains nm100d  which, in hindsight, justifies the use of 

the continuum approximation.  
 Technically more important than the space charge layers on clean surfaces are 
those in pn-junctions and at the metal semiconductor interface. The very first solid 
state electronic device, a piece of mineral PbS with a spring-loaded tip of copper 
bronze which served a rectifier for radio frequencies in the first half of the last 
century, was based on the electric properties of the metal/semiconductor interface. 
A typical potential diagram of a metal/semiconductor interface, this time for an n-
type semiconductor is displayed in Fig. 3.10. Equilibrium between the metal and 
the semiconductor is assumed (no current flow). The positions of the chemical 
potentials in the metal and the semiconductor must match. In order to achieve that, 
band bending must occur. The magnitude of the band bending is given by  

csss Ee  (3.30) 

in which  is the work function of the metal,  the electron affinity of the semi-
conductor s the position of the chemical potential in the bulk of the semiconduc-
tor and Ec the conduction band edge. The quantity  represents a potential drop 
due to a dipole layer within the metal/semiconductor interface. This dipole layer is 
of microscopic origin and due to the atomic structure of the interface.  
For the metal/semiconductor interface, the chemical potentials inside the metal 
and the semiconductor can be shifted with respect to each other by applying an 
extra voltage U, which results in a current flow. The current is a non-linear func-
tion of the potential. The current rises exponentially if the applied voltage is posi-
tive on the metal (for n-doping), since the band bending is reduced thereby, 
leading to a higher conductivity of the semiconductor in the space charge region.  
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Fig. 3.10. Potential diagram of a metal/semiconductor interface with an n-doped semicon-
ductor. The band bending is determined by the work function of the metal , the potential 
drop across the microscopic interface, the electron affinity of the semiconductor , and 
the position of the chemical potential in the semiconductor relative to the conduction band 
edge Ec. The thicknesses are not drawn to scale: the microscopic interface is a few tenths of 
a nm thick, while the thickness of the space charge layer is of the order of 100 nm, depend-
ing on the concentration of dopants. 

For reverse bias, the band bending increases and the space charge layer becomes 
semi-insulating. Current can only flow because of thermal generation of holes in 
the semiconductor within the recombination distance from the interface [3.9]. The 
metal/semiconductor interface therefore acts as a diode. In addition to the rectify-
ing property, also the behavior with respect to ac-currents is of interest. For ac-
current loads, the metal/semiconductor acts as a capacitor. One charge sits on the 
metal or in interfacial states; the counter charge is in the space charge layer. The 
capacitance is entirely determined by the thickness of the space charge. The elec-
trical properties of the metal/semiconductor interface with respect to ac-current are 
determined by the differential interfacial capacity, which is the derivative of the 
charge on the capacitor with respect to the applied potential difference between 
the metal and the semiconductor. The capacitance per area is then 
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as if the capacitor were built from two metal plates placed at a distance given by 
the thickness of the space charge layer with the semiconductor material as a di-
electric. The thickness d itself depends on the applied potential U. In the range of 
reverse bias, the metal/semiconductor interface (as well as any pn-junction) can be 
employed as a tunable capacitance, which is a standard application in electronic 
devices.  
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3.2.3 Charge at the Solid/Electrolyte Interface

The objective of this subsection is to calculate the total capacitance of the 
solid/electrolyte interface. The charge distribution is similar to the metal/ 
semiconductor interface. As for the latter, there is a thin region of the interface 
with a thickness of one or two atoms/molecules consisting of adsorbed water 
molecules, solvated ions that are weakly bonded to the surface and, depending on 
the chemistry and the applied electrode potential, specifically adsorbed ions 
(Fig. 1.50). Relatively little is known about the atomic structure of this “Stern-
layer” (see Sect. 1.5). Concerning the electrical properties, macroscopic measure-
ments as well as general principles require a drop or rise of the macroscopic po-
tential across the Stern-layer, in particular if ions are “specifically” adsorbed at the 
surface (Sect. 1.5). Water molecules are bonded to the surface essentially with 
their dipole moment parallel to the surface since otherwise the potential drop 
across the interface (3.23) would become huge because of the large dipole mo-
ment of the water molecule. First principle theoretical calculations confirm this 
orientation (Sect. 6.4.4). However, an externally applied electric field across the 
interface can reorient the water molecules slightly, giving rise to a polarizability of 
the interface. Further contributions to the polarizability stem from the solid sur-
face. They have been calculated within the jellium model [3.2]. In a macroscopic 
measurement, this polarizability as well as the reorientation of the water molecules 
appear as a capacitance, known as the Helmholtz-capacitance CH. The Helmholtz 
capacitance has a broad maximum around pzc (Fig. 3.12). The decay of the Helm-
holtz-capacitance on both sides of pzc is caused by a saturation of the dielectric 
properties due to the extremely high electric fields in the Stern-layer. 
 Parallel to the displacement current loading or unloading the interfacial capaci-
tance, ohmic exchange currents may exist, by which ions moving from or to the 
surface are unloaded or loaded with electrons originating from the substrate (or 
holes in case of semiconductors), thereby causing an electrochemical reaction. 
Here, we are interested in the physical properties concerning the dynamics and 
electronics of the solid/electrolyte interface and disregard electrochemical reac-
tions. We therefore focus on solid/electrolyte interfaces in a certain potential win-
dow for which no charge transfer, and hence no reactions occur. In this potential 
window, which can be as large as about one volt, the interface is ideally polariz-
able, in other words the interface has the electrical property of a pure capacitance.  
The Helmholtz capacitance is electrically in series with, the capacitance of the 
adjacent liquid electrolyte layer. This latter capacitance can be calculated macro-
scopically, similar as for space charge layers in semiconductors. The model was 
developed by Gouy and Chapman [3.10, 11].  
 For simplicity we assume the electrolyte to consist of positive and negative ions 
of the same charge number Z. The concentration of positively and negatively 
charged ions n+(z) and n-(z) obeys Boltzmann-statistics 
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The zero of the potential (z) is in the interior of the electrolyte, z , and n0 is 
the concentration of ions of either type in the neutral electrolyte. The potential 

z) is to be calculated self-consistently from (3.32) and the Poisson-equation 
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in which  the relative dielectric permittivity (about 80 for water) and (z) the 
charge density 

)()()( znznZez  (3.34) 

The solution for (z) is given by the Poisson-Boltzmann equation 
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For small potentials, the terms on the right hand side can be expanded and one 
obtains the linearized Poisson-Boltzmann equation 
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which has the solution  
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and G the potential at the interface of the Stern-layer and the liquid electrolyte. 
The inverse of  is the Debye-length dDebye. Table 3.2 shows the Debye-length 
and the Gouy-Chapman capacitance for typical concentrations. The Debye-length 
at least for dilute electrolytes is large enough to justify the continuum approxima-
tion in the calculation of the potential. 
 Figure 3.11 displays the potential as a function of the distance from the surface. 
The potential drop within the Stern-layer is shown as a linear dependence with the 
distance, which assigns a macroscopic and constant dielectric permittivity to the 
layer. 
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Table 3.2. Debye-length and Gouy-Chapman capacitance at the potential of zero 
charge for typical ion concentrations. 

n0 / mol 1 10 4 10 3 10 2 10 1

dDebye / nm 30.4 9.6 3.04 0.96 

C / F cm 2 2.33 7.36 23.3 73.6 
P

ot
en

tia
l 

(z
)

Distance from surface  z

Fig. 3.11. Potential at a metal/electrolyte interface. The shaded area represents the Stern-
layer of tightly bonded water molecules, solvated ions, and specifically bonded ions. The 
thickness of the Stern-layer is about 0.3 nm, its dielectric constant less than that of free 
water since the water molecules in that layer cannot rotate freely as in the bulk of the water. 
Beyond the boundary of the Stern-layer, the potential decays exponentially. The decay 
length depends on the concentration of ions in the electrolyte solution.  

For potentials  > 2kBT/e the linear solution (3.36) is to be replaced by the general 
solution of the Poisson-Boltzmann equation (3.35) which is 
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)( . (3.39) 

The charge density at the interface G is given by the derivative of the potential 
with respect to z at (z = 0)
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. (3.40) 
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Fig. 3.12. Gouy-Chapman capacitance CG, the Helmholtz capacitance CH  and the total 
capacitance Ctot are plotted as dashed, dotted and full lines for electrolyte concentrations of 
1 mM, 10 mM, and 100 mM. The total capacitance has a minimum at the potential of zero 
charge pzc. The minimum becomes less pronounced for higher concentrations and is rather 
shallow for small concentrations. 

The differential capacitance of the Gouy-Chapman layer is therefore 

Tk

Ze
C

B

G
0

G

G
G 2

cosh . (3.41) 

The Gouy-Chapman capacitance has a minimum at the potential where the charge 
is zero. As the Gouy-Chapman capacitance lies in series with the capacitance of 
the Stern-layer the total capacitance (the only experimentally accessible quantity) 
is

1
H

1
G

1 CCC  (3.42) 

For dilute electrolytes, the Gouy-Chapman capacitance is much smaller than the 
capacitance of the Stern-layer. Then, the total capacitance is mainly determined by 
the smaller Gouy-Chapman capacitance and has therefore a pronounced minimum 
at the potential of zero charge (pzc) pzc.
 The calculation of the functional dependence of the total capacitance as a func-
tion of the electrode potential requires a self-consistent solution of expressions for 
CG and CH as both values depend on the potential drop across each capacitor in 
series. A self-consistent solution is calculated best by expressing CG and  
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CH in terms of the charge density and by observing that the total charge density in 
the electrolyte is identical to the charge density at the electrode (with opposite 
sign). In Fig. 3.12 the Gouy-Chapman capacitance, the Helmholtz-capacitance, 
and the total capacitance are plotted for three electrolyte concentrations: 1 mM, 
10 mM, and 100 mM. For all three concentrations, the capacitance displays a 
minimum at the potential of zero charge pzc. Measurements of the capacitance at 
moderate electrolyte concentrations therefore serve to identify the pzc. 

3.3 Elasticity Theory

3.3.1 Strain, Stress and Elasticity

The elasticity theory of crystalline solid has gained importance in recent years. 
The elastic energy plays a decisive role in the growth modes and the stability of 
thin film systems, the interactions between defects and in the self-assembly of 
periodic nanostructures. Furthermore, strain significantly affects electronic and 
magnetic properties of thin films. This section briefly reviews some basic ele-
ments of elasticity theory and considers homogeneously strained thin film 
systems.  
 The state of strain in a solid is described by the dependence of a displacement 
vector u on the position denoted by r. The second rank tensor of infinitesimal 
strain ij is defined by  

i

j

i

i
ij x

u

x

u

2

1
. (3.43) 

By definition, the tensor is symmetric. The antisymmetric tensor, with a minus 
sign between the derivatives of displacements u, represents a pure rotation of the 
solid. As a matter of convenience, the components of the tensor are usually ex-
pressed in terms of particular cartesian coordinates which are chosen to agree as 
much as possible with the crystallographic axes. The diagonal elements of the 
tensor ij are strain components associated with a change in volume (Fig. 3.13). 
The magnitude of the (infinitesimal) change in the volume is given by the trace of 
the deformation tensor. 

Tr
i

iiV

V
 (3.44) 

The non-diagonal elements ij describe the deformation of a volume element in i-
direction as one moves along the j-direction and therefore correspond to a shear 
distortion (Fig. 3.13).  
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 A solid resists deformations; hence, deformations generate forces. For a homo-
geneous material, the forces in response to a strain or shear are proportional to the 
area that is affected by the deformation. One therefore relates the forces to the 
areas. For a definition of these area related forces, the “stresses”, one considers a 
section through the crystal perpendicular to the xj-axis and removes, in thought, 
the material on the right hand side of the intersection. The forces per area in the 
direction i that are necessary to keep the crystal in balance are the components of 
the stress tensor ij (Fig. 3.13). The stress tensor is symmetric just as the strain 
tensor: an antisymmetric part of the stress tensor would represent a torque, and in 
equilibrium all torques must vanish inside a solid.  

i

j

k

ij

jj

j

i
ij x

u

j

j
jj x

u

Fig. 3.13. Illustration for the definition of the strain and stress tensor components. 

Stresses and strains are related by Hook’s Law. In its most general form Hook’s 
Law reads 

ij
ijijkk c ll , (3.45) 

in which ijkc l are the components of the forth rank tensor of the elastic modules. 
Because of the symmetry of the stress and strain tensors lk  and ij one has the 
relations jikkijijk ccc lll . The number of independent components of the elastic 
tensor is further reduced by the requirement that the elastic energy be a unique 
function of the state of strain. The energy density Uelast is

l
lll

l
l

ijk
kijijkk

k
k cdU

2

1
elast . (3.46) 

This equation yields the same result independent of the chosen indices for the axes 
if ll ijkijk cc . With these symmetry relations, the number of independent compo-
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nents of the elastic tensor reduces to 21, which permits a shorthand notation by the 
Voigt indices. The assignment follows the scheme 

11  1    23  4 
22  2    13  5 
33  3    12  6. 

Components of the stress and strain tensors can also be denoted using Voigt’s 
notation. In order to ensure that all non-diagonal elements of the strain and stress 
tensor in the energy density (3.46) are properly accounted for (i.e. ij and ji) a 
complete transition to Voigt’s notation would require the introduction of redefined 
elastic modules. For our purpose here, it is easier and safer to use Voigt’s notation 
only as an abbreviation for the indices in the elastic modules and stay with the 
standard tensor notation and summation otherwise. In the shorthand notation, the 
elastic tensor becomes a 6x6 symmetric tensor with 21 independent components, 
at most. The number of independent components is further reduced by the crystal 
symmetry. For crystals with cubic symmetry, the elastic tensor has only three 
independent components. 
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It is easy to see that the elastic tensor must have this form, even without a formal 
proof. For example, the cubic axes are equivalent. Therefore, the diagonal compo-
nents for normal and shear distortions must be equal (c11 = c22 = c33 and c44 = c55 = 
c66). A shear strain along one cubic axis cannot give rise to forces which would 
cause a shear along another cubic axis (c45 = 0, etc.). Furthermore, a shear cannot 
cause a normal stress (c14 = 0, etc.), and finally the forces perpendicular to a strain 
along one cubic axis must be isotropic (c12 = c13, etc.).  
For a hexagonal crystal, the elastic tensor has the components 
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A hexagonal crystal is elastically isotropic in its basal plane. The tensor compo-
nent that describes the stress-strain relation for a shear distortion in the basal 
plane, c66, is therefore related to the tensor components c11 and c12 by the isotropy 
condition

1211662 ccc . (3.49) 

If the same condition would hold also for a cubic material, i.e. if  

1211442 ccc  (3.50) 

the material would be elastically isotropic with only two independent elastic con-
stants, the Lamé-constants

44c  and 12c . (3.51) 

In general cubic crystals are far from being isotropic (an exception is the element 
tungsten (see Table 3.3)!). Nevertheless, elasticity of interface systems is often 
studied assuming elastic isotropy, because this model provides analytical solutions 
for many essential problems. For an isotropic solid Hook's law (3.45) becomes  

ik
i

iiikik 2  (3.52) 

Hook's law can also be written in its inverse form 

ij
ij

ijkk s ll  (3.53) 

in which sklij is the tensor of elastic constants. The tensor s has the same symmetry 
as the tensor c. The isotropy condition is 

)(2 121144 sss . (3.54) 

For an isotropic solid the elastic tensor has the independent components 

11/1 sY  and 1112 / ss . (3.55) 

Y and  are Young's modulus and Poisson-number, respectively, related to the 
Lamé-constants  and  by

)32(

)(2
Y  (3.56) 
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For a proof of this relation and others see e.g. [3.9] 96ff. 
While resorting to the isotropic solid is necessary for many problems, it is advan-
tageous to stay with the anisotropic crystal in cases where the symmetry reduces 
the tensor relation to scalar ones. An example is the equation of motion for longi-
tudinal waves along the axis of a cubic material. All components of the strain 
tensor except one, e.g. 11, vanish and Hook's law (3.45) reduces to 

1

1
111111 x

u
c . (3.57) 

The change in stress component 11 on a length element dx1 due to the strain is 
balanced by the inertial force so that  

2
1

1
2

11
1

11
1

x

u
c

x
u&&  (3.58) 

in which  is the mass density. The velocity of sound for a longitudinal wave is 
therefore

/11L cv . (3.59) 

Just as easily one obtains the sound velocity of a shear wave as  

/44T cv . (3.60) 

3.3.2 Elastic Energy in Strained Layers

Thin films systems offer the unique possibility to synthesize materials in a state in 
which the strain can have a magnitude that could not be realized for bulk materi-
als. Such materials can have unusual and advantageous mechanical or electrical 
properties. An example is strained silicon in which electrons and holes possess a 
mobility twice as high as normally [3.12]. Another example is the negative-
electron-affinity strained GaAs0.95P0.05 -photocathode that provides electrons of a 
particular high degree of spin polarization [3.13]. Technically the strain is realized 
by growing the material epitaxially on a substrate which has a larger lattice con-
stant, e. g., Si on Ge or a SiGe-alloy. Under certain circumstances, Si grows then 
pseudomorphic with the larger lattice constant of the substrate. Growth and stabil-
ity of such films are determined by the elastic energy stored in the film. We 
therefore consider the elastic energy in strained crystalline material in this section. 
As for the bulk elastic waves, the easiest access to the problem is achieved by 
considering the special case of a thin film with cubic structure with the film plane 
parallel to (001). We denote the axis perpendicular to the film as x3 (=[001]) and 
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take the [100] and the [010]-directions as the x1 and the x2-axes, respectively. In a 
zero pressure environment ( 33 = 0) the state of strain is described by 

2211111222

2212111111

ss

ss
. (3.61) 

If the strain is isotropic 11= 22 = , the stresses are also isotropic 11 = 22 = , and 
the differential of the energy density dUelast is 

1211
elast

d2
d2d

ss
U  (3.62) 

The energy density per area elast is therefore 
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2

elast
Y

t
ss

t
 (3.63) 

in which t is the film thickness, and Y and  are Young's modulus and Poisson-
number, respectively, as introduced in (3.55). Written in this form, the expression 
for the elastic energy density also applies to an isotropic solid.  
 If one has a one-dimensional strain ( 22 = 0,  = 11) the elastic energy per area 
is

)1(2 2
2

elast
Y

t . (3.64) 

We note that in the framework presented here the energy associated with a two-
dimensional strain (3.63) cannot be recovered by calculating the energy involved 
in two successive, one-dimensional strains orthogonal to each other. The reason is 
that the second stretch would be applied to the film already strained in the other 
direction. To calculate the energy associated with such an operation one would 
have to resort to strain tensors describing finite strains properly, instead of using 
the tensor of infinitesimal strain ij.
 Equations (3.63) and (3.64) can be used also for a (111) oriented film plane 
provided Y and  are the properly transformed quantities. For cubic crystals the 
relevant transformation relations are  
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The coefficients li and mi are the cosines of the angles of the new axes x1 and x2

with the cubic axes, respectively (Fig. 3.14). 
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Fig. 3.14. Illustration of the cosines of the projection angles of the ix -axes onto the ix -

axes used in (3.64) 

For the (111) surface, e. g., the Young's modulus and the Poisson ratio are  

441211
111 22

4

sss
Y )(  (3.66) 

12/)102( 441211)111()111( sssY  (3.67) 

Table 3.3. Young's moduli (in 1010 N/m2) and Poisson-numbers for the (100) and 
(111) planes of some cubic crystals. 

Material Y(100) (100) Y(111) (111) 

W 39.5 0.287 39.4 0.287 

Fe 13.0 0.364 21.4 0.383 

Cu 6.66 0.42 9.51 0.361 

Ag 4.37 0.428 8.35 0.514 

Au 4.29 0.459 8.16 0.573 

Pt 13.6 0.419 18.5 0.450 

Si 13.0 0.279 16.9 0.262 

Ge 10.3 0.273 13.8 0.252 
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Table 3.3 shows Young's moduli and the Poisson-numbers for the (100) and (111) 
planes for selected cubic crystals. With the exception of W, there is a considerable 
anisotropy in the elastic properties. The anisotropy is particular large for the noble 
metals Cu, Ag, Au. The large anisotropy is due to the particular shape of the 
Fermi-surface which has "neck- and belly states" at the boundary of the Brillouin-
zone along the [111] direction that cause a high modulus of the (111) plane.  

3.3.3 Thin Film Stress and Bending of a Substrate

The stress in thin films, which are grown on a wafer substrate, can cause a bend-
ing of the entire wafer. While this may be mostly an undesired effect, it can also 
be used to measure the stress in thin films during and after film growth or film 
processing. Such measurements serve to learn about growth mechanisms, the 
build-up of stress in epitaxial systems, and stress relaxation. Experiments of his 
kind have become rather popular lately and this section is devoted to the theoreti-
cal background of the experimental techniques [3.14]. An illustrative example is 
displayed in Fig. 3.15 [3.15]. Pseudomorphic silver films are grown on a Fe(100) 
substrate. Plotted is the integral over the stress in the silver film, which is the 
measured quantity, vs. the film thickness. The misfit between the lattice nearest 
neighbor distances on Ag(100) (fcc) and Fe(100) (bcc) is mf = 8 10 3, the dis-
tance on Ag being smaller.  
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Fig. 3.15. Integral over the stress in a thin silver film deposited on a Fe(100) substrate at 
150 K vs. the film thickness. After completion of the first monolayer the stress agrees with 
the stress calculated from the misfit of -0.8% (courtesy of Dirk Sander, [3.15]). 



  3.3  Elasticity Theory __________________________________________________________________________ 133

The stress calculated form this elastic deformation is )1/( 100100Y =

6.1 108 Nm 2, in good agreement with the measured slope of the curve. The first 
monolayer, however, is determined by interfacial properties and does not fit into 
the scheme. 
 Frequently, the interface between the substrate and the growing film ranges 
beyond one monolayer. For the system Ag/Fe(100) this is the case when deposi-
tion is being performed at 300 K. The intermixing between Fe and Ag occurs in 
the first 5 monolayers, and is reflected in the stress curves. Thus, stress curves are 
a sensitive, yet not always easy to interpret tool to monitor structural changes dur-
ing epitaxial growth.  
 We confine the discussion of the stress-induced bending of cantilevers to thin 
deposited films. In that case, one may perform the calculation of the bending 
caused by the film stress on one of the two sides of the cantilever as if the neutral 
plane of the cantilever (the plane that is neither stretched nor compressed) were in 
the center. The reason is that a stress on one side is equivalent to a combination of 
stresses of opposite sign and of equal sign on the two sides. The component of 
equal sign leads to an elongation of the cantilever, which, because of the linearity 
of the elastic equations, has no effect on the bending. The stress of opposite sign 
must lead therefore to the same bending, and for those stresses, the neutral plane is 
in the center. We choose the coordinate system such that the x3-axis is perpendicu-
lar to the film and the cantilever and have its origin in the center plane (Fig. 3.16).  

(x3) = x3

x3

x1

Fig. 3.16.  Illustration of the coordinates and the strain in a cantilever, which bends due to a 
compressively stressed film on the upper side.  

We first consider the case of free unsupported plates and deposited films which 
share a common set of in-plane principal axes (denoted as x1 and x2) of the 
stress/strain tensors, or for which a common set can be chosen because of in-plane 
isotropy. Then, the x1 and x2-axes are also the principle axes for the curvature. The 
corresponding curvatures are denoted as 1 and 2. The calculation proceeds fol-
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lowing the simplifying assumption of Euler and Bernoulli [3.16] (valid if the 
thickness of the plate is much smaller then the lateral dimensions). According 
Euler and Bernoulli only the stresses, 11 and 22, along the direction of curvatures 
are important and the strains 11 and 22 are symmetric around a neutral plane in 
the center of the plate (Fig. 3.16). In other words, 11 and 22 are 

3232231311 )(,)( xxxx  (3.68) 

when x3 is measured from the neutral plane. The sign convention used in (3.68) 
defines the curvatures as negative (downwards as shown in Fig. 3.16) for a com-
pressive, i.e. negative stress in the film. The stress 33 vanishes identically because 
of the boundary condition. The curvatures along the principal axes, � and 2, can 
be calculated by remembering that torques must vanish identically in the solid. An 
alternative pathway is to calculate the equilibrium shape of the plate as the shape 
of minimal elastic energy (see [3.17]). The torques for the x1 and x2-directions are 
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Here, t and tf denote the thickness of the cantilever and the film, respectively. 
Since only the integral over the stress components in the deposited film enter in 
the equations for the bending, it useful to define the integrals )f(

11  and )f(
22  as the 

"film stresses". If the films thickness is merely of the order of a monolayer or even 
less, it is still the integral over the stress that is measured. In Sect. 4.2.2 this inte-
gral will be discussed further as one of the surface excess quantities denoted as the 
surface stress )s(

ii . As a nonzero surface stress exists even on clean surfaces 
(comp. sect. 4.2.2) it is the change in the surface stress )s(

ii  that is being meas-
ured with the bending bar technique. The bulk stresses 11(x3) and 22(x3) can be 
expressed in terms of the strains 11(x3) and 22(x3) and the curvatures 1 and 2

using Hook's law (3.61) and (3.68). 
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in which the ijs  are the elastic constants transformed into the plane spanned by x1,
x2-axes. After inserting (3.70) and (3.68) into (3.69) and rearranging the terms one 
obtains a set of two equations relating the curvatures  and 2 to the film stresses 

)f(
11  and )f(

22 .
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For the special case of a system, which is elastically isotropic in the film plane and 
has an isotropic thin film stress  (f) (3.71) reduces to 

(f)
2

)1(6

Yt
. (3.72) 

This equation which was first derived for a one dimensional film stress (without 
the (1- )-term) by Stoney [3.18] and is named after him. Eqs. (3.71) are there-
fore called generalized Stoney-equations. 
 Technically, the measurement of a cantilever bending requires that the plate 
serving as a cantilever be clamped along one edge, which keeps the curvature 
fixed to zero along that edge. Fixing of the curvature along one edge causes a 
significant perturbation effect on the bending of the entire sheet. The effect be-
comes marginal if the curvatures are measured at the end of a long sheet, which is 
clamped on one of the short sides. The magnitude of the disturbance induced by 
the clamping also depends on the method by which the bending is measured. Ex-
periments which measure the bending using a capacitor at the end of the cantilever 
or the tip of a scanning tunneling microscope detect the deflection  along the x3-
axis. The curvature of the sample, as it appears in (3.71), denoted as  is then 

calculated as

2/)(2 LL  (3.73) 

in which L is the distance between the point of measurement and clamping posi-
tion. If the reflection angle of a light beam is used, the slope  at the point of 

reflection is measured which defines 

LL /)( . (3.74) 

The change in the angle between two reflected beams determines the curvature 
 as the difference in the slope between two points. The perturbation in-

duced by fixing the curvature at one end is the smallest on the curvature  and 

the largest on the deflection . It is convenient to express the effect of clamping by 
the "dimensionality" D defined by rewriting the curvature 1 (3.72) as 



 3  Basic Concepts __________________________________________________________________________ 136

),f(
111211122

11)(
1

),f(
111212112

11)(
1

/)2(1)/1(
6

/)2(1)/1(
6

ssDss
t

s

ssDss
t

s

 (3.75) 

in which  (f,+) and  (f,+) are the isotropic and antitropic part of the thin films stress 
defined by 
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A corresponding equation holds for 2. Eq. (3.71) is recovered by setting D = 2. 
The effect of clamping on the bending is expressed by allowing for D < 2. Values 
for D have been calculated for thin film stresses on (100) and (111) surfaces of 
cubic cantilever materials crystals using finite element methods [3.19, 20]. 
 The results for various anisotropies 441211 /)(2 sssA  and Poisson numbers 

1112 / ss  are shown in Fig. 3.17 for the curvatures ,  and  as a func-

tion of the aspect ratio a defined as the length of the cantilever L over the length of 
the clamped edge. The results were calculated under the assumption that the point 
of measurement is at the end of the cantilever. For (110) surfaces of cubic cantile-
vers, finite element calculations have to be performed for individual systems. The 
results of such calculations are conveniently expressed in terms of correction fac-
tors vij in Eq. (3.71)  

)vv(
6

)vv(
6

f)(
222222

f)(
11212122

f)(
221212

f)(
11111121

ss
t

ss
t  (3.77) 

Table 3.4 shows sets of correction factors for the (110) faces of Cu, Mo, and Si for 
various aspect ratios. The correction factors depend on whether the deflection 

or the slope  is measured. The limiting value vij = 1 is approached very gradu-

ally if the deflection is measured. However, the factors also depend on the elastic 
properties. Deviations from vij = 1 are particularly large for elastically anisotropic 
materials, e.g. Cu.



  3.3  Elasticity Theory __________________________________________________________________________ 137

0,1 1

1,0

1,2

1,4

1,6

1,8

2,0

5

5

A'
 =

 2
,0

' =
 0

,4

A'
 =

 1
.0

' =
 0

,4

A'
 =

 0
,5

' =
 0

,4

-0,4

-0,8

c) ''

1,0

0,8

0,6

0,4

0,2

0,0

0,8

0,6

0,4

0,0

0,0

0,2

0,8

2
0

D
2

0
D

0,4

1,0

D
im

en
si

on
al

itä
t D

D
im

en
si

on
al

itä
t D

D
im

en
si

on
al

itä
t D

Aspektverhältnis a = Länge / Breite 

1,0

1,2

1,4

1,6

1,8

2,0

2,2

A' = 2,0 ' = 0,6

A' = 2,0 ' = 0,1b)
A' = 0,5 ' = 0,1

A' = 0,5 ' = 0,6

'

1,2

1,6

2,0

2,4

2,8
,

A' = 2,0 ' = 0,6

A' = 0,5 ' = 0,6

A' = 2,0 ' = 0,1

a)
A' = 0,5 ' = 0,1

10.1

1.0

2.0

1.0

2.0

1.0

2.0
D

im
en

si
on

al
ity

 D

Aspect ratio a
5

a)  

b)  '

c)  ''

A' = 0.5 ' = 0.1

A' = 2.0 ' = 0.1

A' = 0.5 ' = 0.6

A' = 2.0 ' = 0.6

A' = 0.5 ' = 0.1

A' = 2.0 ' = 0.1

A' = 0.5 ' = 0.6

A' = 2.0 ' = 0.6

A'
=

0.
5

' =
0.

4

A'
=

1.
0

' =
0.

4

A'
=

2.
0

' =

0.
4

Fig. 3.17. Dimensionality as a function of the aspect ratio for cantilevers made from cubic 
crystalline materials with (100) or (111) surfaces [3.19]. Parameters are the elastic anisot-
ropy 441211 /)(2 sssA  and the Poisson number 1112 / ss . The perturbation on the 

curvature is practically negligible if the distance between the point of measurement and the 
fixed edge exceeds the length of the fixed edge by a factor 3. The case of free bending is 
approached very slowly if the deflection is measured. Corrections have to be made in most 
cases when this detection scheme is used. 
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Table 3.4. Correction factors vij for cantilevers with {110} surfaces (Klaus Dah-
men, unpublished). 

a v11 v12 v21 v22 v11 v12 v21 v22

Cu [ 101 ] [001] [ 101 ] [001] 

1 0.791 0.401 0.492 0.823 0.790 0.397 0.538 0.839 

2 0.853 0.580 0.660 0.881 0.884 0.668 0.763 0.917 

4 0.907 0.735 0.798 0.929 0.942 0.834 0.882 0.959 

V [ 101 ] [001] [ 101 ] [001] 

1 0.971 0.701 0.698 0.970 0.965 0.649 0.625 0.963 

2 0.976 0.754 0.744 0.974 0.982 0.815 0.799 0.980 

4 0.985 0.846 0.835 0.984 0.991 0.907 0.899 0.990 

Cr [ 101 ] [001] [ 101 ] [001] 

1 1.00 0.979 1.021 1.001 0.995 0.682 0.666 0.994 

2 0.997 0.837 0.834 0.997 0.997 0.817 0.797 0.996 

4 0.998 0.867 0.859 0.997 0.998 0.908 0.897 0.998 

Mo [ 101 ] [001] [ 101 ] [001] 

1 0.989 0.796 0.796 0.990 0.983 0.666 0.639 0.982 

2 0.989 0.781 0.773 0.988 0.991 0.819 0.799 0.990 

4 0.992 0.855 0.843 0.992 0.995 0.909 0.899 0.995 

Si [ 101 ] [001] [ 101 ] [001] 

1 0.961 0.607 0.624 0.962 0.954 0.537 0.585 0.958 

2 0.969 0.697 0.716 0.971 0.975 0.755 0.784 0.978 

4 0.980 0.803 0.822 0.982 0.988 0.877 0.892 0.989 
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3.4 Elastic Interactions Between Defects

3.4.1 Outline of the Problem

The elastic energy in strained layers was calculated in Sect. 3.2.2 under the as-
sumption that the layer is laterally extended and dislocation free, and therefore 
homogeneously strained. Finite size islands of lattice-mismatched layers, how-
ever, are strained inhomogeneously. Lately, ab-initio calculation of large non-
periodic ensembles of atoms have become available and have been applied to the 
problem of strain in lattice mismatched heteroepitaxial islands [3.21, 22]. Fig-
ure 3.18 displays the qualitative picture that has emerged from these calculations. 
It is assumed that the unstrained bond lengths of the island atoms are 2% smaller 
than that of the substrate atoms, which corresponds to a Co-layer on Cu. The dis-
placements in Fig. 3.18 are exaggerated by about a factor of 20. The relatively 
large vertical distortions reflect the fact that the surface is most easily deformed in 
this direction.  

(a)

(b)

Fig. 3.18. (a) Distortion of the surface structure caused by the deposition of an island (light 
grey balls) with 2% smaller lattice constant, corresponding to Co deposited on Cu [3.21]. 
The atom displacements are exaggerated by about a factor 20. (b) The strain field originat-
ing from the island may be considered as arising from forces per length along the perimeter. 

Surprisingly, the displacement pattern is very much the same, albeit smaller in 
magnitude, for homoepitaxial islands [3.22]. The reason is that the lower coordi-
nation of the surface atoms causes a reduction of the equilibrium bond distance 
between the atoms in the surface layer. Hence, even a homoepitaxial island has 
some lattice mismatch with the substrate and is under tensile stress.  
 Because of the inhomogeneity of the strain field, the elastic energy has contri-
butions arising from the displacements of the atoms along the periphery that are 
not covered by (3.62). One might expect these contributions to scale as the length 
of the periphery; however, things are not so simple. The displacement pattern 
extends into the bulk and reaches out laterally. The longer the length of the pe-
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riphery, the more extended is the displacement pattern. This gives rise to a charac-
teristic additional logarithmic dependence of the elastic energy associated with 
boundary of strained islands. The atoms at the periphery of the islands have an 
even lower coordination than the surface atoms, which causes additional distor-
tions with a characteristic displacement pattern that extends laterally and into the 
bulk of the substrate. The elastic distortions affect the island self-energy, but also 
induce interactions between islands. The same train of arguments applies to other 
defects on surfaces, be it straight steps on vicinal surfaces or point defects. The 
elastic self-energy with its curious scaling and the lateral interaction between is-
lands or defects have far-reaching consequences on the equilibrium structure of 
patterned surfaces, on the stability of certain configurations, on phase transition 
and on nucleation phenomena. In order to treat the elastic energy arising from the 
local displacements of the atoms at defects one introduces a trick. Rather than 
beginning with the local displacement pattern as calculated from ab-initio methods 
and then look for the continuation of that pattern in an elastic continuum, one 
places forces at the site of the defect or at the island boundary and studies the 
strain field originating from these forces. The type of forces is chosen in accor-
dance with the cause and type of the displacement pattern. For example, the long-
range part of the displacement pattern of the strained island in Fig. 3.18a is the 
same as the one caused by a line of force monopoles along the perimeter. The 
forces point inwards for a tensile island strain (Fig. 3.18b). The far field of the 
displacement pattern arising from the atom displacements at the island periphery, 
which result from the reduced coordination, is the same as that of line force di-
poles. The same holds for steps on vicinal surfaces. The strain field of point 
defects is again that of a force dipole (Fig. 3.19).  

y

x

Dx Dx=Dy Dx=DyDz

Fig. 3.19. The long-range strain fields originating from defects in various sites is the same 
as the strain field of force dipoles placed on the surface at the site of the defect. 
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For a defect in atop position, the prevailing component of the force dipole is per-
pendicular to the surface. For a defect in a twofold bridge site, the force dipole has 
a significant component parallel to the surface along the direction of the bridge. 
Defects in fourfold or threefold sites bear isotropic parallel force dipoles. In all 
cases, the strength of the forces remains arbitrary within elasticity theory. If ab-
initio calculations are available, the strength can be chosen such that the elastic 
distortions arising from the forces correspond to the calculated displacements. As 
mentioned, such calculation have become available only lately with the develop-
ment of theoretical methods and the computing power to handle a very large 
number of atoms. Even without the knowledge of the absolute values of the 
forces, elasticity theory makes important prediction on the scaling of the self-
energies and interaction energies with the size of the defects and the distance be-
tween effects. These relations are discussed in the following. The starting point is 
the strain field arising from a single point force placed at the surface. Within the 
framework of linear elasticity the displacement pattern for an arbitrary arrange-
ment of forces, monopoles or dipoles, is simply a superposition of the 
displacements of individual forces. The energy E associated with a strain field u(r)
and a force field f(r) is  

VV
E )()(d

2

1
rurfr  (3.78) 

The factor 1/2 accounts for the fact that all products of forces and displacements 
are considered twice in the integration over the volume V. In the problem consid-
ered here the forces are situated at the surface z = 0 so that  

)(),()( zyxfrf . (3.79) 

The integral reduces correspondingly. An analytical solution for the displacement 
field u(r) that arises from a point force F at x,y,z = 0 exists for an elastically iso-
tropic half space [3.23].  
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This set of equations is our starting point for the calculations of defect interac-
tions. 



 3  Basic Concepts __________________________________________________________________________ 142

3.4.2 Interaction Between Point and Line Defects 

We consider the interaction energy between two point defects represented by a 
force dipole in x-direction at a distance r (Fig. 3.20). The interaction energy Eint is
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with Dx = Fx d.

(x,y)

x

y

d

r

Fig. 3.20. Illustration of the geometry of two in-plane force dipoles placed at a distance r.

The interaction therefore scales as r-3. Special solutions for x = 0 and y = 0 are 
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Depending on the orientation the interaction changes from attractive when dipoles 
are aligned along the y-axis to repulsive when they are aligned along the x-axis.  
 The method can likewise be applied to the problem of step-step interactions 
[3.24]. Due to the reduced coordination, step atoms have a reduced bond length to 
their neighbors, which causes an extended strain field around the step (Fig. 3.21a 
and b). The strain field is mimicked by force dipoles with x and z-components on 
each step atom. In the framework of continuum theory this corresponds to a line 
density of force dipoles Dx and Dz, which are assumed to sit in the surface plane at 
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z = 0. The actual geometric structure of the stepped surface is neglected in this 
approach. Suppose two steps of the same orientation run parallel along the y-axis 
at a distance x = L. The dipole in a length element dy in one step interacts then 
with all dipoles of the other step. With the integrals 
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one obtains after some algebra the step-step interaction energy per unit length for 
a pair of steps at distance L.

)(
1)1(2 22
2

2

step zx DD
LY

E  (3.84) 

(a)

(b)

Fig. 3.21. (a) Schematic sketch of the atom displacements at a step edge. At large distance 
the displacement pattern can be mimicked by placing a density of force dipoles with x and z
components on a semi-infinite elastic half-space. (b) Displacements calculated by Shilkrot 
and Srolovitz [3.25] for a stepped Au(100)-surface using the embedded atom model (EAM). 
The displacements are enlarged by a factor of 100.  

This equation was first derived by Marchenko and Parshin [3.24]. The interaction 
is repulsive for the force dipole in the x-direction. For the z-component of the 
force dipole, the interaction is attractive for steps of opposite sign (Fig. 3.22a) and 
repulsive for steps of equal sign (Fig. 3.22b).  
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Attempts have been made to improve the classical relation of Marchenko and 
Parshin (eq. 3.79) by calculating the strain field in theoretical models [3.25, 26], 
by considering the realistic surface structure and by taking the elastic anisotropy 
into account. The net result is that the L 2 -dependence is well preserved down to 
small distances between steps and is not changed by the inclusion of elastic anisot-
ropy. The original proposal of Marchenko and Parshin that the perpendicular 
component of the force dipole should be given by the product of surface stress and 
step height cannot be held up, however1. This is not so surprising since the surface 
stress (Sect. 4.2.2) is a macroscopic quantity of the flat surface while the strain 
field of steps results from the change in the local bonding of step atom. Quantita-
tive calculations of the forces dipoles associated with steps using model potentials 
yield numbers of the order of 0.2 nN for Dx and Dz. However the use of model 
potentials is questionable since the same models produce too low numbers for the 
surface energy and the surface stress [3.28]. 

(a)

(b)

Fig. 3.22. The figure illustrates that the parallel force dipole leads to step-step repulsion 
regardless of the step orientation (a) while for the z-component of the force dipole is attrac-
tive interaction for steps of opposite sign since both displacement field operate in the same 
direction in that case (b).

3.4.3 Pattern Formation via Elastic Interactions 

In 1988 Alerhand et al. predicted that one-dimensional stripes bearing different 
stresses should self-assembly into a periodic arrangement of stripes of a particular 
size [3.29]. With the reconstructed Si(100) surface in mind, Alerhand et al. con-
cluded that the surface should even form monatomic up and down steps 
spontaneously, and that these steps should arrange with a periodicity given by the 

1 G. Prévot and B. Croset infered from their calculations that the Marchenko proposition is 
sound [3.27]. However, their reasoning is based on an artefact of the model potential. The 
surface stress produced by the model potential is far too low!
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ratio of the step formation energy and the difference of the surface stresses on the 
stripes with the alternate orientation of the dimer reconstruction (Fig. 1.34). Eight 
years later, the spontaneous formation of the striped phase was indeed observed on 
boron doped Si(100) surfaces. Earlier, a striped phase with a characteristic perio-
dicity was observed for adsorbed oxygen on the Cu(110) surface [3.30]. The effect 
was explained later by the same group in terms of the Alerhand-model [3.31]. 
Figure 3.23 displays an STM image of the striped phase of oxygen on Cu(110) 
together with a model of the local structure [3.32].  

Fig. 3.23. (a) STM image of the striped phase of oxygen adsorbed on Cu(110) (courtesy of 
Peter Zeppenfeld, [3.32]). (b) Model of the structure showing that the oxygen atoms form 
chains with Cu-atoms in alternate sequence. The Cu-atoms are provided by nearby steps or 
they are taken Cu-surface atoms whereby vacancy islands are formed. 

l1l2

12

x

yz

Fig. 3.24. Stripe domains of different stress on surface. The elastic strain field originating 
from the change in the stress can be mimicked by force monopoles per length of the bound-
ary fx.
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The linear striped phases are the simplest examples of a large family of systems 
that show self-assembly into a one or two-dimensional periodic pattern. Well in-
vestigated examples are the checkerboard pattern of adsorbed nitrogen on Cu(100) 
[3.33, 34], the periodic arrangement of patches of a Pb/Cu surface alloy on 
Cu(111) [3.35], and the chevron superstructure on the reconstructed Au(111) sur-
face (Fig. 1.13) [3.36]. In combination with nucleation kinetics in epitaxial growth 
an enormous wealth of patterns has been reported (see e.g. [3.37-39]). Here, we 
focus on the simple case of striped stress domains. 
 The stress can arise from the misfit strain in an epitaxial film. The strain field 

caused by the termination of the film stress )f(
xx  at the edges of the stripes 

(Fig. 3.24) is the same as the strain field caused by line force monopoles fx ori-
ented perpendicular to the stripe and parallel to the surface  

dzzf xxxxx ),2()2()f( . (3.85) 

The stripes may also consist of differently oriented surface reconstructions, of 
stripes with and without an adsorbate as in Fig. 3.23, or of an alloy phase on the 
bare surface. In the latter cases, the line force monopole is given by the differences 
in the surface stresses (Sect. 3.3.3, see also Sect. 4.2.2, eq. 4.7) 
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The strain energy per area produced by a periodic arrangement of line force 
monopoles of alternate sign was calculated by Alerhand et al. [3.29] for an elasti-
cally isotropic substrate. 
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Here, Y and  are Young's modulus and Poisson number, respectively, l1 and l2 are 
the width of the stripes, and ac is a cut-off distance of the order of an atom diame-
ter. It is important that the system is periodic with alternate orientation of the force 
monopoles as the energy of just two interacting line monopoles diverges. The 
elastic energy has a (rather shallow) minimum when the periodicity length Lmin is 

scmin sin/e2 aL  with )/( 211 lll  (3.88) 

If the formation of the stripe domain boundary requires energy, as is the case for 
the Si(100) surface where the phase boundaries are formed by steps, then the total 
energy contains an additional term 
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in which )(/)1(2 21
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2 llYfC x . It is remarkable that there is a minimum 

in the total energy regardless of the magnitude of the domain boundary energy. 
With application to the Si(100) surface this has the interesting consequence that 
the Si(100) surface should form a periodic array of up and down steps spontane-
ously, regardless of the magnitude of the step energy and the difference in the 
stress tensor for the two differently oriented dimer reconstructions. However, this 
result is merely a theoretical one, insofar as the energy gained in the spontaneous 
formation of periodic steps becomes marginally small and Lmin becomes very 
large. Since the energy minimum exists only for ordered stripes, the natural mor-
phological disorder on the surface as well as the kinetic barriers for atom transport 
hinder the formation of ordered stripe patterns. 
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Fig. 3.25. Characteristic length Lmin in STM images of the striped phase of oxygen on 
Cu(10) vs. the coverage of the surface with stripes s [3.40]. The full line is a fit according 
to (3.90) with assumed constant monopole lines forces fx. The dashed line is a fit with the 
actual line forces as measured by the bending bar technique. 
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Equation (3.90) is easily tested for the striped oxygen phase on Cu(110) surface 
since the fractional coverage with oxygen stripes is easily controlled by the oxy-
gen exposure. Figure 3.25 shows experimental results Of Bombis et al. that was 
obtained from an analysis of STM-images [3.40]. While (3.85) predicts Lmin( s) to 
be symmetric around s = 0.5 the experimental data show clearly an asymmetry. 
Bombis et al. performed stress measurements on the same system and found that 
the stress in the oxygen-covered stripes displays a significant dependence on s.
The stress in the oxygen-stripes and thus the strength of the line force monopole 
decreases with s. The dashed line in Fig. 3.25 is a fit to (3.85) with the actually 
measured line force monopoles fx( s). The asymmetry of the data is then well 
reproduced.  



4. Equilibrium Thermodynamics 

4.1 The Hierarchy of Equilibria 

Equilibrium thermodynamics was developed in the second half of the 19th cen-
tury. Its early extension to the description of interfaces by J. W. Gibbs [4.1] was 
developed at a time when scientists had little understanding of surfaces and inter-
faces and no knowledge of their atomic structure. The thermodynamics of 
interfaces was therefore formulated with a minimum set of assumptions, without 
taking into account any specifics of a particular surface or interface system. In-
stead, interface thermodynamics introduced some very general concepts, as e. g. 
the surface particle excesses, which - while being defined within the closed frame-
work of thermodynamics - could not, or at least not easily, be identified with 
anything measurable outside the framework of thermodynamics. Furthermore, 
since, the early formulation of interface thermodynamics took place long before 
the concept of equilibrium in the electronic system of metals and semiconductors 
could be formulated with the help of Fermi-Statistics one could not conceptually 
connect the electronic properties of solid materials with electrolytes. Last, not 
least some of the basic assumptions or conventions in early interface thermody-
namics such as the assumption of a global equilibrium and the definition of a 
dividing plane turned out to be imprudent in the light of our present understanding 
of interfaces on the atomic scale. It is probably therefore that current textbooks on 
surface science appear to treat interface thermodynamics more out of a sense of 
duty than with care, and, once done with it, seldom refer to that treatment in the 
remainder of the text. In recent years however, surface thermodynamics received 
considerably more attention, and rejuvenation at the same time. The revolution 
introduced by the discovery of the scanning tunneling microscope has, among 
other things, brought about the possibility to observe single atoms on surface and 
to track their motion. The same instrument permits the observation of epitaxial 
growth phenomena during or after deposition on the length scale of microns and 
beyond. We are therefore faced with the task to connect single atom properties and 
dynamics with macroscopic morphological features, thereby bridging 4-8 orders 
of magnitude on the length scale and even more orders of magnitude on the time 
scale. Just as it is impossible to observe the development of the morphology dur-
ing an epitaxial growth process on the mm/cm-length scale by keeping track of all 
atom motions, it is also impossible to describe the spatiotemporal development of 
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large-scale morphological features as a collection of single atom properties. Treat-
ing such multi-scale processes requires means to interconnect single atom 
properties with a coarse-grained description. It is here, where thermodynamics has 
found its present role.  
 Connecting single atom properties with large-scale surface features is greatly 
facilitated by the existence of hierarchy of quasi-equilibria. What is meant by this 
is best illustrated with the help of scanning tunneling microscope (STM) images. 
Fig 4.1 displays two STM images of a Cu(111) surface shortly after deposition of 
several monolayers of Cu-atoms, and the same surface after a period of 12 hours 
during which the surface was held at a constant temperature T = 314 K. The black 
cross marks the center of a stack of islands, which has moved from the right side 
of the image to the left due to some drift. During that long period of time a consid-
erable coarsening of morphological features has taken place. Small islands have 
disappeared and steps have straightened. This coarsening is thermodynamically 
driven by the minimization of the step (free) energy.  

+
+

Fig. 4.1. STM image of a Cu(111) surface (left) shortly after deposition of several 
monolayers of Cu and (right) after 12 h (courtesy of Margret Giesen).  Each contrast level 
corresponds to one monolayer. The black cross marks the same spot on the surface, which 
has drifted from left to right. During the time span of 12 h the surface features become 
larger and the surface flattens. The mean shape of all islands is the same and stays constant 
during the entire time: the islands are in equilibrium with themselves, while the surface is 
globally not in equilibrium.

Ultimately, all islands would disappear, and the surface would become flat, at 
least on the scale of the image. One feature, however, persists during the entire 
coarsening process: Save for some fluctuations, the shape of the islands stays the 
same, independent of their size. This is owed to the much faster diffusion of atoms 
along the perimeter of an island compared to the exchange of atoms with the ter-
races. In other words, each island is always in equilibrium with itself. Thus, 
equilibrium thermodynamics can be applied to the island shapes despite the fact 
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that the surface is not in equilibrium on a larger scale. The two-dimensional equi-
librium shape of the islands, e.g., can be obtained by averaging over a sufficiently 
large number of individual shapes. A more quantitative analysis of Fig. 4.1 would 
reveal that atom exchange between layers of different height is slow compared to 
the exchange between islands on the same terrace. Establishing equilibrium be-
tween the terraces of different height therefore takes a much longer time than the 
equilibration of islands on the same terrace. Consequently, the surface reaches a 
state in which the roughness consists merely of smoothly curved steps with no 
islands present any more. STM images such as displayed in Fig. 4.1 are typically 
observed in ultra-high vacuum with no Cu-vapor pressure present. The (at 
T = 314 K extremely) slow evaporation has no effect on the surface morphology. 
Hence, even in this simple case one has a hierarchy of equilibria in which each 
level of the hierarchy is established on a time scale, which differs by many orders 
of magnitude from the next. At each stage, equilibrium thermodynamics can be 
applied to some features, which are in (quasi-) equilibrium, and non-equilibrium 
thermodynamics can be applied to other features varying slowly on the time scale 
considered. 

Nanocluster Epitaxial layer               Diffusion into bulk       3D-equilibrium shape

cluster size and
shape, lateral
coordination, 

stress relaxation

structure of films,
of interface,
dislocations,
strain energy

interfacial mixing,
surface alloys,
segregation,

structure,
bulk alloys

Configuration coordinate

Free energy

Fig. 4.2. The hierarchy of equilibria on surfaces (see text for discussion). 

Coarsening on a Cu(111) surface is a very simple example for the hierarchy of 
equilibria. The hierarchy of equilibria can be substantially more complex if het-
erogeneous interfaces with their adjacent bulk phases are considered. Figure 4.2 
displays an overview of various interface features that include 3D nanoclusters of 
a different material on a substrate. Each of these clusters may or may not display 
an equilibrium shape, the clusters may be in equilibrium or not with respect to 
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their cluster size distribution, and the lateral distribution on the surface may or 
may not correspond to an equilibrium phase. Spreading the material laterally over 
the surface in the form of a thin film may lead to a state of higher or lower energy. 
Within the thin film system, one may have features, which display a local equilib-
rium shape. One may have dislocations in the films, and entire network of 
dislocations. Furthermore, there may be intermixing of material with bulk, a for-
mation of surface and bulk alloys. All these features and aspects, of which we 
have named only a few, are amenable to a properly defined thermodynamic de-
scription, despite the fact that one is far away from the global equilibrium of the 
system. The treatise on interface thermodynamics in this section lays the founda-
tion for that endeavor and commences with the thermodynamics of flat interfaces. 

4.2 Thermodynamics of Flat Interfaces 

4.2.1 The Interface Free Energy 

According to the first law of thermodynamics, the sum of the heat Q and the 
work W applied to a system raises the internal energy U of the system by an 
amount  

WQUd  (4.1) 

with U being a thermodynamic potential, which is a unique function of certain 
independent variables. The independent variables for the internal energy U are the 
entropy S, the volume V, the number of particles of various types ni, the electric 
and magnetic fields, and the electrical charge. The work  

electrchemmech WWWW . (4.2) 

can be of mechanical, chemical, electro-magnetic or electrostatic nature. The elec-
trostatic work is of particular interest for solids immersed in an electrolyte, and 
requires a particular careful consideration in conjunction with a specific experi-
mental situation to which we turn a little later. The thermodynamic potential 
whose variation at constant temperature T is equal to the applied work is the 
(Helmholtz) free energy 

TSUF  (4.3) 

With the supplied differential heat Q being Q = TdS the total differential of F
for a homogeneous system is 

...dddd
i

ii
kl

klkl nVTSF  (4.4)
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Here, kl and kl are the components of the stress and strain tensors and i is the 
chemical potential of the particles of type i in the system. The second term ac-
counts for the fact that solids in a finite volume may have six independent 
components of the symmetric stress and strain tensors. It replaces the –PdV-term 
in the thermodynamics of gases and liquids. Note that the sign convention of the 
stress is opposite to that of the pressure! The third term describes the chemical 
work associated with bringing dni particles with a chemical potential i into the 
system.  
 The derivation of the thermodynamics of a surface or an interface requires care-
ful thinking. One reason is that the introduction of an interface makes the system 
necessarily inhomogeneous. A second reason is that one would like to use ther-
modynamic arguments even when the system is not in complete equilibrium. A 
typical example for a partial equilibrium is a surface of a solid in equilibrium with 
a gas phase, however not in equilibrium with the bulk of the solid because of slow 
or negligible diffusion of adsorbed components into the bulk. Another example is 
encountered in segregation phenomena, where the surface concentration of some 
impurity may be in equilibrium with the bulk concentration, but not with the gas 
phase. In the first case, the chemical potential of particles at the surface would 
equal the chemical potential in the gas phase, but be different from chemical po-
tential of the same particle dissolved in the bulk. In the second case the chemical 
potential of the segregating species at the surface equals that in the bulk, differs, 
however, from the chemical potential in the surrounding gas phase. These impor-
tant and frequently encountered situations cannot be treated with the instru-
mentation and logical apparatus of conventional Gibbs thermodynamics, since 
Gibbs thermodynamics assumes global equilibrium.  
 For the definition of a free energy that is associated with an interface we con-
sider two phases denoted by I and II. One may think of phase I as a solid and 
phase II as either another solid, a liquid, an electrolyte, a gas phase or vacuum. 
Inside the bulk, the phases shall be in equilibrium. In order to define a finite sys-
tem without any undesired interfaces one may invoke the trick commonly used in 
Solid State Physics. We assume that phase I and II and the interfaces between 
them form an infinite periodic sequence along the z-axis (Fig. 4.3) and impose 
periodic boundary conditions. In the x,y-plane the system is assumed to be homo-
geneous. The thereby formed supercell has the length L and the area A. The 
periodicity length L of the supercell shall be large compared to the extension of 
the interfaces so that the bulk of phases II and I are homogeneous. As interface 
regions can extend up to m length, the periodicity length L may also be quite 
large. To make things easier we assume that the solid has not a polar axis so that 
the two interfaces between Phase I and II are identical. In keeping with typical 
situations encountered in surface physics, we assume that the external pressure is 
zero.
 The supercell as depicted in Fig. 4.3a has a finite and fixed volume V = AL.
The periodic boundary conditions ensure that the number of particles in the cell 
remains constant. The thermodynamic potential appropriate for that situation is the 
Helmholtz free energy. We can therefore can define a Helmholtz free energy for 
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Fig. 4.3. Illustration on the thermodynamics of flat interfaces, see text for discussion. 

one supercell with two interfaces, which we denote as F(2)(L). The free energy can 
be calculated as the partition function of the system, at least in principle. The su-
percell method described above is actually the standard procedure in ab-initio 
calculations of finite size systems. The system be in total equilibrium. For exam-
ple, the chemical potential of a dissolved species can be different inside phase I 
and II. In particular the concentration of a species might be zero in one phase (cor-
responding to a chemical potential  = ) even if it were finite, if small in 
equilibrium. In order to define the Helmholtz free energy associated with the for-
mation of an interface we reduce the periodicity length by a factor of two such that 
we have four interfaces instead of two within the supercell of length L (Fig. 4.3b). 
The free energy of that system is denoted as F(4)(L). The free energy associated 
with the introduction of the two additional interfaces is obviously F(4)(L) F(2)(L). 
We can therefore define an interface Helmholtz free energy F(s) and the area spe-
cific free energy f (s) as  

ALFLFAFf ss 2/))()((/ )2()4()()(  (4.5) 

The definition with the help of a supercell and periodic boundary conditions has 
the advantage that there is no need to specify where one bulk phase ends and the 
next one begins as is done in Gibbs thermodynamics with the Gibbs dividing 
plane. The interface energy can be positive or negative. It is always positive for a 
free surface since otherwise the condensed phase would be an unstable form of 
matter. The interface energy between two solids may be negative if the bonds 
between the atoms of the two phases are stronger than between the atoms in each 
phase. Still, energy would be gained in that case by creating more interfaces be-
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tween the two phases, but the system may be frozen into a particular state. Cur-
rently interface science deals more often than not with such metastable systems, 
which is one more reason to go beyond Gibbs thermodynamics.  
 We note that no satisfactory experimental method is available to determine the 
surface free energy of crystal faces. The existing methods concern either the liquid 
phase or the amorphous state at high temperature. Theory has however advanced 
to a stage where surface energies can be calculated with fair reliability. 
 The Helmholtz free energy F is a thermodynamic potential with respect to the 
variables temperature, strain, and particle numbers. We now need to define the 
corresponding variables for the interface free energy F(s). We begin with the dis-
cussion of strain and stress.  

Gas phase / Electrolyte

(z)

z

x,y(z)

z

Solid phase

Fig. 4.4. Illustration of the stress  and the particle density at an interface. Due to a redistri-
bution of the electronic charge, a nonzero stress parallel to the surface may exist in the first 
layers of the solid. Gas phase molecules or atoms dissolved in the bulk may accumulate in a 
dense layer on the surface because of either segregation or adsorption.  

The bulk components of the stress tensor vanish, both in the bulk of the gas/liquid 
and the solid phase, because of the homogeneity and the condition of zero external 
pressure. Near the surface the stress may have non-vanishing components kl(z)
within the surface plane of a solid (Fig. 4.4). The interface stress or surface stress 

)(s
kl  is defined as 

interface

(s) d)( zzklkl  (4.6) 

where the indices k,l = 1,2 denote the in-plane components of the stress tensor. 
The surface stress in the plane of drawing in Fig. 4.4 is a force per length with the 
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length along the axis perpendicular to the plane of drawing. It can also be defined 
as the z-integral of all forces per length needed to keep the material unstrained if 
in a Gedanken experiment the interface is cut vertically to the surface with the 
material on the right hand side being removed. We note that the surface stress (s)

need not be positive! A positive surface stress means that work is required to 
stretch the surface elastically. This stress is also called a tensile surface stress. If 
the surface stress is negative, it is called compressive. The intrinsic surface stress 
of clean metals seems to be always tensile, but may become compressive upon 
chemisorption of electronegative adsorbates [4.2]. For semiconductors surfaces 
the surface stress may be compressive even when clean [4.2, 3]. The tensile sur-
face stress on clean metal surfaces can be understood to be a consequence of the 
redistribution of the bonding charge.  

(a)  (s) > 0 (b)  (s) < 0

Fig. 4.5. Illustration of the charge redistribution at metal surfaces and its effect on the sur-
face stress for (a) a free surface and (b) a surface with electronegative adsorbates.

The charge that is not required for bonding because of the existence of a surface 
redistributes to enhance the charge between the first and second layer. This causes 
the typical contraction of the interlayer distance. The charge also increases the 
charge density between the surface atoms to cause an attractive force to the posi-
tively charged cores of the atoms in the surface layer (Fig. 4.5a). The atoms 
cannot yield to that force since they are hold in registry by the substrate; however, 
a tensile surface stress arises from the charge redistribution. Upon adsorption of 
electronegative atoms, some of the electron charge between the surface atoms is 
removed to cause a compressive surface stress (Fig. 4.5b). Adsorption of electro-
positive adsorbates increases the tensile stress. 
 Typical surface stresses of solids are of the order of 1 N/m. As the surface 
stress originates from a redistribution of the electronic charge at the surface which 
is confined to a distance of about 1nm a surface stress of 1 N/m corresponds to a 
bulk stress of 1 Gpa. Neglecting external pressures on the surface thermodynamics 
of solids is therefore justified as long as the pressures are small compared to 
1 GPa.  
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When additional interfaces are inserted into the supercell in the procedure de-
scribed above components of bulk constituents may flow towards or away from 
the interface to change the particle density there. For the interface free energy, the 
variable "particle number" in of total free energy is to be replaced by the surface 
excess numbers )(s

in , which are defined as the integral over the z-dependent densi-
ties )(zi  minus the bulk densities  

interface
ii zzAn d])([ III,

(s) . (4.7) 

In order to subtract the bulk contributions correctly one has to define where ex-
actly the bulk of the solid ends and the gas/liquid phase begins. Considering the 
case of adsorption from the gas/liquid phase, it is useful to place the dividing 
plane such that all atoms which belong to the solid state and remain within the 
(unaltered) solid state under the given circumstances fall on one side, while atoms 
belonging to the gas/liquid phase and adsorbed atoms fall on the other side. If 
segregation is considered, the dividing plane would be placed best between the 
segregated surface phase and the gas/liquid. The exact position of the interface is 
not important in either case, since the concentration is zero in one of the adjacent 
bulk phases2. As a function of the independent variables the interface free energy 

),,( (s))(
ikl

s nTF  can be written as 

i
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We note that the indices kl denote merely the x and y components of the surface 
stress and strain tensors. There is no contribution to the mechanical work from the 
z-component since we have assumed that the pressure be zero.  
The total differential of the interface free energy is 

i
ii

kl
klkl nATSF (s)(s)(s)(s) dddd . (4.9) 

In surface science, one often deals with adsorption phenomena where the adsorp-
tion process saturates after a monolayer coverage. The concentration )(i z  can be 

written as 

2 Gibbs has placed the dividing plane such that 0(s)
i iin . However, this is inexpedient 

for solid surfaces since the position of the dividing plane would change with the concentra-
tion of adsorbed atoms. Nevertheless this convention is frequently cited in many textbooks 
which is very confusing as one attempts to apply a thermodynamics based on the Gibb’s 
convention to concrete situations (see [4.4])
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Azn(z ii /)() (s) . (4.10) 

Divided by the area which corresponds to one surface atom s,
)(s

in  defines a 

fractional coverage i

s
(s) /ii n

4.2.2 Charged Interfaces 

To develop the thermodynamics of electrified interfaces between a solid and an 
electrolyte we need to admit the contribution of electrical energy. The cell dou-
bling method requires that the bulk phases be in equilibrium with themselves 
within their bulk region. This ensues that there are no electric fields inside the 
bulk phases as otherwise the chemical potential of electrons and ions would de-
pend on the position, which constitutes a non-equilibrium situation. Furthermore, 
the integral of the charge density over the supercell must be zero to avoid infinite 
self-energy terms. Since the Helmholtz free energy has the charge as the inde-
pendent variable, we need to consider the charge distribution inside the interface 
for the definition of an interface free energy. Because of the required neutrality, 
the charge distribution involves a charge on the solid and a countercharge of op-
posite sign and the same magnitude inside the electrolyte. If the solid is a metal, 
the charge on the solid is localized within the screening length that amounts to 
about one tenth of the Fermi-wavelength (Sect. 3.2.1, Fig. 3.5). The countercharge 
in the electrolyte extends over the Debye-length (Table 3.2). The resulting charge 
distribution in the supercell is depicted in Fig. 4.6a. The charge distribution causes 
a potential difference between the solid and the electrolyte (Fig. 4.6b). Homogene-
ity in the x,y-plane requires that the charge density and the potential depend on z
only. The electric work term in the free energy is therefore calculated as for a 
parallel plate capacitor. The energy of each interface capacitor is directly the elec-
tric contribution to the interface free energy. The total free energy F (s,tot) is 
therefore

q,nTFnTF ikl
s

ikl
tots (M)(s))((s)),( ),(,...),,,(  (4.12) 

where q is the total charge and (M)  is potential on the metal. Without loss of 

generality, we set the potential of the electrolyte bulk phase as zero3. Hence, for 
the geometry and the side conditions considered one can write dF(s) as 

3 If one thinks of electrons as the carriers of the charge q and treats the electrons as particles 
one may replace the term (M)q by ee

~ n  in which e
~  is the electrochemical potential of 

electrons. This notation is typically used in electrochemistry. 
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qnATSF
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The differential form of the area specific free energy is obtained by observing that 

AffAF ddd (s)(s)(s)  (4.14) 

so that 

ddd)(dd (M)(s)(s)(s)(s)
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Here, we have introduced the surface specific entropy ASs ss /)()( , the surface 

particle excess (which frequently is the surface coverage per area!) An s
ii /)( ,

the specific charge Aq / , and we have taken into account that  

kl
klkl

k
kk AAA ddd  (4.16)

with kl the Kronecker symbol.  

(a)

(z)

z

(b)

(z)

z
0

0

I
Metal

II
Electrolyte

L

Fig. 4.6. A supercell with charged interfaces; (a) shows the charge density and (b) the 
potential. The mean charge is zero. On the metal surface, the charge is localized within the 
Thomas-Fermi screening length. In the electrolyte, the characteristic decay length is the 
Debye-length. 
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For a surface at constant temperature T, constant particle excesses i and constant 
surface charge  one has a relation between the surface stress and the specific 
surface free energy 
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)(

iTkl
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kl
s(s)

kl
f

f

This relation has been derived by Shuttleworth [4.5] and is therefore known as the 
Shuttleworth relation. As this particular Shuttleworth relation refers to an experi-
mental situation in which surface coverage and charge density are held constant, 
this form is useful for a surface in a gas phase at temperatures were the exchange 
of adsorbate atoms with the gas phase is slow so that the coverage would not 
change upon application of a strain to the solid.  
 We conclude this section by considering the derivative of the free energy with 
respect to the charge at the point of zero charge for a surface in vacuum 

(M)
0

0,,,

)(

kliT

sf
, (4.18) 

which is formally a potential according to (4.15). The question is what is the 
meaning of that potential? By definition, the variation of the surface free energy is 
the work per area on the surface required to bring a charge per area from the solid 
into the vacuum. Suppose the charge would be that of one electron and the charge 
would be removed from the solid in the form of an electron. The electron would 
be brought from the Fermi-level up to the vacuum potential whereby a work 
amounting to the work function would be performed on the solid. The quantity 

(M)
0e  should therefore be the work function. It is a well-known result of density 

functional theory that only the charge density at the surface within some screening 
length is changed by removing an electron from a material [4.6]. Hence, the work 
required to remove an electron from the bulk of a material is entirely acting upon 
the surface and thereby changes only the free energy of the surface and not the 

free energy of the bulk! The work /)((M)
0

sfee is therefore the work 

function of the material in its given state, that is, with possibly some adsorbate 

coverage. For surfaces in an electrolyte 
0,,,

)( /
kliT

sfe  is the work 

function of the metal in contact with an electrolyte in the state of zero charge, 
however with a Stern layer of bonded water and other molecules on the surface. 
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4.2.3 Charged Surfaces at Constant Potential 

The area specific Helmholtz free energy f (s) is the isothermal work per area to 
create a surface while keeping the particle excesses  (s), the strain and the charge 
density constant. It is therefore the appropriate thermodynamic potential for a 
surface in vacuum, which is typically uncharged and on which the number of ad-
sorbed particles is fixed. To solid-state physicists f (s) is frequently known as the 
surface tension. Metallurgists who often work with materials under high pressure 
tend to take the Gibbs surface free energy per area as the surface tension [4.4, 7], 
as this so defined surface tension is the appropriate surface property to consider 
when the partial pressures i.e. the chemical potentials in the surrounding gas phase 
are being held constant. Electrochemists, finally, are interested in (highly) charged 
surfaces in equilibrium with electrolytes of defined concentration and at a constant 
potential with respect to a reference electrode. They need again a different specific 
surface thermodynamic potential referring to the chemical potentials i of species 
in the electrolyte (as determined by the concentrations of neutral and ionic spe-
cies) and the electric potential  as independent variables; a quantity, which is 
likewise called surface tension. This can create quite a bit of confusion unless the 
independent variables are clearly stated. 
 The transformation to the surface tension , which has the temperature T, the 
strain kl, the chemical potentials i, and the electric potential  as independent 
variables is performed via the Legendre-transformation 

qnFA
i

ii
s)( . (4.19) 

We eliminate the superscript (s) in as this symbol is used universally for the area 
specific surface tension. By invoking 4.13 and 4.14 one obtains the differential 
form of the surface tension as 
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The Shuttleworth relation for then reads 

,,

(s)

iTkl
klkl  (4.21) 

We note that the charge density  in (4.20) is the charge density measured in an 
experiment with electrodes held at constant potential. This experimental charge 
density may have two components, one from loading the electrochemical double 
layer, the other from the adsorption of ions, which are unloaded on the surface by 
forming a chemical bond with the substrate. These specifically adsorbed ions con-
tribute to the surface excesses i. Experimentally, one cannot distinguish between 
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a current stemming from charging the double layer or from an unloading of ions. 
For electrodes kept at constant potential, the interface system remains neutral even 
with specific adsorption. The charge provided by the specifically adsorbed ions is 
transported away as a current by the external power supply that keeps the elec-
trode potential constant.  
 A typical experiment in electrochemistry is isothermal (dT = 0) and involves a 
surface on a bulk material of considerable thickness which keeps the surface strain 

kl constant (d kl = 0). In that case, one has 

i
ii ddd . (4.22)

This equation is known as the electrocapillary equation or Lippmann equation4.
Because of (4.22) the surface tension  has a maximum at the potential where the 
surface is uncharged. This potential is called the potential of zero charge (pzc) and 
is denoted as pzc in the following. The value of pzc can be related to the work 
function if the surface excesses i are zero or constant. Suppose the work function 
of the surface would change by some amount , e.g. by a change in the surface 
structure. Then by virtue of (4.18) and (4.19) 
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The first two terms vanish and pzc0
 by definition, so that  

ii
e pzc , (4.24) 

which is a rather important result! Note, however, that  is the change of the 
work function of the substrate when in contact with the particular electrolyte! By 
integration of (4.22) one obtains 

pzc pzcpzc

d)(d)(d)()( pzcpzc C  (4.25) 

with C the differential interface capacity 

i

C . (4.26) 

4 Sometimes 
Ti ,

/  is called the Lippmann equation. 
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The capacity C can be expanded into a Taylor series  

...)(
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so that  
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pzcpzcpzc C (4.28) 

As shown in section 3.2.3 the interface capacity has a minimum at pzc for dilute 
electrolytes. The next term in the expansion (4.28) is therefore the forth order 
term. The dependence of the surface tension  on the potential is illustrated with 
the example of the Au(100) surface. Under vacuum conditions the Au(100) sur-
face is reconstructed. The surface layer contains about 25% more atoms, which are 
arranged in a quasi-hexagonal, incommensurate structure (Sect. 1.2.1). For 
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Fig. 4.7. Surface tension of Au(100) surfaces in 0.01M HClO4 [4.8]. The absolute value of 
the surface tension is taken from theory [4.9]. The reconstructed surface is stable for poten-
tials below about 0.25 V vs. SCE (Saturated Calomel Electrode), while above 0.25 V the 
unreconstructed surface is stable. The lifting of the reconstruction for positive potentials is 
indeed observed in scanning tunneling microscopy [4.10, 11]. The variation of the surface 
stress as determined experimentally [4.11] is plotted as a dashed line on the same scale for 
comparison. 
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Au(100) surfaces in contact with an electrolyte both the reconstructed and the 
unreconstructed phase may be stable, depending on the potential. 
 As the capacity C( ) and the potential of zero charge pzc can be determined 
from electrochemical experiments, the potential dependence of the surface tension 
can be calculated from experimental data. The results shown in Fig. 4.7 refer to 
the unreconstructed and reconstructed (hex) Au(100) surfaces in 0.01M HClO4

[4.8] (1 M is one mole of the species in one mole of H2O). The lower pzc of the 
unreconstructed Au(100) surface is due to the lower work function of that surface 
(4.24). The work function of the unreconstructed surface is lower because the 
work function scales with the density of surface atoms. The relative values of the 
surface tensions at their respective pzc can approximately be obtained from the 
observation of the stability range of the two phases. Merely for the absolute value 
of the surface tension one has to resort to theory [4.9, 12]). The variation of the 
surface stress with applied potential has been measured for Au(100) in the same 
electrolyte using the bending bar technique [4.11] and is plotted as a dashed line in 
Fig. 4.7 for comparison (the absolute value is arbitrary). The surface stress 
changes more rapidly with the potential and does not have a maximum at pzc.

4.2.4 Maxwell Relations and Their Applications 

Since f (s) and  are state functions, second derivatives with respect to their inde-
pendent variables do not depend on the sequence in which the derivatives are 
made. This gives rise to the so-called Maxwell relations. Consider e.g. the surface 
tension with the total differential as given by (4.20). The trivial equality 

// 22  leads to the not so trivial Maxwell relation 
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Suppose one had means to determine the dependence of the surface charge density 
 on the chemical potential i and the electric potential , then one could obtain 

the surface excess i of the species i or surface coverage i as a function of  for 
all values of i by integration 

d
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ii . (4.30) 

The lower boundary  stands for a potential where the species is not adsorbed 
so that 0)(i . Of course, the integrand is also zero there. Alternatively, one 

may take the full coverage as a reference where the surface charge is again inde-
pendent of the chemical potential so that the integrand is zero. This method to 
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determine surface coverages on surfaces in an electrolyte is called chronocou-
lometry5. While the theoretical foundation of the method is simple, the 
experiments are cumbersome and require considerable skill, care and diligence. 
An example from a group, which has cultivated such measurements is shown in 

Fig. 4.8 [4.13]. The example concerns the adsorption of 4SO -ions on Au(111) 

electrodes in a supporting electrolyte of 0.05 M KClO4+0.02  M HClO4 with vary-
ing small concentrations of K2SO4 ranging between 5x10-6 M and 5x10-3 M. 
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Fig. 4.8. Surface coverage with 4SO -ions on a Au(111) electrode surface as a function of 
the electrode potential measured with respect to SCE. Parameter is the concentration of 

4SO -ions in the electrolyte, in other words the chemical potential of the electrolyte with 
respect to 4SO -ions (After [4.13]). 

The supporting electrolyte serves to keep the conductance of the electrolyte con-
stant. It is assumed that ions of the supporting electrolyte do not adsorb on the 

surface. The concentration of 4SO -ions in the liquid is proportional to the mo-

lality of K2SO4, and for the dilute concentrations (see Sect. 6.2.4) one has the 

5 The term chronos (Greek "time") presumably refers to the method of measuring charges 
by integrating currents obtained in potential sweeps. 
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relation between the chemical potential and the concentration 

)ln(
44 SOB0SO

Tk . (4.31) 

The higher the concentration and thereby the chemical potential the lower the 

positive potential at which a particular coverage of the surface with 4SO -ions is 

obtained. A more detailed analysis of the adsorption isotherms is performed in 
Sect 6.2.5. 
 A further useful Maxwell relation is derived from (4.15). Assuming an isotropic 
surface stress for simplicity one obtains 
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in which s is the area covered by one molecule of the adsorbed species. The cov-
erage dependence of the surface stress  (s) can be measured, i.e. by the bending 
bar technique [4.2], so that (4.32) provides information on the strain dependence 
of the chemical potential of the adsorbed phase. The strain dependence of the 
chemical potential is approximately equal to the strain dependence of the heat of 
adsorption Q [4.14]. Hence, the not easily measured strain dependence of the heat 
of adsorption can be obtained from the more accessible coverage dependence of 
the surface stress. A few examples are shown in Fig. 4.9. 
 As a final example, we consider a Maxwell-relation between the dependence of 
the surface stress on the charge density and the strain dependence of the work 
function . For simplicity, we assume that the surface stress is isotropic. From 
(4.15) one obtains a Maxwell-relation, which relates the charge dependence of the 
surface stress with the strain dependence of the potential . The only way the po-
tential can change upon a strain is when the work function changes. We can 
therefore replace the potential  by the work function  and obtain 
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The variation of the work function with strain is material specific and in general 
not known. For a qualitative picture one may resort to the jellium model (see 
Sect. 3.2.1) in which the work function is a monotonous function of the electron 
density. If the density is described in the typical way by the radius rs in units of 
Bohr (0.529 Å) of a sphere which has the volume taken by one electron, the de-
pendence of the work function on the electron density can be described by [4.15] 
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Fig. 4.9: (a) Surface stress as a function of coverage for Pt(111), Ni(100) and Ni(111) sur-
faces. The results were obtained using the bending bar technique [4.2]. (b) The variation of 
the heat of adsorption with strain calculated from the coverage dependence of the surface 
stress [4.14].
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s38.063.4eV/ r . (4.34) 

After some simple algebra one obtains for the strain derivative of the work func-
tion 

ss
0,,

13.0
3

1
38.0eV/ rr

iT

 (4.35) 

The variation of the surface stress with the charge is therefore necessarily nega-
tive, which is in agreement with the existing experimental data (cf. Fig. 4.7). Gold 
has rs = 3.0, and therefore V38.0/ . The experimental values are -0.9 V 

and –1.6V on Au(111) and Au(100) in 0.1 M HClO4, respectively [4.16]. While 
the simple model predicts the sign of the effect correctly, it fails to account for the 
effect quantitatively. One should not be surprised by that, however: The jellium 
model underestimates, the surface energy, the surface stress and the work function 
of 5d-metals by far [4.15, 17]. This is partly because localized d-electrons are not 
considered in the jellium model, partly because these quantities are intimately 
related to inhomogeneity of the electronic charge distribution due to the atomic 
structure (see Fig. 4.6) which is likewise not included in the jellium model. Fur-
thermore, (4.33) is valid around pzc and for constant i. In the experiments on the 
surface stress of gold surfaces in an electrolyte, the chemical potentials i were 
kept constant, which does make a difference, in particular as a specific adsorption 
of ions around pzc from the HClO4-electrolyte cannot be excluded. 

4.2.5 Solid/Solid and Solid/Liquid Interfaces  

As an application of the thermodynamics of flat surfaces and interfaces, we con-
sider phases, which have a line of contact in common (Fig. 4.10a) which - without 
loss of generality- may be assumed normal to the plane of drawing. The condition 
of equilibrium requires a relation between surface tensions of the interfaces and 
the angles. We assume for the moment that the interface tensions are independent 
of the orientations of the interfaces. The interfaces are in equilibrium if the total 
interface energy is stationary against a variation of the contact angles. In order to 
make that comparison one introduces a “virtual” displacement s

r
 of the line of 

contact in any arbitrarily chosen direction (arrow in Fig. 4.10a). The condition that 
the total interface energy of the three phases considered in Fig. 4.10a be stationary 
with respect to the virtual displacement s

r
 requires that 

0coscoscoscos 332211
i

ii  (4.36) 



  4.2  Thermodynamics of Flat Interfaces  __________________________________________________________________________ 169

s
dep

i

(a) (b)

1

1

s
r

1

Fig. 4.10. (a) Suppose three (or more) phases share a common line, which is assumed per-
pendicular to the plane of drawing. Equilibrium requires that the interface energy is 
stationary with respect to any arbitrarily oriented virtual in-plane displacement s

r
 of the 

common line. The interfaces i change length by the amount ,cos is  with i the angle 
between the displacement vector s

r
 and a vector pointing from the center along the inter-

face i. For solids, the interface energies change also because of the rotation by the amount 
i since the interface tensions then depend on the orientation. (b) A special application of 

the equilibrium condition is the contact angle of a solid cluster or a liquid droplet on the flat 
surface of a substrate. 

with i the angles between the interface i and the direction of the virtual displace-
ment6.
 Equation (4.36) is occasionally interpreted as a “balance of forces” acting upon 
the common line. This is a gross misconception: The virtual displacement s

r
 com-

pares different sets of contact angles; it is not an elastic deformation. If (4.36) 
were to describe a balance of forces upon an elastic distortion, it would involve 

the interface stresses (s)
i and not the interface tensions i ! According to the Shut-

6
Equation (4.36) can also be written in terms of the tensions i and the angles i subtended 

by the respective two other interfaces j i (Fig. 4.8a). This operation is achieved by first 
writing (4.36) three times each with one of the three interfaces as the plane of projection for 
the angles i. After converting the angles i into the angles i and some algebra one obtains 
the relation 

3

3

2

2

1

1

sinsinsin
 (4.36a) 

that is well known in the material science of grain boundaries.
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tleworth relation (4.21) the stress and tension differ by the strain derivative of the 
tension which is an intrinsic property of solids involved. The difference between 
the interface stress and tension may have an arbitrary positive or negative value. If 
(4.36) holds for the tensions it cannot hold for the stresses, except incidentally. In 
general, the forces exerted by the interface stresses on the common line are there-
fore not balanced! The unbalanced forces along the common line give rise to long-
range elastic deformations of the phases (cf. Sect. 3.4), which are difficult to han-
dle theoretically and therefore constitute one of the unsolved problems in the 
physics of mixed phases.  
 For crystalline solids, the surface tension depends on the orientation. This con-
tributes a second term to each variation in the interface tensions of the form  

i
i

i
i  (4.37) 

where i  is the rotation of the orientation of the interface i due to the displace-
ment vector s

r
 and the derivative is to be taken at the orientation of the interface i. 

The condition that the interface energy be stationary is then 

i
i

i

i
ii 0sincos . (4.38) 

It will be shown in section 4.3 that the derivative of the interface tension with 
respect to the orientation is of the same order of magnitude as the interface tension 
when the interface is a low index crystallographic direction and forms a “facet”. It 
is small only if the surface is thermodynamically “rough” (see section 4.3). 
 Another application of the principle of stationary interface energy is the calcu-
lation of the contact angle of a solid or liquid deposit on a flat surface (Fig. 4.10b). 
In that case, (4.36) turns into the Young-Dupré equation 

sdepi cos  (4.39) 

in which s, dep and i are the surface tensions of the substrate and deposit and the 
interface tension between substrate and deposit, respectively (Fig. 4.10b). For 
simplicity, we have assumed that the surface of the deposit is “rough” near the line 
of contact with the substrate so that depdepdep / .

If the sum of the interface tension and the surface tension of the deposit is smaller 
than the surface tension of the substrate,  

sdepi , (4.40) 

then the condition (4.39) cannot be fulfilled for any contact angle. Rather one has 
a complete wetting of the substrate by the deposit. 
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Fig. 4.11. (a) Definition of surface and interface tensions for heteroepitaxial growth; (b)
layer-by-layer growth, or Frank-van-der-Merwe growth; (c) 3D-cluster or Vollmer-Weber 
growth; (d) growth with one or more wetting layers continued by 3D-cluster growth, 
known as Stranski-Krastanov growth.

The condition (4.40) and its opposite  

sdepi  (4.41) 

constitute an important criterion for the preferred growth mode in heteroepitaxial 
growth. The criterion is named after E. Bauer [4.18]. If (4.40) holds, heteroepi-
taxial growth proceeds in a layer-by-layer manner. One monolayer is completed 
before the next one begins to grow (ideally). This growth mode is also called 
Frank-van-der-Merwe growth (Fig.4.11b). If (4.41) holds, the growth mode is in 
the form of 3D-clusters. This growth mode is called Vollmer-Weber growth 
(Fig.4.11c).
 Heteroepitaxial growth is frequently pseudomorphic which means that the de-
posit grows with a lattice constant matched to the substrate. Since the natural 
lattice constants of the deposited film af and the substrate as may differ, the depos-
ited film is in a state of strain if the growth is pseudomorphic. The misfit strain mf

is

s

sf
mf a

aa
. (4.42) 
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For simplicity, we assume that the pseudomorphic strain and the elastic properties 
of the deposited film are isotropic. Because of the misfit, the film carries an elastic 
energy of 

mf
)(2

mfelast 12
sYt

 (4.43) 

per area. Here, Y is the Young modulus of the deposited film, the Poisson ratio
and t the thickness of the deposited film. The change in the surface stress  (s) is 
the total change in the surface stress due to film deposition. Depending on the sign 
of  (s) and the sign of the misfit, the second term can be negative or positive, sta-
bilizing or destabilizing Frank-van-der-Merwe growth. For larger film thickness, 
the elastic energy always works in favor of 3D-clusters, hence Vollmer-Weber 
growth. Pseudomorphic growth therefore frequently begins as Frank-van-der-
Merwe growth and turns into Vollmer-Weber growth after one or more layers. 
This growth mode is known as Stranski-Krastanov growth (Fig. 4.11d). Alterna-
tively, the elastic energy in pseudomorphic films may relax by the formation of 
dislocations (Sect. 1.3.1) after a critical thickness tc.

4.3 Curved Surfaces and Surface Defects 

4.3.1 The Crystal Equilibrium Shape

For crystalline materials, the surface tension is a function of the orientation of 
surface. The equilibrium shape minimizes the total surface energy for a given 
volume. Which thermodynamic potential is the relevant surface energy depends 
on the environment and the parameters that are kept constant during the equilibra-
tion process, and whether with the environment equilibrium is established at all. 
For a crystal in vacuum, e.g., the equilibrium shape is established via surface or 
bulk diffusion. The number of atoms in crystals remains constant. The relevant 
energy is then the Helmholtz surface free energy f (s). For a crystal held in equilib-
rium with its own vapor phase the relevant surface energy is the surface tension .
Since typically a crystal in that case will be uncharged, the Legendre-
transformation with respect to the surface charge and potential (4.19) is irrelevant. 
One may also ask for the equilibrium shape of a crystal in a vapor phase of a gas, 
which can absorb on the surface but contains no atoms of the crystal substrate. Let 
us assume further that the temperature is low enough so that there is no evapora-
tion of the substrate material. In that case, the number of substrate atoms is kept 
constant while vapor phase atoms or molecules may adsorb on the crystal surface 
to build up surface excesses. In that (not untypical) experimental situation the 
appropriate surface energy is a particular surface tension for which the Legendre 
transformation over the species i is performed for all but the species which make 
up the bulk of the substrate. It is not sufficient to treat this case by making the 
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surface excess of the substrate species zero by definition: with the equilibrium 
vapor pressure being zero for substrate atoms their chemical potential would di-
verge to minus infinity, leaving the product of surface excess and chemical 
potential undefined, unless special models are invoked describing the mathematics 
of this limit. One may also consider a crystal in equilibrium with an aqueous elec-
trolyte with some finite concentrations of ions, however with zero concentration of 
ions of the substrate material. With regard to the substrate atoms, the case is 
equivalent to a crystal in vacuum at moderate temperatures. The gold surface in a 
H2SO4- electrolyte (Fig. 4.8) is an example. Here, the appropriate surface tension 
is one where the Legendre transformation (4.19) is performed with respect to 

4SO - ions and the surface charge, however not for the gold atoms. In summary, 

the appropriate surface energy function depends entirely on the details of the ex-
perimental conditions. In what follows we denote the surface tension that suits the 
specific experiment by the symbol  and keep in mind that  is not the same in 
each case. With that important caveat, the condition for the equilibrium shape is 
that 

Sns d)()( r
 (4.44) 

should be minimal for a given total volume of the crystalline material. Here, n
r

denotes a unit vector perpendicular to the surface and dS is an element of the sur-
face. For the special case of crystal in vacuum,  (s) is the Helmholtz surface free 
energy F (s). If the surface tension is isotropic as for a liquid,  (s) is minimized by 
a spherical shape. For a general anisotropic surface tension, the equilibrium shape 
is obtained from the Wulff-construction, which is illustrated in Fig. 4.12 (For the 
nontrivial proof of the Wulff-construction see e.g. [4.4, 19]): On each ray connect-
ing the origin with the point of  in a polar plot (dotted lines in Fig. 4.12) 
perpendicular lines are constructed (dashed lines). The area inside the ensemble of 
all the dashed lines marks the equilibrium shape of the crystal in the plane of 
drawing. Figure 4.12 shows two examples. In the first one (upper Wulff-plot), 

 is a continuous differentiable function everywhere and the equilibrium shape 
has a finite nonzero curvature. 
 Surfaces, which have a finite curvature on the equilibrium shape, are called 
rough surfaces. The equilibrium shape has a corner at  = 45°, which means that 
certain orientations of high  are missing. In the lower half of Fig. 4.12 
has a cusp at = 0°, in other words, )( . The equilibrium shape is then a 

flat plane with a particular lateral extension, which depends on the azimuthal ori-
entation. These areas are called facets or singular surfaces. Physical realizations
of facets are the low index crystal planes. 
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Equilibrium shape

Equilibrium shape

)0(

)0(

Fig. 4.12. Wulff plot and equilibrium shapes when  has no cusp (upper panel) 
and when ( ) has a cusp at  = 0 (lower panel). 

In Fig. 4.13 a low index (h k l) surface is depicted together with crystal planes, 
which are slightly tilted to the (h k l) plane by an angle ±  Tilted planes are com-
posed of a regular sequence of (h k l)-terraces separated by steps of height h. One 
may think of these steps as being one atom layer high as this would be a typical 
realization of a tilted surface. However, thermodynamics can be formulated with-
out having a specific atomic model in mind. The ensemble of (hkl)-terraces has the 
same energy as on the non-tilted surface. The creation of steps requires additional 
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h

L

Fig. 4.13. Surfaces, which are tilted with respect to a low index plane (h k l) (a) by an angle 
(b, c) have a higher surface tension due to the step line tension .

work, which is inversely proportional to the distance L between the steps 
(Fig. 4.13b,c). By expressing the step density in terms of the step height h one has 

tan
cos

)(
)(

)(

0p h
 (4.45) 

With p( ) we have introduced a surface tension defined with respect to a length 
scale projected on to the surface with the angle  = 0. The quantity ±) is the step 
line tension of steps of height h. The plus or minus sign refers to the sign of the tilt 
angle. In case of centrosymmetric surfaces, e.g. a {100} surface of an fcc-
structure,  (+) =  ( ). On {111}-surfaces of fcc crystals, the A- and B-steps (Sect. 
1.3.1) have a different structure and thus a different energy so that  (+)  ( ).
For uncharged surfaces in vacuum, the line tension is equal to the step free energy, 
which in turn at T = 0 K is equal to the step energy. At moderate temperatures, the 
step free energy is a little lower, but still roughly equal to the step energy since the 
step entropy is small (cf. Section 5.2.1). 
 Equation (4.45) can be considered as the first step of an expansion in powers of 

tanp
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in which the higher order terms correspond to step-step interactions. The term 
2

2
(int)

2 pW  represents a step-step interaction proportional to L 1 and so forth. 

2)1((int) nLW n
n  (4.47) 

Models for step-step interactions are considered in Sect. 3.4.2 and 5.2.2. Here we 
are concerned with the consequences of the various terms on the crystal equilib-
rium shape in the vicinity of a facet. We describe the shape function around a facet 
as z(x) in which the z-axis is parallel to the orientation which corresponds to  = 0 
and the x-axis is orthogonal to the z-axis in the direction of an advancing 
(Fig. 4.14). Both the x- and the z-axis have their origin at the center of the equilib-
rium shape, which is also the center of the polar -plot (Wulff-point).  
 The shape function z(x) is obtained most easily in a parameterized form [4.20] 
by making use of the Wulff-construction. According to Fig. 4.14 one has the fol-
lowing relation between the surface tension  and the distance of a point on the 
shape curve R in which the slope is  and the origin.  

)sincos(
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In the reduced coordinates  

0000 /ˆ/ˆ zzzzxx  (4.49) 

equation (4.48) becomes 

pxzp ˆˆ)(p . (4.50) 

The parameterized form of the shape function is therefore 
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in which p'( p) is the derivative of p(p) with respect to p. Assuming that all coef-
ficients n are positive (repulsive step-step interactions) the slope of the shape 
curve is negative definite and approaches zero continuously as x decreases. 
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Fig. 4.14. Illustration for the derivation of the shape function z(x) (see text for details). Note 
that ( ) and R( ) represent a different metric. 

The slope becomes zero at a finite value of x̂  which marks the extension of the 
facet xf
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The size of the facet is therefore proportional to the step line tension. As a general 
trend, the step line tension decreases with rising temperature because of the in-
creasing vibration and configuration entropy. Eventually, the line tension of steps 
and thus the facet may even vanish completely prior to melting of the crystal. This 
phase transition is called the roughening transition, and the temperature at which 
this happens is called the roughening temperature TR. Models for the temperature 
dependence of the step line tension based on statistical physics are considered in 
Sect. 5.2.4. The dependence of the step line tension on the electrode potential for 
surfaces in an electrolyte is discussed in section 4.3.5.  
 Standard models for the step-step interactions consider elastic interactions 
(Sect. 3.4.2) and entropic interactions (Sect. 5.2.2). Both are repulsive and depend 
on the step-step distance L as L 2, and therefore contribute to a positive 3-term.
The corresponding projected surface tension is plotted in Fig. 4.15a as a dashed 
line. Many qualitative and quantitative experiments support the understanding that 
L 2-interactions are dominating in general [4.21, 22]. The solution for the shape 
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function for 1, 3 > 0; 2 = 4 = 0 is therefore of particular practical importance. 
The resulting shape function 
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xxxx
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zz
(4.53) 

is known as a Pokrovsky-Talapov or Gruber-Mullins shape [4.23, 24] (dashed line 
in Fig. 4.15b). The shape function changes quantitatively but not qualitatively for 
nonzero, positive 2 and 4 [4.20]. Qualitative changes of the equilibrium shape are 
introduced by attractive step-step interactions. The transition between the facet 
and the rough surface becomes abrupt with a finite contact angle. Effective attrac-
tive step-step interactions and finite contact angles have been observed, e.g., for 
Au(100) and Au(111) surfaces [4.25]. In that case, they can be attributed to the 
reconstruction of gold surfaces. The reconstruction tends to make particular step-
step distances energetically favorable over others. It is, however, inappropriate to 
describe the surface tension of these surfaces by an expansion in powers of the 
inverse distance. Rather one has pronounced minima in the energy relative to the 
expansion in powers of p for certain “magic” orientations for which the terraces 
sizes fit to integral numbers of reconstruction cells [4.26]. 
 Stepped surfaces in an electrolyte experience attractive interactions of the 2 < 0 
type (Sect. 4.3.5). We therefore take that case as an example and calculate the 
contact angle at the facet boundary from (4.51) by looking for nontrivial solutions 
of z(x) = z0 for 2 < 0. 

0)2(: 32
2

0 ppzz  (4.54) 

In addition to the facet solution p = 0 one has a solution for p > 0 corresponding to 
a finite contact angle f between the facet and the rough section  

)2/arctan( 32f . (4.55) 

In case of attractive interactions, the size of the facet is no longer described by 
(4.53). The size does not only depend on the step line tension either. By inserting 
(4.55) into (4.51) one obtains 
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1 z
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x . (4.56) 

In case of partly attractive interactions, the facet size shrinks compared to purely 
repulsive interactions! The effect of a negative 2-term on the projected surface 
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Fig. 4.15. (a) Projected surface tension  ( ) cos  as function of tan  for attractive interac-
tions 2 and repulsive interactions 3 and for repulsive interactions 3 only, solid and dashed 
line respectively. (b) The equilibrium crystal shape. 

tension p( ) and on the equilibrium shape is illustrated by the solid lines in 
Fig. 4.15a and 4.15b, respectively. 
 Experimental studies on crystal equilibrium shapes are tedious and therefore 
rare. Figure 4.16a displays an STM image of a lead particle which was deposited 
on a Ru(0001) surface at 420 K after equilibration for about 20 h. Various facets 
are clearly seen. In images with enhanced contrast, the first step marking the 
boundary is clearly discernible Fig. 4.16b. With the boundary of the facet exactly 
fixed accurate experimental results are achieved on the transition region between 
the facet and the rough surface as well as on shape function (for further details the 
reader is referred to the review of H. P. Bonzel [4.20]). 
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Fig. 4.16. STM images of lead particles equilibrated on a Ru(0001) substrate (courtesy of 
Christian Bombis). The particles grow well with their (111) face on the basal plane of Ru 
since the lattice mismatch (4.22) is only about +4.7%. (a) Total view of the particle imaged 
in reduced contrast. The step marking the facet boundary is clearly seen in images with 
enhanced contrast (b). A step originates where a dislocation line of a dislocation with a 
screw component penetrates the surface (white arrow in (b)).

4.3.2 Rough Surfaces 

We consider a rough surface of a solid in an experimental situation where the 
number atom of the solid remains fixed, so that, concerning the atoms of the solid, 
the Helmholtz free energy is the appropriate thermodynamic potential. The solid 
may nevertheless be in contact with an electrolyte or a vapor phase so that ions or 
gas atom/molecules of different nature than those making up the solid substrate 
can absorb on the surface. The appropriate thermodynamic potential is then one in 
which the iin -Legendre transformation is performed for all but the substrate 

species. As with regard to the latter, the surface tension keeps the property of the 
specific Helmholtz free energy, namely that the chemical potential of the substrate 
atoms j is obtained by the derivative of the Helmholtz free energy of the solid with 
respect to the number of atoms j: jj nF / . We are now interested in the 

work required to create a small extension of the area of curved surface of the solid. 
Let A and B two points on the surface on the surface, with A defining the origin 
on the x-axis and B a second point on the x-axis at the distance Lx from the origin 
(Fig. 4.17a). Between the points A and B the surface profile has a contour 
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Fig. 4.17. Illustrations for the derivation of (a) the surface stiffness and (b) the chemical 
potential of a curved surface. 

described as z(x) with a total length L. Orthogonal to the plane of drawing the 
profile is assumed flat over a length unit Ly. We calculate the thermodynamic po-
tential (s) as a function of the length of the contour L.

B

A
y

s sxL d))((/)(  , 
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A

sL d . (4.57) 

The integrals are to be taken along the surface contour z(x). The surface tension 
depends on z(x) only via the angle (x). The integral is converted into an integral 
along the x-axis by replacing the length element ds along the contour by 
dx = cos ds. By expanding the surface tension and cos 1
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and by observing that the integral over (x) vanishes one obtains  
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The quantity, which describes the variation of the thermodynamic potential  (s)

per area with the length of the contour L, is known as the stiffness of the surface

)()()(~ . (4.61) 

With the help of the surface stiffness ~ , one can calculate the chemical potential 

of a body that is enclosed in a curved contour and is in equilibrium with the sur-
face. Suppose one has an element of the surface with a particular radius of 
curvature R (Fig. 4.17b). By expanding the radius by R while keeping the curva-
ture constant the surface area increases by RLLL yy . The number of 

particles in the body increases by /RRLN y  with  the volume of an 

atom. Because of the homogeneity with respect to the surface area, equilibrium 
between bulk and surface requires that LLN y

~  and thus 

R/~ . (4.62) 

The sign of the chemical potential of the surface is positive if R has its center in-
side the body (concave surface). When the center is outside (convex surface) the 
number of particles in the body is shrinking for an increasing contour length and 
the chemical potential is negative. We therefore describe the local surface contour 

x at any point of the surface as positive for a concave surface. With curvatures 
orthogonal to the plane of drawing denoted as y the chemical potential is 

yyxx )(~)(~ . (4.63) 

This equation is referred to as the Herring-Mullins equation. The derivation of 
(4.63) requires merely that bulk and surface be in local equilibrium in the particu-
lar area considered. With the understanding that the coordinates x, y are defined on 
a coarse scale so that each “infinitesimal” element dx, dy contains many atoms 
one may therefore define a position dependent chemical potential of a surface 

(x, y). The Herring-Mullins equation then serves as a basis for a local thermody-
namic description of a surface, thereby providing an important link between the 
macroscopic world and quantum physics. Equation (4.63) is a useful starting point 
for the description of surface self-diffusion (Sect. 10.2.2), e.g., or for the process 
of two- and three- dimensional Ostwald ripening (Sect. 10.4).  
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If surface and bulk are in global equilibrium with each other then the sum of the 
products of surface stiffness and the curvature is a constant all over the surface 
contour. Applied to a liquid droplet one has ~  and thus  

R

2
liq  (4.64) 

and since  ln p

Rpp
2

e

with p  the vapor pressure of the flat surface. Equation (4.63) may therefore be 
considered as a generalization of the Gibbs-Thomson equation to anisotropic sol-
ids. 
 The principle of the derivation of the Herring-Mullins equation may also be 
applied to derive a useful relation between the distance of a facet from the center 
of a crystal equilibrium shape, the surface tension of the facet and the chemical 
potential of the crystal. Let z0 be the distance of a particular facet from the center 
and 0 the surface tension of the same facet. Consider a uniform expansion of the 

crystal with z0 being expanded by z0. The area of the facet is 2
0f zcA  with c a 

constant depending on the facet shape. The area of the facet then varies upon an 
expansion by 00f 2 zzcA  and the number of particles changes by 

/0f zAN . Equating the change in the thermodynamic potentials of surface 

and bulk as above leads to the equation  

0

02
z

, (4.66) 

which holds for any arbitrary facet (Gibbs-Wulff Theorem).  

4.3.3 Line Tension and Stiffness 

With (4.45) we have introduced the step line tension as the additional contribution 
to the surface tension due to the presence of steps. Accordingly, the step line ten-
sion may be calculated formally as the difference between the surface tension of 
stepped and flat surfaces per step and step length, and this is how one actually 
proceeds in total energy calculations of the step energy. Since the definition, 
meaning and value of the surface tension depends on the thermodynamic bound-
ary conditions, the step line tension likewise refers to specific boundary 
conditions. This is of particular importance for surfaces held at constant potential 
in an electrolyte. The same remark applies to other surface defects. These aspects 
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are covered in Sect. 4.3.5. Here, we focus on the step line tension of surfaces in 
vacuum where it is identical to the step free energy per length. While the step line 
tension in a coarse-grained description can be defined for steps of arbitrary height 
and orientation, we now use the term in a more restricted sense as the line tension 
of a monolayer high step. Steps of this kind are found experimentally on the low 
index surface orientations (Sect. 1.3). On any given surface orientation, the step 
line tension depends on the orientation of the step on that surface. On the (100) 
surface of an fcc-crystal, e.g., step atoms have the highest coordination (coordina-
tion number = 7) for steps oriented along the [011] direction. Steps running in this 
direction have therefore the lowest energy of all orientations on the (100) surface. 
Since entropic contributions to the free energy of steps along the [011] direction 
are small at moderate temperatures, the [011] orientation is also the direction of 
lowest free energy. Deviation from the [011] orientation require the formation of 
kinks in the steps which costs energy because kink atoms have a lower coordina-
tion number (= 6). Hence the energy increases with increasing deviation from the 
[011] orientation, regardless which way the deviation goes. One might therefore 
think that the angular dependence of the step line tension  near the direction 
of dense packing of atoms (defined as  = 0°) should be described by an equation 
analogous to (4.45) with a term proportional to |tan |, the proportionality constant 
being the free energy of kinks. The Wulff-construction of the equilibrium shape of 
a two-dimensional island would then reveal facets at 011  orientations. This is not 
so! Two-dimensional islands have no facets. In other words, steps are thermody-
namically rough for temperatures above T = 0 K and the free energy of kinks 
vanishes. This is a special consequence of a general theorem that there are no 
phase transitions in one-dimensional systems at finite temperature for interactions 
decaying faster than 1/x2 when x measures the distance along the chain. The 
physical reason beyond the formalities is that the fluctuations in 1D-objects sim-
ply are too large. Steps may be considered as 1D-objects, mostly at least. 
Exceptions may be steps on surfaces with reconstructions, such as on the clean 
Au(111), Au(100), Ir(100), Pt(100) surfaces. Experiments indicate that the unit 
cells of the reconstruction are structurally correlated with the steps. In that case, 
steps are no longer 1D-objects and monolayer high islands may have facets. The 
same may apply to surfaces, which are reconstructed because of adsorbate layers. 
So far, however, no case of a faceted monolayer island has been reported. This 
may be partly owed to the difficulty to distinguish between a faceted edge and an 
edge, which has an extremely small, but finite curvature.  
 Figure 4.18 displays experimental island equilibrium shapes for the Cu(100), 
Ag(111), and the Pt(111) surface for two temperatures each [4.27, 28]. The higher 
the temperature, the more roundly the islands are shaped. This implies that the 
entropy of steps is larger for steps with orientations off the direction of dense 
packing. It will be shown in sections 5.2.1 and 5.3.2 that this larger entropy is a 
configurational entropy due to the presence of many kinks in the steps. For tem-
peratures approaching T = 0K the equilibrium shapes eventually become 
polygons. For (100) surfaces, e.g., the equilibrium shape would be a square or a 
square with truncated edges, an octagon. For (111) surfaces, the T = 0 K  
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Fig. 4.18. Experimentally determined equilibrium island shapes on (a) Cu(100), (b)
Ag(111), and (c) Pt(111) [4.27, 28]. The higher the temperature the rounder is the shape, 
eventually approaching a circle. For Ag(111), and also for Cu(111) A- and B-steps have 
nearly identical step line tensions, for Pt(111) the line tensions for A- and B-steps differ. 

equilibrium shape is a truncated triangle or a hexagon if A- and B-steps have the 
same formation energy. As for rough surfaces, one may calculate the change in the 
free energy of a curved step upon elongation of the step contour. This leads to the 

definition of a step stiffness 
~

, which depends on the orientation of the step. 

Analogous to (4.61) one finds  

2
ss

2
ss /)()()(

~
 (4.67) 

in which s denotes the orientation of the step (as opposed to the polar angle) 
pointing towards the step denoted as  (Fig. 4.18)). The relation between the stiff-
ness, curvature and chemical potential is (4.63) 

)()(
~

ss . (4.68) 

Since the chemical potential is constant along the periphery of an island that has 
its equilibrium shape, the stiffness varies along the periphery to keep the product 
of curvature and stiffness constant. For the, at low temperatures, nearly straight 
sections of the steps in the 011  directions of close packing this means that the 
stiffness becomes very large and diverges as T approaches zero. The divergence is 
inversely proportional to the concentration of thermally excited kinks (Sect. 4.3.7). 
With (4.66) a relation between the ratio of the surface tension of a facet and its 
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distance from the center to the chemical potential was derived. Although steps 
have no facets, one may nevertheless apply the equivalent of (4.66) to 2D-islands 

00s / y . (4.69) 

Here, s is the area of an atom and 0 and y0 are the line tensions of the steps at 
the points of minimal curvature and the distance from the center, respectively. For 
islands on the {111} surface the index 0 stands for either A- or B-steps. Equation 
(4.69) can be proved also directly by assuming the T = 0 K polygonal shapes. For 
very high temperatures for which all equilibrium shapes converge to a circle 
(4.69) is just the Gibbs-Thomson equation in two dimensions. The size depend-
ence of the chemical potential of islands on surfaces gives rise to a 2D-Ostwald 
ripening: larger islands grow at the expense of smaller ones. Eventually all islands 
disappear and the atoms migrate to straight steps which typically exist in sufficient 
abundance on surfaces. 

E =0
E =2

Fig. 4.19. The chemical potential of a square island in the Kossel-model. The free energy of 
the island does not change upon removal of all but the last atom in an edge. The Gibbs-
Thomson chemical potential of the island is entirely due to that last atom. 

It is interesting to contemplate the microscopic origin of the Gibbs-Thomson 
equation. For that purpose, we consider a simple model for the bonding of atoms: 
The atoms are represented by cubes that bond to each other via the faces of the 
cubes. This model is known as a Kossel-model. For islands on a (100) surface of 
an fcc-crystal, it is equivalent to a nearest neighbor bond model (Fig. 4.19). The 
total energy associated with the perimeter of an island of N atoms is E = 4 N 1/2.
The chemical potential in the continuum approximation is  
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NN

E 2
 (4.70) 

As seen from Fig. 4.19 the microscopic length of the perimeter does not change 
with the removal of a corner atom or atoms from kink sites. The total energy of 
the island does not change in this case and the “chemical potential” for these at-
oms is zero. Only the removal of the last atom in a row reduces the length of the 
perimeter by two units. The chemical potential of that last atom is therefore 2 .
The probability for an atom to be the final one in the row is N 1/2, so that on the 
average  = 2 N 1/2. The continuum equation is thereby recovered. The fact that 
only a fraction of atoms carries the message of a higher chemical potential of an 
island does not hurt as all thermodynamic quantities are defined as averages over 
large ensembles. This has to be seen apart from the question whether deviations 
from the Gibbs-Thomson equation exist for small islands. Such deviations would 
arise, e.g., from next-nearest neighbor or long-range interactions. 
 We conclude this section with the remark that the concepts of line tension and 
line stiffness also apply to other line defects. Domain walls between ordered ad-
sorbate regions are of particular interest. 

4.3.4 Point Defects 

The hierarchy of equilibria on surfaces is established by the difference in the 
speed of transport processes along step edges, on terraces and across step edges. 
The carriers of the transport processes are single atoms (or molecules for molecu-
lar crystals), but also single atom vacancies. Occasionally the random motion of 
units of several atoms may contribute to the mass transport, however in most cases 
the contribution of adatoms or single atom vacancies prevails by far. The transport 
is driven by local gradients in the chemical potential of transporting species. For 
the transport along a step edges the local chemical potential is given by the curva-
ture of the steps. Diffusion along steps can thus be described by considering the 
local curvature and certain transport coefficients (Sect. 10.2). For the purpose of a 
quantitative description of atom transport across terraces in the continuum ap-
proach one needs to know the chemical potential of the transporting species on 
terraces. In most practical cases, the concentration of the species is very small, so 
that interactions between them can be neglected. The diffusing species then form a 
dilute 2D, and therefore non-interacting lattice gas (cf. Sect. 5.4). Each site on the 
surface may or may not be occupied by the defect; hence, one has occupation 
numbers 0 and 1. The appropriate statistics is the Fermi-statistics. By inverting 
(3.7), one obtains the chemical potential as a function of the fractional coverage 
of a site as

ln)]1/(ln[ B0B0 TkTk . (4.71) 
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Here, kB is the Boltzmann constant and 0 is the ground state energy of the defect. 
In order to calculate the equilibrium coverage eq we need to recall the special 
property of a kink site, namely that it repeats itself after removing or adding an 
atom to a step the kink (Fig. 4.19). The equilibrium coverage is therefore given by 

Tk

W

B

d

eeq  (4.72) 

with Wd the work required to generate the defect from the kink site. The work is 
equal to the change in the appropriate thermodynamic potential of the surface. For 
uncharged surfaces in vacuum, this is the change in the Helmholtz free energy, 
which can be approximated by the change in energy, such as can be calculated in 
total energy calculations. For surfaces in an electrolyte environment Wd is a differ-
ent quantity (Sect. 4.3.6). It is useful to consider the order of magnitude of the 
equilibrium coverage eq. The adatom formation energy on Cu and Ag surfaces is 

about 0.7 eV, hence 12
eq 10  at 300K. The neglect of interactions in (4.71) is 

thus well justified. Despite the smallness of the equilibrium concentration, trans-
port process can be quite rapid on these surfaces even around room temperature. 

4.3.5 Steps on Charged Surfaces

The surface tension of stepped surfaces differ from the flat surface for two rea-
sons: one is the additional Helmholtz free energy required to generate steps on 
surfaces. A second reason, which comes to bear only for charged surfaces, is that 
surface steps carry a dipole moment with the positive end pointing outwards. The 
dipole moment originates from the non-perfect screening of the sharp contour of 
the positively charged ion cores. This effect, the Smoluchowski effect [4.29] was 
discussed in Sect. 3.2.1. The step dipole moments reduce the work function of 
vicinal surfaces, and, since a shift in the work function causes a corresponding 
shift in the potential of zero charge (4.24), steps shift the potential of zero charge 
towards negative potentials. The relation between the shift in the work function 
and the step dipole moment is 

La

p
e z

||0
0,pzc,pzc/ , (4.73) 

in which pz denotes the dipole moment per step atom, a|| is the length of an atomic 
unit at the steps (the atom diameter for a densely packed step), 0 is the absolute 
dielectric permeability, and L is the (mean) distance between steps.  
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Fig. 4.20. Shifts in the work function (circles) and the potential of zero charge (squares) for 
stepped Au(111) surfaces [4.30, 31]. 

Table 4.1. Dipole moments per step atom pz for steps on silver, gold and platinum surfaces. 
Data refer to a non-aqueous electrolyte, an aqueous electrolyte and to surfaces in vacuum.

Surface Step type pz /eÅ Environment Reference 

Ag(111) ]011[  (111), B-Step 0.0138 non-aqueous [4.32] 

Ag(111) ]011[  (100), A-Step 0.0238 non-aqueous [4.32] 

Ag(100) ]011[  (111) 0.0054 non-aqueous [4.32] 

Au(111) ]011[  (111), B-Step 0.06 aqueous [4.31] 

Au(111) ]011[  (111), B-Step 0.041 vacuum [4.30] 

Au(111) ]011[  (100), A-Step 0.042 aqueous [4.31] 

Au(111) ]011[  (100), A-Step 0.056 vacuum [4.30] 

Pt(111) ]011[  (111), B-Step 0.184 vacuum [4.30] 

Pt(111) ]011[  (100), A-Step 0.094 vacuum [4.30] 

The dipole moments of step atoms need not be the same in vacuum and in an elec-
trolyte. For aqueous electrolytes, e.g., the arrangement of the dipolar water 
molecules around the step atoms may differ from the flat surface, which may 
cause either a reduction or an enhancement of the dipole moment. Figure 4.20 
displays a comparison of the shift in the work function and the potential of zero 
charge as a function of the step density [4.31]. Interestingly the dipole moment of 
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steps in an aqueous electrolyte is higher than for steps in vacuum in case of B-type 
steps, however lower in case of A-type steps. Table 4.1 summarizes a few data on 
the dipole moments of steps as determined from the shift in the pzc for silver sur-
faces in non-aqueous electrolyte, for gold surfaces in an aqueous electrolyte and 
from the change of the work function of gold and platinum in vacuum. 
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Fig. 4.21. Surface tensions (schematic) for flat and stepped surfaces, with and without 
charge (C > 0 and C = 0) as function of the potential (solid line: flat surface, C > 0; dotted 
line: flat surface, C = 0; dashed line: stepped surface, C > 0; dash-dotted line, C = 0). 

Figure 4.21 illustrates the effect of the shift of the pzc on the surface tension. The 
surface tensions for a stepped and a flat surface in an electrolyte are plotted sche-
matically as dashed and dotted lines, respectively. It is assumed that the interface 
capacity is the same in both cases, so that the parabolae (4.28) have the same cur-
vature. Merely the potential of zero charge is shifted towards negative potentials 
for the stepped surface. The apex of the parabola representing the stepped surface 
is shifted upwards compared to the flat surface. The amount of this upwards shift 
must correspond to the difference in the specific Helmholtz free energy of the two 
surfaces which is the appropriate surface tension for uncharged surfaces. This can 
be seen by the following argument: Suppose the capacities C are made zero by 
going to an infinitely dilute electrolyte, then the parabolas degenerate to horizontal 
lines through the apices. With the capacity equal zero, the surfaces become un-
charged, regardless of the potential and the difference in the surface tension is the 
difference in the specific Helmholtz free energy. 
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For an arbitrary potential  and capacitance C, the step line tension is the differ-
ence between surface tension of the stepped and the flat surface multiplied with 
the length L between the steps. Since we are interested in the line tension of iso-
lated steps, we take the difference in the limit of large L.
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 (4.74) 

The second integral vanishes in the large L limit since its value is proportional to 
(  pzc)

2 L 2. With (4.74) the potential dependence of the step line tension is 
expressed in terms of the potential dependence of the difference in the charge 
densities on the stepped and flat surfaces. A significant contribution to the differ-
ence in the charge densities, which exists under all circumstances, arises from the 
shift in the pzc by pzc. In addition to the effect of the pzc-shift, the charge den-
sity on stepped surfaces may differ because of a change of the interface capacity 
due to the presence of steps, and because of a specific adsorption of ions, which 
may adsorb in different quantities and at different potentials at step sites compared 
to the flat surface. The effect on the capacity has again two contributions; one is 
due to the enhanced polarizability of the substrate electron system near steps and 
tends to increase the interfacial capacitance [4.33]. The capacity is reduced by the 
screening of the part of the terrace surface adjacent to the steps due to the geomet-
ric structure of the step [4.34]. Both effects are very small and partly compensate 
each other so that a variation of the capacity due to steps can be neglected to a 
good approximation [4.33]. In the absence of specific adsorption or in case the 
specific adsorption at steps is as on the flat surface, the shift in pzc is the therefore 
prevailing effect on the charge density. Figure 4.22 illustrates the variation in the 
charge density in such a case. The charge density for the stepped surface with the 
pzc shifted by  can be written as an expansion in powers of  in terms of the 
charge density of the flat surface. 
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 (4.75) 
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Fig. 4.22. Surface charge density vs. potential for flat and stepped surfaces (schematic). A 
rise in the slope at a certain potential and a leveling off is typical if ions are specifically 
adsorbed in that potential range. The dashed line representing the stepped surface is merely 
shifted horizontally, which is equivalent to the assumption that the specific adsorption of 
ions is not altered near step sites.  

The term ( ) stands as a reminder that there could be further contributions due 
to specific adsorption at step sites or a change in the capacity due to a different 
polarizability of the stepped interface. Neglecting those one obtains for the step 
line tension the remarkably simple equation 

)()(lim)( 0
||0

H0H a

p
L z

L
. (4.76) 

The potential dependence of the line tension can therefore be expressed in terms 
of the step dipole moment pz (which may be potential dependent also) and the 
charge density of the flat surface. For small deviations of the potential from pzc,
the contribution arising from ( ) can be expressed in terms of the difference in 

the capacitance per step length C
~

 of the stepped and non-stepped surface as 

2/)(
~ 2

pzcC . The latter contribution is, however, small, at least in the ab-

sence of specific adsorption and for low to moderate electrolyte concentrations. 
This was confirmed by a microscopic theory in which the charge distribution was 
calculated by a simultaneous solution of the jellium model for the solid and the 
Poisson-Boltzmann equation for the electrolyte [4.33]. The charm of equation 
(4.76) lies in the fact that the surface charge of the flat surface at any given poten-
tial and the dipole moment pz (via the change in pzc) can be measured 
independently, so that the potential dependence of the line tension can be deter-
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mined from independent experimental data. If the surface charge is measured for 
both the stepped and the non-stepped surface, the potential dependence of the step 
line tension can be determined from the experiment even without any further as-
sumption (first line in (4.74)).  
 An interesting aspect of (4.76) is that it predicts the existence of an electro-
chemical roughening transition for positive potentials when  = 0. By taking 
approximate numbers for pzca|| from clean surfaces in vacuum as 0.22 eV, 
0.25 eV, and 0.34 eV one calculates critical charges of +0.37, +0.17, and +0.07 
e/atom for the (111) surfaces of Ag, Au, and Pt, respectively. These charges are 
within the experimentally accessible range.  
 In section 4.3.1 we have considered the expansion of the projected surface ten-
sion in powers of p = tan  and the effect of the various terms on the crystal 
equilibrium shape. Here, we show that charging of surfaces necessarily leads to an 
effective attractive step-step interaction term of the 2-type. The projected poten-
tial dependent surface tension is 
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By inserting (4.75) one obtains 
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 (4.78) 

Here, ( ) and ( ) are the surface tension of the flat surface and the step line 
tension (4.76), respectively, h is the step height and Cpzc is the (mean) capacitance 
in the range pzc, <  < pzc,0 The last term in (4.78) has a negative sign and is 
proportional to p2. It therefore corresponds to an attractive step-step interaction 
proportional to L 1. According to (4.55) the equilibrium crystal shapes in an elec-
trolyte has therefore always a finite contact angle between the facet and the rough 
surface! Consider Ag(111) surfaces as an example: the repulsive interaction term 
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3 is about 1.75 meV/Å2 [4.21]. With the data from Table 4.1 one calculates 
2 = 1.1 meV/Å2 and 3.4 meV/Å2 and thus contact angles of 33° and 62°, for A- 

and B-steps respectively. The contact angle increases with the potential further 
away from pzc when the second contribution to the p2-term gains importance. 
 Interactions between steps are observable directly via the step-step distance 
distribution on vicinal surfaces. Vicinal surfaces in vacuum display a Gaussian 
distribution of step-step distances due to repulsive interactions. The width of the 
Gaussian reflects the strength of the interaction (Sect. 5.3.2). Attractive interac-
tions, on the other hand, are evidenced by the formation of step bunches. The 
formation of step bunches with time on a surface, which initially, due to the sur-
face preparation, displayed a regular step distance distribution, has been observed 
on Ag(19 19 17) surfaces in a 1 mM CuSO4+0.05 H2SO4 electrolyte [4.35].  

4.3.6 Point Defects on Charged Surfaces 

The hierarchical structure of equilibration processes on surfaces brings about local 
varying chemical potentials, which act as driving forces for ripening process on 
surfaces. Atom transport in these processes is either via single adatoms or via 
single atom vacancies, rarely also via small clusters as the diffusion species. The 
thermodynamics of these defects is therefore important for the potential depend-
ence of ripening effects as well as for surface diffusion processes in general. It is a 
common observation that the speed of surface self-diffusion processes increases at 
positive potentials, occasionally also at negative potentials. The term electro-
chemical annealing has been cast to stress an apparent analogy to the speed-up of 
equilibration processes at higher temperatures. As is shown in this section the 
expression is misleading insofar as the increase in the speed is due to a lowering 
of the activation barriers rather than being akin to a raise in temperature.  
 The activation energies in surface transport process involve the work required 
for the formation of the atom transporting species and the activation energies for 
diffusion. For uncharged surfaces in vacuum the formation energy is the Helm-
holtz free energy Fdef required for the creation of an adatom or a vacancy from a 
kink site (Sect. 4.3.4, see also Fig. 4.19). For charged surfaces kept at constant 
potential, the making of, e.g., an adatom from a kink does not change the charge 
distribution at the step, as the kink reproduces itself in the creation of an adatom 
(Fig. 4.19). However, the newly created adatom on the surface gives rise to a flow 
of charge in response to the locally varied potential around the adatom. The effect 
of this variation in the charge distribution on the thermodynamics of defect crea-
tion is calculated by the same method as for the step line tension on charged 
surfaces, namely as the difference of the surface tension of surfaces with and 
without the defect. By writing (4.74) for point defects rather than for a line defect 
one obtains  
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With the expansion (4.75) the defect energy becomes  
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Here, pz is the dipole moment of the adatom or the vacancy, and 0( ) is the sur-
face charge density of the surface without defects as before. We can also 
immediately write down the potential dependence of an activation energy, e.g. in a 
diffusion process as 
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pzcactact
zp

EE  (4.81) 

with pz the difference between the dipole moment in the activated transition state 
and the initial state. As the surface charge depends linearly on the potential  (at 
least in a small range) the two equations (4.80) and (4.81) state that to first order 
formation energies of defects and activation energies of defect migration depend 
linearly on the potential. All processes of surface self-diffusion should therefore 
increase exponentially for positive potentials. This is the physical reason for a 
multitude of qualitative observations on electrochemical surfaces, which have 
been summarized under the name electrochemical annealing. A few quantitative 
studies which confirm the exponential increase of coarsening processes have also 
been reported lately [4.21].  

4.3.7 Equilibrium Fluctuations of Line Defects and Surfaces 

This section considers the spatial equilibrium fluctuations of steps or other linear 
systems and of rough surfaces for which the surface tension is a continuously 
differentiable function. Temporal aspects of these fluctuations will be considered 
in Sect. 10.5. We begin with the fluctuations of a line, and generalize the result to 
the two-dimensional case later. The line profile is described as a position x(y) so 
that y represents the mean direction of the line. The work associated with the fluc-
tuations of the line profile is 
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in which 
~

 is the line stiffness (4.67) for the y-direction and L0 is the length along 

this direction. To avoid finite size effects L0 can be chosen as the length unit of 
periodic boundary conditions. The position x(y) is then expanded into the Fourier-
series of partial waves of wave vector q = 2 n/L0 with an integer number running 
from  to +
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In thermal equilibrium, each capillary wave of amplitude q carries the energy 
kBT/2. The thermal fluctuations of a line can therefore be calculated by summing 
up the contribution of all capillary waves. Because of  
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the expansion has the inversion  
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After differentiation of (4.83), insertion into (4.82), by using the identity  
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and
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* , (4.87) 

which is a consequence of the reality of x(y), one obtains the energy in terms of 
the amplitudes of the partial waves as 
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According to the equipartition principle each capillary wave contributes kBT/2 to 
the total energy so that 
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We are now interested in the mean square deviation of the amplitude x(y)

)()(2)(2)()(),( 22 yxyxyxyxyxyyG . (4.89) 

),( yyG  is frequently called the correlation function of the line system, although, 

strictly speaking, the correlation function is only the second term on the right hand 
side of (4.89). The first term on the right hand side is obtained by inserting the 
Fourier-expansion (4.83) and by using (4.84) as 
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The second term is 
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which by using (4.84) becomes 
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With the standard substitution of the discrete variable q by a continuous variable k
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one obtains  
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By solving the integral one arrives at the desired expression for the mean square 
fluctuations 

yy
Tk

yxyx ~)()( B2 . (4.95) 

The term 
~

/BTk  is called the diffusivity of the line. The spatial fluctuations of a 

linear system, e.g. a step, therefore increase linearly with the distance from the 

origin, and they are inversely proportional to the stiffness 
~

, which is an intui-

tively appealing result.  
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Fig. 4.23. Spatial correlation function for steps on the Cu(1 1 13) surface at 285 K. In order 
to avoid the problem of the absolute reference direction the difference in the position of two 
adjacent steps x(y) is plotted. A kink energy of k = 0.128 eV is obtained from the slope 
[4.36]. The offset at 0yy  is due to random noise in the STM-image. 

Figure 4.23 shows experimental data of the step correlation function on a 
Cu(1 1 13) surface which confirms the linear dependence [4.36]. The steps on this 
surface vicinal to the (100) plane run along the densely packed [011]-direction. In 
this case, the diffusivity has a straightforward microscopic interpretation (see also 
Sect. 5.2.1). At any atom position there is a finite probability Pk for having a kink 
in the positive or negative direction. If the temperature is not too high Pk << 1 and 
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kink length larger than one atom are thereby excluded. The probability to find a 
kink of one atom length unit a  is

TkP B

k

e2k  (4.96) 

with k the energy required to make a kink in the step. The factor of 2 arises be-
cause kinks can be in the positive or negative direction. Due to these kinks the step 
engages in a random walk concerning the x-direction and the mean square dis-
placement in that random walk is 
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22 //)()( ayyPayxyx . (4.97) 

Here, a|| is the atomic length unit along the y-direction (for the (100) surface 
aa|| ). The line stiffness of a step on a (100) surface along the [011]-direction 

is therefore 

Tk
k

a

aTk
Be

2

~
2

||B . (4.98) 

For low temperatures, the stiffness is much higher than the line tension  (4.67) 
and diverges as T  0 K. For the equilibrium shape of an island this means that 
the curvature of steps along the [110]-direction approaches zero (4.68, 4.69). 
 Steps and domain walls are frequently pinned at point defects, e.g. impurity 
atoms on the surface. In that case, one is interested in the fluctuations of a line 
over a distance L between two fixed points. Obviously, the fluctuations are zero at 
the pinning defects and have their maximum at midpoint between the pinning 
centers. Rather than the magnitude of the fluctuation as a function of the distance, 
one takes the average of the fluctuations over the entire length L as a measure of 
the intensity of the fluctuations. The natural capillary wave expansion for this 
problem is the expansion into functions qxsin with q = n /L with n = 1,2,3... 
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Writing the fluctuation energy in terms of the capillary waves and applying the 
equipartition principle now leads to amplitudes n
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The mean square of the fluctuations is then 
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With this result, the line tension of step can be determined from the fluctuations of 
steps between two pinning centers. The method has been applied to determine the 
step stiffness on Si(111) surfaces at 900 °C [4.37]. 
 Equation (4.94) can be generalized to the two-dimensional spatial fluctuations 
of a thermodynamically rough surface. The profile of the surface be described by 
the height function h(r) with r a two-dimensional vector. The generalization of 
(4.94) to the 2D-case is 
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with ~  the surface stiffness. By introducing polar coordinates ddd qqq  this 

becomes 
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in which J0 is the Bessel function and qmax is a cut off wave vector which is of the 
order of the inverse of an atomic distance a. The integrand is free of poles in the 
entire range. For small arguments, J0 approaches one and the integrand vanishes. 
We are interested in the correlation function for large distances, in particular in the 
mathematical form of the divergence. In the limit of large arguments x = q |r r'|, 
the Bessel function J0 oscillates symmetrically around zero and its contribution to 
the integral vanishes therefore. The height correlation function therefore diverges 
as  
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for large distances. We see that for a 2D-system the correlation function diverges 
logarithmically, significantly slower than for a linear system. The atomic distance 
a, and thus the absolute value of the roughness, remains undefined within the con-
tinuum theory. From the physics point of view, a cut-off wave-vector should have 
been introduced into the continuum theory of linear fluctuations as well. It is, 
however, mathematically not necessary there since the integral converges nicely. 
Furthermore, the microscopic result from random walk theory yields exactly the 
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same result for all length scales. Equation (4.97) therefore holds for all distances 
on the y-axis.  

4.3.8. Island Shape Fluctuations 

This section considers the thermal fluctuations of steps forming the perimeters of 
homoepitaxial monolayer islands or any other closed loops of a linear boundary 
that possess a line tension. An example for the shape fluctuations of a monolayer 
island is shown in Fig. 4.24 which displays the equilibrium shape on a Cu(100) 
surface at T = 408 K [4.38] (solid line) together with the shape observed in a sin-
gle STM-image (dashed line). The systematic measurement of shape fluctuations 
provides an elegant method to determine absolute values for the step line tension. 
The theory behind the method is akin to the theory of the fluctuations of linear 
systems; it deviates, however, in detail from the theory for infinitely long lines or 
lines extending from point A to a point B. The differences arise from different 
boundary conditions, from the different energy functional, and from a different 
normal mode expansion. The boundary condition here is that the number of atoms 
in the islands stays constant. The energy functional is 

sE d)(n , (4.105) 

in which n is a vector normal to step orientation. For simplicity we consider the 
mathematical simple case of an orientation independent line tension (n) = . The 
theory nevertheless applies also to equilibrium shapes such as displayed in 
Fig. 4.24 as long as the orientation dependence of  is not too strong (for highly 
anisotropic systems see [4.39]). For an angle independent line tension , the equi-
librium shape is a circle of radius R. Because of the fluctuations, the actual radius 
in any instantaneous image j of the island is different at each point of the perime-
ter, which is denoted by a radius r ( , j) with  the polar angle. The relative 
variation g( , j) defined as 
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can be expanded in a Fourier series 
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n
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with gn(j) the Fourier coefficients. 
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Cu(100), 408 K

20 nm

 instantaneous shape
 equilibrium shape

Fig. 4.24. Equilibrium shape of an island of one monolayer of atoms on a Cu(100) surface 
at a temperature of T= 408K (solid line). The equilibrium shape is obtained experimentally 
by averaging over several hundred STM-images. In each of these images, the shape of the 
island deviates from the equilibrium shape due to thermal fluctuations. One individual 
shape is shown as a dashed line [4.38]. 

The side condition of constant area reads then 
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The identity of the left and right side of the equation requires that 
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The length element ds in (4.105) expressed in terms of g( , j) is  
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in which /gg . For small fluctuations g<<1 and ds is approximately 
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With (4.109) and (4.111) the energy (4.105) is  
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The second term is the additional energy due to excursions from the equilibrium 
shape. This term is now expanded into the normal modes (4.107). 
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We have made use of the fact that g( , j) is a real function so that *
nn gg . In 

terms of the amplitudes of the normal modes the energy E is 
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The contribution of the term with n = 0 to the energy is zero. The reason is that 
this term does not represent a shape fluctuation but rather a motion of the center of 
mass, which does not change the energy. The fluctuation associated with 00g

corresponds to the Brownian motion of the entire island. As before, the equiparti-
tion principle requires that in the mean over a large ensemble each of the normal 
modes carries the energy kBT/2 so that 
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The experimental data concern the ensemble average of the fluctuation function 
G(j) defined as  
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The term with n = 0 is excluded if the origin of the radius r( , j) lies in the center 
of gravity so that the integral d),( jr  vanishes. With (4.115) the ensemble 

average of the fluctuation function <G> becomes 

R
Tk

jG
j 4
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Thus, 
j

jG )(  is proportional to the mean radius R of the island. A similar equa-

tion can be derived for non-circular equilibrium shapes [4.40]. The numerical 
factor changes slightly and the line tension  in (4.117) is to be replaced by a 
complicated mean over the angle . The mean can be disentangled to obtain the 
full dependence of the line tension on the angle with the help of the equilibrium 
shape (see [4.40, 41] for details). As experimental data on the perimeter position 
have a certain noise, which is independent of the radius R, the line tension  is 
best obtained from the slope of a plot of G(j) j versus the radius R, or versus the 
product of the radius R and the temperature T.
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Fig. 4.25. Mean square fluctuations )(rG  of Au(100) islands in a 50 mM H2SO4 electro-
lyte at a potential of +300 mV vs. SCE and of the same surface in vacuum (open and solid 
squares, respectively).  
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Figure 4.25 shows two examples of such plots, one referring to Au(100) in vac-
uum (solid squares), the other to the same surface in an H2SO4 electrolyte (open 
squares). The fluctuations are larger in the electrolyte and the line tension is there-
fore lower. This may be partly due to the fact that the Au(100) is unreconstructed 
in the electrolyte at +300 meV and reconstructed in vacuum. The largest contribu-
tion to the difference, however, is presumably owed to the positive surface charge 
in the electrolyte (Sect. 4.3.5). A summary of step line tensions obtained from 
island shape fluctuations is shown in Table 4.2. 

Table 4.2. Step line tensions obtained from island shape fluctuations. 

Surface comment reference 

Cu(100) 220 11 meV/atom UHV [4.38] 

Cu(111) 256 22 meV/atom UHV [4.38] 

Ag(111) 233 13 meV/atom UHV [4.38] 

Au(100) 170 +80/-17 meV/atom UHV [4.41] 

Au(100) 40-60 meV/atom in 0.05M H2SO4 [4.42] 

TiN(111) 210 40/290 60 meV/Å strong anisotropy [4.43] 



5. Statistical Thermodynamics of Surfaces

The advantage of the continuum thermodynamics of surfaces in the coarse-grained 
view is that the results are exact and model independent. On the other hand, the 
quantities defined in the coarse-grained description do not translate into an atom-
istic picture unless models for the surface structure and the interactions between 
the atoms are invoked. This section discusses the most important atomic scale 
models that are used in statistical thermodynamics. We begin with the definitions 
of the standard thermodynamic potentials within the framework of quantum statis-
tics.

5.1 General Concepts 

5.1.1 Internal Energy and Free Energy 

The internal energy U of system is by definition  
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The summation index i counts all discernable quantum states of the system. De-
generate states are counted according to their degeneracy. In general, i is a 
multiple infinite index number, and the sum (5.1) is an exceedingly complex one 
that can be solved only in a few simple cases. These cases and the results derived 
for the simple systems form the core of our understanding of the thermodynamic 
properties of large ensembles of atoms. 
 Phenomenological thermodynamics proves that the isothermal mechanical 
work W executed on a system (leaving the particle number, volume, charge, etc. 
constant) enhances the Helmholtz free energy F of the system by the amount 

WF . Phenomenological thermodynamics shows further that the free energy 
can be expressed in terms of the internal energy as 
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Inserting (5.1) leads to the well-known result 
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in which Z is the partition function of the system with a fixed number of particles, 
the microcanonical ensemble.

5.1.2 Application to the Ideal Gas 

The partition function is easily calculated for an ensemble of N independent parti-
cles having merely translation degree of freedoms along the x, y, and z-axes. The 
energy levels of a free particle are 
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where kx, ky, and kz are the components of the k-vector and m is the mass of the 
particle. The system is assumed to be infinitely large. The eigenstates are never-
theless countable by assuming that the system is periodic with the periodicity 
length L in all three directions. 
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The partition function for one particle Z1 is the product of the partition functions 
of the independent translations Zx, Zy, Zz
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The partition function for N independent particles is 
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in which V = L3 is the volume. The division by N! eliminates the identical configu-
rations obtained by changing the enumeration of particles. With the Stirling-
approximation  
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the free energy F becomes 
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Writing (5.9) in terms of the pressure p of an ideal gas p = NkBT/V one obtains 
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If the particles are molecules then the partition functions for the rotational and 
vibrational degrees of freedom Zrot and Zvib contribute to the free energy. With the 
energy levels of the harmonic oscillator  
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the vibrational partition function becomes 
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The rotational energy levels are 
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with I the moment of inertia. Considering the (2J+1) degeneracy of the rotational 
energy levels, the partition function is calculated to 
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We finally calculate the chemical potential of the ensemble of independent parti-
cles, i.e. an ideal gas of molecules  
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Note that the derivative is to be taken at constant volume V, which means  is the 
derivative of (5.9) with respect to N.
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5.1.3 The Vapor Pressure of Solids

As a first application of (5.15), we calculate the equilibrium vapor pressure of a 
solid. The condition for equilibrium of two phases is that the chemical potentials 
be equal. We therefore equate the chemical potential of the vapor phase with the 
chemical potential of the solid. We consider the case of an elemental solid and 
assume that the vapor phase consist of single atoms, which is typical for most 
metals. In Sect. 1.3.2, it was argued that the cohesive energy of a solid is the bind-
ing energy of an atom in a Halbkristallage, a kink site in a densely packed row of 
atoms. The energy of an atom in that position with respect to the ground state in 
vacuum is therefore Ecoh. The chemical potential of the atom in the kink site has 
a contribution from the vibrational partition function. For simplicity, we replace 
the vibration spectrum by three Einstein-oscillators per atom with a frequency 

h/DBk . In the high temperature limit the chemical potential of the solid s

with reference to the ground state level of the vapor phase is 

)/ln(3 DBcohs TTkE . (5.16) 

Equating the chemical potentials of the solid (5.16) and the vapor phase (5.15) 
yields the equilibrium vapor pressure pvap
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Fig. 5.1. Vapor pressure of silver according to (5.17) (Ecoh = 2.95 eV, D = 225 K) and 
experimental data (solid line and open circles, respectively) [5.1]. 
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Fig. 5.1 shows the vapor pressure of silver (solid line) together with the experi-
mental numbers. Equation (5.17) may be compared with the Clausius-Clapeyron 
equation of phenomenological thermodynamics 
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in which Q is the heat of vaporization per atom. The comparison shows that the 
heat of vaporization  
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is but for a trifle equal to the cohesive energy.

5.2 The Terrace Step Kink (TSK) Model 

5.2.1 Basic Assumptions and properties 

The Terrace Step Kink (TSK) model of surfaces assumes that the surface consists 
of flat terraces separated by steps in such a way that an unequivocal numbering of 
the steps by an index n is possible. The steps are allowed to have kinks, but no 
overhangs so that the position of a step is uniquely described by one coordinate 
xn(y). Figure 5.2 shows a top view on step positions on a surface with square 
symmetry (e.g. 110  steps on {100} surfaces of an fcc-material). The terrace 

heights to the left and right of steps differ by the step height h. We remark that this 
latter fact is of no consequence for the statistical thermodynamics of steps unless 
the height of the surface at a particular position is addressed, as e.g. in the height-
height correlation function. The results of this section therefore apply also to other 
ensembles of linear systems such as domain walls in adsorbate phases (Sect. 1.3.1) 
or in thin film magnetism (see e.g. [5.2]). 
 In Sect. 4.3.7, we have considered the low temperature limit for the probability 
Pk that the step has a kink of one atom length (4.96) 
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where k is the energy required to generate the kink (cf. Sect. 1.3.2). We now ex-
pand the considerations to arbitrary temperature. The probability to find a kink of 
the length of n atomic units a  is 
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Fig. 5.2. Top view on step positions in the TSK-model. The position of a step n is uniquely 
described by xn(y). Kinks have the length of one or more atom units.  

The mean square of the length of a kink in units of a  is therefore 
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Due to the equal probability for the existence of kinks of positive and negative 
sign, the steps undertake a random walk with respect to the x-coordinate as the 
step progresses along the y-direction. The randomness of the walk entails that the 
mean square displacement of the step in the x-direction is a linear function of the 

y-coordinate, the proportionality factor being 2n .
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Here, ||a  is the atomic length unit along y-direction. Equation (5.21) is the TSK-

equivalent of (4.95), which was derived in the continuum approximation. Hence, 

the step stiffness 
~

 in the TSK-model is 
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Further evaluation requires the knowledge of the dependence of the kink energy as 
a function of the step length. Experimental data on probability to find kinks of a 
particular length on Si(100) showed that k(n) is well described by a corner energy 
and a linear dependence on the length [5.3] 

nn 1ck )( . (5.25) 

For steps on Si(100) c is about three times 1. This entails that once the tempera-
ture is high enough to have thermally generated single atom kinks one has also a 
large probability for kinks of multiple length. For metal surfaces on the other 
hand, the reverse is true. The step energy per atomic length unit is typically about 
twice as high as the energy of a one atom long kink. A kink of a length n > 2 con-
sists of an inner corner, an outer corner and step of length (n-2). While there 
appears to be no information available on the energy of a kink with length of two 
atom units, the energy of kinks with n > 2 fits to (5.25) with a negative corner 
energy ||kc a and ||1 a . Using (5.25) with arbitrary values of c and 1

we calculate 2n  as 
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which reduces to 

2

2
1

2

qq
n  (5.27) 

if the corner energy c vanishes.  
 The denominator in (5.22) is the partition function for a step in the TSK-model 
with no step-step interactions. The free energy per step atom of a step is therefore 
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with (T=0)a|| the step free energy per atom. Equation (5.28) has the low tempera-
ture expansion  

TkTkaaT B

k

e2)0()( B||||  (5.29) 

in which k = c+ 1 is the energy to create a single kink. The second term in (5.28) 
and (5.29) represents the configuration entropy that results from the thermal me-
andering in space. With increasing temperature, the entropic term can become as 
large as the step energy so that the free energy of the step vanishes. At this tem-
perature, steps are spontaneously created and the surface becomes 
thermodynamically rough (Sect. 4.3.1).  
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Fig. 5.3. Step free energy according to the TSK-model for non-interacting steps (solid line) 
for (0)a|| = 1 = 0.1eV. The corner energy is assumed to be zero so that the energy of a 
single atom kink is k = 1. According to the model, the step free energy becomes zero at 
the roughening temperature TR = 1.13 k/kB. In reality, the roughening transition is ap-
proached very gradually because of step-step interactions (dashed line). 
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According to the TSK-model of non-interacting steps the roughening temperature 
should be TR= 1.13 k/kB when (0)a|| = k. However, the TSK-model predicts an 
unrealistic value for the slope of the step free energy at the roughening tempera-
ture where steps are created spontaneously. Actually, steps repel each other by 
elastic as well as entropic interactions (to be studied in the next section). Because 
of the repulsive interactions between the steps, the energy cost for the creation of 
new steps increases with the density of already existing steps. Consequently, the 
free energy does not dive into the zero line as the TSK-model of non-interacting 
steps suggests, but rather approaches the zero level gradually with even a zero 
slope at the roughening temperature TR.

5.2.2 Step-Step Interactions on Vicinal Surfaces 

We now study the meandering of steps on vicinal surfaces with step-step interac-
tions taken into account. We consider merely repulsive interactions so that vicinal 
surfaces are stable. Repulsive interactions arise from two sources. One is the elas-
tic repulsive interaction as investigated in Sect. 3.4.2. The second interaction is of 
entropic nature and arises from the fact that steps are in each other's way so that 
their meandering is hindered. The following analysis requires that the vicinal sur-
faces are thermodynamic rough (Sect. 4.3.7). Later, Sect. 5.2.4 shows when this 
requirement is fulfilled.  
 The elastic interaction considered in Sect. 3.4.2 is non-local as each step at 
position xn, y interacts with all other steps xm at any y'. The simple L 2 dependence 
of (3.80) was derived for straight steps separated by a constant distance L, whereas 
we now wish to consider explicitly meandering steps for which the distance to 
next step varies along the y-axis. The problem is not solvable in full generality.
One usually reduces the interaction to a local pair interaction potential between 
steps v[xn+1(y)-xn(y)]. With this interaction potential and the further assumption 
that the kink energy be proportional to the kink length (no corner energy) the 
Hamiltonian is 

yn
nnnn yxyxvyxyxH

,
1 )()()1()(   (5.30) 

We have dropped the index in the notation of the kink energy . The variables x
and y are now discrete and in units of the atomic length a  and ||a , respectively. 

The free energy of the system is given by the grand partition function 

)/)(exp(Trln BB TkyxHTkF n (5.31) 

in which Tr denotes the trace. This harmlessly looking expression is in general a 
rather unapproachable beast. For the ansatz (5.30) the Hamiltonians in each line y
are independent of each other and the partition function separates line wise so that 
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N
ny

N
y TkxHZZ B/)(expTr  (5.33) 

with N number of y-values, i.e. the step length in atomic units. We see that the 
Hamiltonian (5.30) corresponds to N independent systems, each possessing p, in 
general interacting particles (steps). Analytical solutions require still further sim-
plifications concerning the interaction potential. The simplest case is no 
interaction at all. Another solvable case is a mean field approach in which the 
potential yn nn yxyxvV , 1 )()(  is replaced by a potential ))(( yxV n  that is 

the same for all steps, regardless their position with respect to the other steps.  
 We consider first steps with no explicit interactions. An elegant way to solve 
(5.33) is to map the problem onto an equivalent quantum mechanical problem. 
The method is called transfer matrix method. To this end, we describe the system 
with p steps at position y by a state vector 

pxxx ,..., 21  (5.34) 

where the xi denote the positions of the steps. Steps in the state vector  are 

created by the usual creation operators c+ so that  

0c...cc,...,
2121 pxxxpxxx  (5.35) 

Since no two steps exist at the same place, the occupation number for a step at xk

is either 0 or 17. The operators 
kxc and 

kxc  are therefore fermion creators and 

annihilators, respectively. The operator 
kk xx cc  has the eigenvalue 0 or 1, depend-

ing on the existence of a step at xk. Kinks are created by removing a step at 
position x and creating another one at x-1 or at x+1; i.e. kink are created by the 

pair of operators xx cc 1-  and xx cc 1 . We consider the matrix element 

1yyy Z  which transfers the system from line y to y+1. If there is a kink in 

the step it must have the value )/exp( BTk  in the low temperature limit. Hence, 

Zy can be written as 
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The Hamiltonian Hy in (5.33) that yields the correct partition function is therefore 

7 This condition is also referred to as the no-crossing rule for steps. 
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For a large ensemble N, the value of the partition function is determined by its 
maximum eigenvalue, hence by the minimum eigenvalue of Hy, which is the 
ground state. The solution we are looking for is therefore the ground state of the 
Hamiltonian (5.37) to which one might add a mean field potential  

k

kk
x

xxk ccxVV )(meanfield . (5.38) 

We now move from the particle representation to the space representation in 
which the states are described by a many particle wave function ),...,( 21 pxxx

that has the usual meaning of a probability-amplitude to find the steps at the posi-
tions xk. We furthermore represent the many body state ),...,( 21 pxxx by the 

product of single particle wave-functions )( kx , which is equivalent to the single 

electron approximation for a general fermion gas. This last approximation is not 
necessary if there is no interaction as the Hamiltonian of a non-interacting Fermi-
gas can be solved exactly, but it simplifies the analysis considerably. Mapped onto 
the step problem this means we now consider the behavior of a single step in a 
mean field potential provided by all the other steps. The Schrödinger equation for 
the single step wave function is then 

)()()()1()1(e B/
B xfxxVxxTk Tk  (5.39) 

We have dropped the index k. The eigenvalue f is the free energy of the step per 
atom length, which follows from the general definition of the free energy (5.3) and 
(5.33). Moving over to a coarse-grained description one may consider x as a con-
tinuous variable and return to the normal metric by replacing )1()1( xx

first by )()( axax  and then by )(2)(2 xxa . Our tour de force 

through the transfer matrix method applied to steps is then finally rewarded with a 
nice equation for the probability amplitude )(x  to find a step at position x.

)()e2()()()(e BB /2/ xTkfxxVxaTk Tk
B

Tk
B . (5.40) 
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5.2.3 Simple Solutions for the Problem of Interacting Steps 

The Gruber-Mullins model

We consider two solutions of (5.40). The first is the particle-in-a-box solution, 
which here means that a step is assumed to meander freely between the boundary 
set by two neighboring steps at their mean distance L and +L. Evidently, the 
solution is 

)2/cos(
1

)( Lx
L

x  (5.41) 

The probability to find a step at x is therefore

)2/(cos
1

)( 2 Lx
L

xP  (5.42) 

Equation (5.42) is known as the Gruber-Mullins solution of the step-step interac-
tion problem [5.4]. By observing that the step position x = 0 corresponds to a 
terrace width L = <L> the normalized terrace width distribution is  

)2/(sin)( 2 ssP , (5.43) 

in which LLs / . The terrace width distribution is plotted in Fig. 5.4. Inserting 

the wave function into (5.40) yields the free energy per atom length as 
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Evidently, the energy of the ground state at T = 0 comes out as zero. To make 
contact with the real world we have to add the internal energy. The final result in 
our standard notation is therefore 
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/
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4
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Compared to the solution for a single step (5.29) equation (5.45) contains an addi-
tional L-dependent term, which represents the entropic repulsion of steps. 
However, the hard wall model overestimates the entropic repulsion. In reality, the 
neighboring steps also wander about which reduces the entropic repulsion some-
what. In the exact result obtained from the free fermion solution the 4 in the 
denominator of the third term in (5.45) is replaced by a 6 [5.5]. 
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Fig. 5.4. Normalized terrace width distribution according to the Gruber-Mullins model, the 
free fermion model, and the harmonic oscillator model (solid, dashed and dotted line, re-
spectively).  

With (5.45) we have a microscopic solution for the third term of the expansion of 
the projected surface tension p(p) (4.46) in which p was defined as tan  with 

the angle of inclination of the surface with respect to a low index surface. With the 
correct factor 6 inserted in the denominator of the last term of (5.45) one obtains 
for  in (4.46) 
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in which h is the step height. By introducing the line stiffness 
~

 (5.24) the free 

energy is expressed in terms of macroscopically defined quantities. 
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and 3 becomes 
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The harmonic oscillator model

The second solution of (5.40) that can be expressed in analytical form is obtained 
for elastic interactions (Sect. 3.4.2). In keeping with the definitions in Sect. 3.4.2 
we write the elastic step-step interaction for one atomic unit step length as a|| A/L2.
The single step considered meanders therefore in a potential  
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Here, x denotes the deviation from the central position between two neighboring 
steps. It is also assumed that all other steps on the vicinal surface are at their mean 
position. The sum of the interactions to the next-nearest steps and all steps farther 
away adds a factor of 4/90=1.082 to the next-nearest neighbor interaction. The 
resulting potential is harmonic as long as x << L. With (5.49) equation (5.40) be-
comes the Schrödinger equation of a harmonic oscillator. The probability to find a 
step at position x is a Gaussian

2

2

2
22 e

2

1
)( S

x

S
x  (5.50) 

with  
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Transformed into the normalized terrace width distribution P(s) (5.50) becomes 
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Figure 5.4 shows this distribution as a dotted line with data for A and  that corre-
spond to Cu(100) vicinal surfaces (A = 7 meVÅ,  = 126 meV [5.6]).  



  5.2  The Terrace Step Kink Model  __________________________________________________________________________ 221

As for the Gruber-Mullins model, one can calculate the step free energy and ob-
tains 

Aa

TkTk
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As expected, the free energy rises with the strength of the step-step interaction. 
The largest contribution is the temperature independent part of the third term, 
which simply arises from the constant term in the interaction potential (5.49). 
 Both the Gruber-Mullins and the harmonic oscillator solution yield a symmetric 
terrace width distribution. Experimental terrace width distributions are typically 
skewed with a higher weight for larger step-step distances. Einstein and Pierre-
Louis [5.7 962] have proposed a general representation of the terrace width distri-
bution based on a generalized Wigner surmise on random matrix theory, which 
reads
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The parameter  is determined by the interaction constant A

4

)2(e2
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The other constants are determined by normalization and the requirement that P(s)
must have a unit mean. Equation (5.54) is exact for  = 1, 2, and 4. The case  = 2 
is equivalent to A = 0, the case of non-interacting fermions [5.8]. This distribution, 
originally proposed heuristically [5.9] to describe the result of a complex ap-
proximate form derived by Joós et al. [5.8], is shown in Fig. 5.4 as a dashed line. 
Experimental data on the terrace width distribution seem to have the general form 
(5.54) and step-step interactions have been determined using (5.54) and (5.55) 
[5.10, 11]. 

5.2.4 Models for Thermal Roughening 

In Sect. 4.3.1 the concept of thermodynamically rough surfaces and the roughen-
ing transition was introduced. Within the framework of the continuum theory, it 
was shown that the height-height correlation function diverges logarithmically 
above the roughening temperature TR (4.104).  
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Microscopic models with analytical solutions for the roughening transition also 
exist. However, the models require drastically simplifying assumptions about the 
solid so that they have little predictive value for the roughening transition of real 
solids. Villain et al. [5.12 717] introduced the most realistic model. It concerns the 
special case of the roughening transition of vicinal surfaces. The model considers 
the Hamiltonian 

yn
nn
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nn yxyxWyxyxH
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2
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2

,
)()()()1( . (5.57)

The second terms describes the step-step interaction as quadratic in the distance. 
With reference to (5.49) Wel can be expressed by the interaction constant A as 
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The quadratic dependence of the kink energy on the kink length assumed with the 
first term in (5.57) is unrealistic but hurts little as the roughening transition occurs 
at temperatures well below /kB. The model predicts the roughening temperature at 
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The step-step interaction constant Wel has been determined experimentally from 
the terrace width distribution for a number of surfaces [5.6, 13]. A rather complete 
set of data exists for the Cu(11n) surfaces [5.9]. For this series, the roughening 
temperatures are calculated in Table 5.1. With the exception of the (113) surface, 
all the Cu vicinals should be rough above room temperature. This is satisfying 
since the random walk model for steps as explicated above is applicable only to 
thermodynamic rough surfaces. 

Table 5.1. Roughening temperatures TR for Cu(1 1 n) surfaces, calculated using (5.59) with 
A = 7.1 meVÅ and the kink energy k = 128 meV.

Surface (1 1 3) (1 1 5) (1 1 7) (1 1 9) (1 1 11) (1 1 13) (1 1 15) (1 1 17) 

TR/K 388 270 223 197 180 168 159 152 

For the roughening transition of facets, two analytically solvable models exist. 
Both models involve severely simplifying assumptions. In one model, the solid is 
assumed to consist of columns of height hi with the atoms in the form of cubes 
(Kossel crystal, cf. Sect. 4.3.3) and the Hamiltonian is expressed in terms of the 
nearest neighbor difference in the columnar height  
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,
,2 i

ii hhH  (5.60) 

in which  corresponds to the energy required to "break a bond". The sum over 
extends over the four nearest neighbor columns. The factor 1/2 accounts for the 
fact that each "bond" appears twice in the sum. The model is referred to as Abso-
lute (height difference) Solid On Solid (ASOS) model. The model possesses a 
roughening transition at 

BR /24.1)( kASOST  (5.61) 

In the other solvable model the absolute value of the height difference is replaced 
by the square 

,

2
,2 i

ii hhH . (5.62) 

The model is called Discrete Gaussian Solid On Solid (DGSOS) model. Its 
roughening temperature  

BR /46.1)( kDGSOST  (5.63) 

is somewhat higher as for the ASOS-model since the energy increases more rap-
idly for larger differences in the columnar height. The models are useful insofar as 
their study has revealed the nature of the roughening transitions to be of the Kos-
terlitz-Thouless type. However, the predicted roughening temperatures are 
excessively high. Furthermore, the models provide no clue to the dependence of 
the roughening temperature on the crystallographic orientation of the facet, which 
is the most interesting aspect of roughening, at least from the experimental side. 

5.2.5 Phonon Entropy of Steps 

As important as the configuration entropy of steps is for the terrace width distribu-
tion and the roughening transition, the prevailing entropic term at room 
temperature stems from the phonon spectrum. Due to the different bonding of the 
atom at step sites, the local vibration spectrum around step atoms from the spec-
trum of flat surfaces. The phonon contribution to the free energy of surfaces and 
steps has been addressed by the Rahman group in a series of papers [5.14-18]. The 
authors find that the change in local bonding not only affects the vibration spec-
trum of the step atoms but also that of their neighbors. The vibrational 
contribution to the step free energy per step atom is  
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Here, nstepped( ) and nflat( ) denote the spectral densities per atom for a sample 
with and without a step. As an example, the free energy of steps on copper sur-
faces are shown in Fig. 5.5 [5.18]. The differences between the various steps are 
quite remarkable. For the steps on the Cu(100) surface, the vibrational free energy 
is marginally small, however steps on Cu(111) have vibrational free energy that 
amounts to 5-8% of the step energy (Table 4.2) at 300 K. It has been proposed by 
this author to estimate the step free energy by invoking an Einstein oscillator 
model [5.19]. Based on the scaling properties of a Morse-potential the oscillator 
frequencies  E were proposed to be proportional to the square root of the coordi-
nation number. According to this crude model, the vibration spectrum of a surface 
atom would be characterized by an Einstein temperature ( B/ kh )

bulksurf 128  and bulksurf 129  for the (100) and (111) surfaces, 

respectively. The Einstein temperatures for the step atoms would be 

bulkstep 127  for all steps considered here.  
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Fig. 5.5. Free energy of steps on Cu(001), B-steps on Cu(111) and A-steps on Cu(111) are 
shown as fat solid, dashed and dotted lines, respectively [5.18]. The thin solid and dashed 
lines represent calculations for the (100) and (111) surfaces, respectively, using an Einstein 
oscillator model with a simple scaling of the characteristic frequencies. 
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In this model, the vibration free energy would amount to 

)2/sinh(/)2/sinh(ln3 surfstepBvib TTTkf  (5.65) 

The high temperature limit of (5.65) has a particular easy form, which is 

2/1
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2/1
Bvib )9/7ln(3)111( Tkf  (5.67) 

for steps on the (100) and (111) surfaces, respectively. With bulk = 343K, step

and surf inserted, the thin solid and dashed lines in Fig. 5.5 are obtained for steps 
on Cu(100) and Cu(111). By construction, the model cannot account for a differ-
ence between A- and B-steps. The model also fails in any other quantitative sense 
as it underestimates the step free energy on Cu(111) and overestimates on 
Cu(100). Despite this obvious failure, the model has been (ab)used several times 
in the analysis of crystal and island equilibrium shapes where quantitative values 
for the step free energy enter crucially [5.20, 21].  

5.3 The Ising-Model and the Crystal Equilibrium Shape 

5.3.1 The Model and the Shape Function 

The Ising-model is popular in many fields of physics because it is comparatively 
simple and can be solved analytically in two dimensions. The Hamiltonian is  

ij
jiij ssJH Ising  (5.68) 

in which the indices i, j run over the nearest neighbors Jij is the interaction strength 
and si = 1 are spin variables. In the context of surface problems, one writes the 
Hamiltonian in terms of nearest neighbor occupation numbers 

1,02/)1( ii sn   . (5.69) 

With a nearest neighbor interaction energy V0 and after introducing a nonzero 
chemical potential the Ising-Hamiltonian becomes 
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In this form, the Hamiltonian is used as a starting point for the theoretical analysis 
of two-dimensional phases and phase transitions. A special mean-field solution 
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will be discussed in Sect. 5.4.4. Here, we address the problem of the crystal equi-
librium shape in two dimensions. Analytical solutions have been derived for the 
square and the honeycomb lattice [5.22, 23]. These solutions have found applica-
tion in the description of the equilibrium shape of two-dimensional islands to 
which problem we now attend.  

(a) (b)

Fig. 5.6. Kinked steps in the square (a) and hexagonal lattice (b). In the square lattice, step 
atoms have one broken bond, kink atoms two. The kink energy is therefore equal to the step 
energy per atom. In the hexagonal lattice, each step atom has two broken bond and the kink 
energy is one half of the step energy per atom. 

In the Ising-model, the energy of a step is proportional to its microscopic length. 
For the square lattice, this means that the kink energy is equal to the step energy 
per atom. On the honeycomb lattice (henceforth named "hexagonal"), the energy 
per atom of the densely packed step is twice as large as the kink energy (Fig. 5.6). 
 We denote the energy parameter in the Ising-model that corresponds to the kink 
energy as . The equilibrium shapes are given by implicit expressions. For the 
square lattice the shape is described by [5.22] 

sqBB 2/)(cosh2/)(cosh ATkyxTkyx , (5.71) 

with  
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For the hexagonal lattice the shape is [5.23] 
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with  
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The coordinates x, y are chosen such that for both lattices the nearly straight sec-
tions at low temperature are oriented parallel to the x-axis. The scaling of the 
cartesian coordinates is so that y(x=0) = 1 in the limit exp(- /kBT) << 1, and that 
the size of the islands described by (5.71) and (5.73) remains approximately con-
stant with temperature. 

 Cu(100) T = 400K
 Ising model  = 0.128 eV
 Ising model  = 0.086 eV

x

y

Fig. 5.7. Comparison of the experimental equilibrium shape of islands on Cu(100) at 400K 
with the Ising-shape (5.67). The Ising-model describes the experiment well if the parameter 
 is fitted. Using the experimental kink energy  = 0.128 eV makes the island too squared.  

The Ising-shapes describe the experimentally observed equilibrium shapes of 2D-
islands quite well if the parameter  is fitted to the experiment. Figure 5.7 shows a 
comparison of experiment [5.24] and theory for the equilibrium shape of one atom 
layer high islands on Cu(100). The experimental shape is missed when the Ising-
parameter is equated with the experimentally measured kink energy of 
 = 0.128 eV [5.24, 25]. The reason is that the experimental step energy per atom 

a||  is about twice as high as the kink energy (a||  = 0.22 eV [5.24]) and not equal 
to the kink energy as the Ising-model for a square lattice has it. 
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5.3.2 Further Properties of the Model 

For moderately low temperatures, i.e., in the limit exp(- /kBT) << 1, Asq (5.72) and 
Ahex (5.74) are approximated by 
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With these approximations, the distances from the center of the island to the point 
of minimum curvature y(x = 0) are 

TkTk
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sq e
2
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hex e1)0(   . (5.78) 

Because of the mechanics of the Wulff-construction, the minimum and maximum 
distances from the center of the island possessing a tangent orthogonal to the ra-
dius vector are proportional to the step free energy. After multiplication with the 
step energies in terms of the parameter  one obtains for both lattices 

TkTkTaTa B/
B|||| e2)0()( . (5.79) 

We have thereby recovered the low temperature approximation to the free energy 
of a step running along the direction of dense atom packing (5.29). 
 By using Wulff's theorem in two dimensions (4.66) and the chemical potential 

 in terms of the step energy at  = 0 (4.69)  
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~

ss xy , (5.80) 

one can calculate the step stiffness )0(
~

. With the product of curvature 

)0(xy  and y(x=0) 
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one obtains  
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To arrive at (5.83) we have inserted the scaling units a|| and a . In order to obtain 

(5.84) one has to consider that on the hexagonal lattice kinks involve an advance-
ment along the step direction by 3/2a|| and that the step energy that corresponds to 
this advancement is 3 . Equation (5.83) is the same as (4.98), and (5.80) can be 
obtained accordingly from (4.97) when the metric of the hexagonal lattice is taken 
into account. We have therefore recovered the TSK-expressions for the stiffness.  
 The TSK-stiffness in combination with 5.80 can be used to determine the kink 
energy from an Arrhenius-plot of the curvature multiplied by kBT [5.24]. Because 
of the considerable difficulties to determine the curvature exactly at  = 0 the 
method is inferior to the use of the step-step correlation function (cf. Fig. 4.23).  
 Of interest are also the aspect ratios, defined as the ratio of the radii to the "cor-
ners" and the "straight" sections r45°/r0° and r30°/r0° for the square and hexagonal 
lattices, respectively. These ratios represent the ratios of the free energies of the 
steps where, forced by the orientation, every atom is a kink atom (100% kinks) to 
the free energy of the steps with thermal kinks only. Here, the Ising-results are  
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The leading terms for the temperature dependencies of the ratios are the linear 
terms in the numerators. The denominators in (5.85) and (5.86) are proportional to 
the free energies of the straight steps. While (5.85) and (5.86) are derived in the 
low temperature limit, the equations represent a good approximation also for mod-
erately high temperatures. Figure 5.8 compares the approximation with the exact 
(numerical) solution of the Ising-shape. The approximation agrees well with the 
exact result up to kBT = 0.4  and 0.5 , for the square and hexagonal lattice, re-
spectively. This condition corresponds, for example, to temperatures of 700 K, 
680 K, and 580 K for Cu(100), Cu(111) and Ag(111), respectively. At these tem-
peratures, islands disappear very quickly due to diffusion. Experimental 
observations on the equilibrium shapes of these islands therefore concern lower 
temperatures. 
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Fig. 5.8. Comparison of the low temperature approximation of the aspect ratios and the 
exact solution of the Ising-model. 
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Fig. 5.9. The various possible paths of a step with a mean direction corresponding to the 
100% kinked step on the square and hexagonal lattice, (a) and (b), respectively. Only the 
paths closest to the center path have sufficient statistical weight to survive in the macro-
scopic limit. (c) A second path of significant statistical weight corresponds to adding the 
dashed atom. Boundary atoms with coordination numbers C = 6 and C = 8 are thereby 
replaced by two atoms with C = 7.  
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The entropic 2ln -terms in the numerator of (5.85) and (5.86) can also be derived 
directly by considering the free energy of the 100% kinked steps on a square and 
hexagonal lattice. Figure 5.9 displays the possible paths of the steps in the two 
cases. The entropy arises from the various configurations of the steps which all 
have a mean orientation along the direction of the 100% kinked step and are ener-
getically equivalent in the Ising-model. These various paths are illustrated by 
dashed lines in Fig. 5.9a and b, for the square and hexagonal lattice, respectively. 
The configuration entropy is calculated easily by making contact with gambling 
theory [5.26]: The number of possibilities in a coin tossing game with N trials to 
arrive at N/2 "head" and N/2 "tale" results is N!/[(N/2)!]2. The entropy is therefore  

2B
])!2/[(

!
ln

N

N
kS , (5.87) 

which by virtue of Stirling's formula becomes 

2lnBkNS  (5.88) 

in the macroscopic limit (N ). Hence, the entropy per atom on the kinked step 
is 2lnBk  and the partition function per atom is Z = 2. This means that in the mac-

roscopic limit only two alternative paths per atom survive. Those ones stick 
closest to the center path and correspond to adding or removing one atom to the 
step as illustrated in Fig. 5.9c. All other paths have a statistical weight lower then 
eN and vanish therefore in the macroscopic limit. With the entropy (5.88), the free 
energy per atom for the 100% kinked step becomes  

2ln)0,(),( Bkkkk TkTaTa . (5.89) 

Here, ak denotes the length per atom of the kinked step which is 2/||a  and 

2/3||a  for the square and hexagonal lattice, respectively, and k is the angle of 

the 100% kinked step with respect to the "straight" steps. With (5.89) one calcu-
lates the ratio of the free energies of the 100% kinked step and the "straight" steps 
and thereby the aspect ratios of the islands as defined before 
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This equation is equivalent to (5.85 and 5.86, see also Fig. 5.9) since  
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Equation (5.90) offers an interesting way to determine the step energy )0,0(||a

from experimental island equilibrium shapes by fitting the experimentally ob-
served aspect ratios as a function of temperature to (5.90). Since the kink energy 
can be determined in independent experiments, this fit involves matching two 
parameters to the experiment.  
 One may relax the requirement that the energies of all paths depicted in 
Fig. 5.9a,b be equal, and make allowance for a (small) energy difference Eb be-
tween the two paths next to the center path. The two paths correspond to adding or 
removing the dashed atom in Fig. 5.9. Boundary atoms with coordination numbers 
C = 6 and C = 8 are thereby replaced by two atoms with C = 7. In the Ising model, 
the energies of the two states are the same. However, also in more realistic models 
with a curved form of the energy vs. coordination number, the energy difference is 
small as the energy vs. coordination number is rather linear around C = 7 
(Fig. 1.45).  
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Fig. 5.10. Experimental data on the aspect ratio vs. temperature for Cu(100), Cu(111), and 
Ag(111) [5.24]. The solid lines are fits with a||  = 0.22 0.02 eV, 0.27 0.03 eV, and 
0.25 0.03 eV, respectively. 
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With the energy difference Eb the partition function per atom is  
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The additional terms can be ignored as long as 1)2/( 2
Bb TkE . If that condi-

tion is not fulfilled, the absolute value of the partition function is affected by Eb,

and the partition function becomes temperature dependent. The experimental as-
pect ratio then obeys  
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The three unknown parameters in (5.93), (0,0), Eb, and the ratio ( k,0)/ (0,0), 
can be determined from a self consistent fit of the temperature dependence of the 
aspect ratio. This three-parameter fit requires that the data have sufficiently low 
noise over a wide temperature range. 
 Figure 5.10 shows experimental data on the aspect ratios of 2D-island equilib-
rium shapes for Cu(100), Cu(111), and Ag(111) [5.24]. The solid lines are fit with 
(5.86) from which the data in Table 5.2 were obtained. The data agree well with 
those obtained from island shape fluctuations (Sect. 4.3.8). 

Table 5.2. Step free energies and the ratio of the step energy in the corners and the straight 
sections at T = 0 K obtained from the aspect ratios of 2D-islands vs. temperature [5.24]. 

Surface a||  /eV ( k)/ (0°) /eV 

Cu(100) 0.22 0.02 1.24 0.01 

Cu(111) 0.27 0.03 1.138 0.008 

Ag(111) 0.25 0.03 1.136 0.009 

5.4 Lattice Gas Models

5.4.1 Lattice Gas with No Interactions 

The interaction potential of atoms (or molecules) that are chemically bonded to the 
surface varies strongly with the lateral position of the adsorbed species. Such 
chemisorbed atoms primarily reside in defined surface sites. On crystalline sur-
faces, these sites have a periodic structure described by a translation lattice. Any 
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statistical model of chemisorbed adsorbate layers must account for this basic 
property. If adsorbates assume a random position in the available sites (which they 
obviously can do only if the fractional coverage is less than unity), they are said to 
form a lattice gas. The alternative is the formation of highly coordinated ensem-
bles or even ordered structures. In a more general sense, all models dealing with 
the occupation of a periodic arrangement of sites, stochastically or ordered, are 
called lattice gas models.
 The simplest approximation one can make is to assume only one type of sites, 
and further that the adsorption energy for a site is independent on the occupation 
of neighboring sites. This model is called the non-interacting lattice gas. The 
model is easily amended by introducing a mean field interaction. In taking the 
most important property of an adsorbate layer into account, the model is a good 
approximation to the real world with respect to segregation and adsorption iso-
therms. It fails (as all mean field models do) in the description of the evolution of 
different phases as a function of the adsorbate coverage and the transitions be-
tween various phases. In the following, we study the basic properties of the non-
interacting lattice gas. To be able to consider the equilibrium with species dis-
solved in the bulk or with a surrounding gas phase we calculate the chemical 
potential as a function of fractional surface coverage.  
 The allowed occupation numbers for each site i are ni = 0 and ni = 1. For the 
non-interacting lattice gas, the occupation statistics is therefore the same as for 
electrons in the free electron approximation and we can borrow the result for the 
mean occupation number n  per site from there,  

1
Badadad /)(exp1 TkEn . (5.94) 

In the context of adsorption, the mean occupation number per site is called frac-
tional coverage, or simply coverage, which we denote as ad. Ead and ad are the 
energy of the adsorbate and its chemical potential, respectively. Solving (5.94) for 
the chemical potential yields 

ad

ad
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Adsorbed atoms and molecules may possess low-lying vibrational energy levels so 
that the vibrational partition function (5.12) differs from unity. Adding the corre-
sponding term yields 

advib,B
ad

ad
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1
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The vibration partition function contains a factor with the ground state energies 
(1/2) i of the harmonic oscillators in the exponent (5.12). The sum of these 
ground state energies adds a temperature independent contribution to Ead. The 
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remaining contribution of the vibrational partition function is small for most 
chemisorbed species since their vibration quanta are typically of the order of 
300 K kB or higher. There is a noteworthy exception, however. The vibrational 
degrees of freedom that correspond to translations parallel to the surface can have 
very low frequencies of the order of a few meV. For example, the vibration fre-
quencies of the CO translation modes on Ni(100) are  top = 3.2 meV and 

 bridge = 3.7 meV, for the atop site and the bridge site respectively [5.27]. The 
atop-site translational mode is twofold degenerate. This site has therefore the lar-
ger entropy. The higher vibration entropy reduces the free energy level so that at 
room temperature occupation of the atop site is preferred over the bridge site. At 
low temperatures, the bridge site with its larger binding energy wins. An entropy-
induced conversion of adsorption sites for CO on Ni(100) [5.28, 29] is the conse-
quence.
 Molecules frequently dissociate upon adsorption into atoms or other fragments. 
In case of adsorption of a diatomic molecule like H2, N2 or O2 the atoms reside in 
the same type of sites with the same energy. The chemical potential of that adsor-
bate phase is  
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1
ln22 ZTkTkE  (5.97) 

An attractive or repulsive interaction between the adsorbed species can be mim-
icked in a mean field approach by adding a coverage dependent energy term 
W( ad) to (5.96). The mean field approximation works particularly well for iso-
therms. In the context of adsorption, this mean field approximation goes under the 
name Bragg-Williams approximation. The approximation is equivalent to the mo-
lecular field approximation in magnetism. 

5.4.2 Lattice Gas or Real 2D-Gas? 

As an alternative model to the lattice gas model, one might neglect the lateral cor-
rugation of the potential completely and assume that the atoms are bonded to the 
surface in a one-dimensional trough. Atoms can then be treated as two-
dimensional van-der-Waals gas in which the atoms interact merely via a hard-core 
repulsive pair potential and can move about freely otherwise. If N denotes the 
number of atoms in the surface area A and Aad the area occupied by a single atom 
the total available area is A-NAad. Writing (5.9) for two dimensions and replacing 
the total area by the available area leads to an expression for the free energy of the 
2D-van-der-Waals gas. After differentiation with respect to the number of parti-
cles at constant area, one obtains the chemical potential as  
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in which we have introduced the coverage ad = NAad/A.
 It is an interesting question whether an adsorbate is better described by the 
lattice gas or by the van-der-Waals gas model. The answer must depend on the 
magnitude of the lateral corrugation of the potential as well as on the temperature. 
Figure 5.11 shows an illustration of the potential (solid line) and the localized 
states of adsorbates in the potential as dotted lines. The energy levels near the 
minimum are approximately described by a harmonic oscillator. With rising en-
ergy, the levels moves closer together and eventually merge into a continuum of 
states. The lattice gas approximation assumes that the atoms sit in the ground state 
with some small occupation of the higher vibrational levels if one adds the corre-
sponding term to the chemical potential (5.97). The 2D-gas model describes the 
chemical potential of atoms in the continuum of states above the potential 
maxima. For high enough temperatures, the atoms occupy primarily the contin-
uum and the 2D-gas model should apply, whereas at low temperatures the atoms 
should reside in the ground state and form a lattice gas. The question is whether 
one can find a criterion for the transition temperature. The issue was already ad-
dressed in 1946 by Hill [5.30] and later again by Doll and Steele [5.31] who 
included the vertical motion of the adsorbate atoms in their statistical model. For a 
2D-cosine potential, they found that the transition between the lattice gas and the 
free gas takes place at Tc = 0.2 V0 /kB, in which V0 is the difference between the 
top and the bottom of the potential, i.e. approximately the activation energy for 
diffusion Ediff

8. A qualitative, model independent estimate of the transition tem-
perature may be obtained from the comparison of the chemical potentials of the 
independent lattice gas lat (5.95) and the chemical potential of the 2D-gas 2D

(5.98) considering the ground state of the latter as being shifted upwards by the 
amount V0. The atoms prefer the state of lower chemical potential. Hence, the 
lattice gas model should be appropriate if lat < 2D. This condition is equivalent to 
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According to (5.99) the atoms should always prefer the localized sites for higher 
coverages: in the 2D van-der-Waals gas, the atoms would be so much in each 
other's way that the chemical potential of the 2D-gas increases steeply. 
 In the low coverage limit, there is a temperature dependent critical depth of the 
potential Vc beyond which the system behaves like a lattice gas. Figure 5.12 shows 
the critical potential Vc for an atom of mass 16 and a hard core area Aad of 4 Å2 for 
coverages between ad = 0 and 0.8 in steps of 0.1. According to Fig. 5.12, strongly 
chemisorbed atoms like oxygen, carbon, and nitrogen should always form a lattice 

8 Doll and Steele discuss this result as being identical to the earlier result of Hill obtained 
without considering the vertical movement of the vibrating atoms. However, Fig. 1 of Hill's 
paper [5.30] clearly shows that Hill has the transition temperature a factor of four lower 
than the value quoted by Doll and Steele.
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Fig. 5.11. Illustration of the lateral corrugation of the surface potential (solid line), the 
discrete energy levels of localized adsorbates (dotted lines), and the continuum of states at 
higher energies. 
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Fig. 5.12. Critical value of the potential corrugation in the limit of zero coverage (solid 
line) and coverages ad = 0.1, 0.2,…, 0.8 for an atom mass m=16 with a hard-core area 
Aad = 4 Å2. The dash-dotted line is the result of the solution for a 2D-cosine potential [5.31]. 

gas. Weakly chemisorbing species such as CO, in particular on metals with a filled 
d-shell, are closer to the limit. CO molecules do reside in defined sites; however, 
their chemical potential is affected by lowering the vibrational levels of the hin-
dered translations. For higher coverages, CO is displaced from the low coverage 
sites by the lateral interactions and incommensurate or high order commensurate 
lattices are formed (see also Frenkel-Kontorova model, Sect. 1.3.1). Physisorbed 
layers are even more in the realm of 2D-gases, however without really conforming 
to the simple 2D-van-der-Waals models since the corrugation of the potential is 
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still too strong for that. In summary, many systems are well described by the lat-
tice gas model; hardly anyone conforms to the 2D-gas-model. 

5.4.3 Segregation 

A simple and illustrative example for the application of the lattice gas model is the 
problem of segregation. Bulk single crystal materials always contain impurities 
from the refining or the growth process. Some of these impurities do not form a 
substitutional alloy with the material, but rather they are dissolved in interstitial 
sites. The binding energy in these interstitial sites is frequently lower than on the 
surface, simply because there is more room at surfaces and the surface atoms of 
the substrate have free bonds ready to become engaged in bonding. If the tempera-
ture is high enough for effective diffusion, the bulk impurity atoms will segregate 
to the surface and form an adsorbate layer there. Typical examples are carbon and 
sulfur in metal crystals. In Section 2.2.3, we have remarked that segregation can 
be a significant problem for the preparation of clean surfaces. With the help of the 
lattice gas model, we show what precisely the nature of the problem is. Since the 
concentration of the impurities in the substrate is very small, we can write for the 
chemical potential s of the dissolved impurities  

sBss ln cTkE  (5.100) 

in which Es is the energy of the impurity in the solid solution and cs is the concen-
tration per available site in the bulk. By equating ad and s one obtains for the 
equilibrium surface coverage ad
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Figure 5.13 shows a typical example. It is assumed that the initial bulk impurity 
concentration is 10 ppm (10-5). The difference in the binding energies at the sur-
face and in the interstitial site is assumed to be Ead Es = 0.7 eV. The solid line 
in Fig. 5.13 is the equilibrium surface concentration for that case. However, below 
a certain temperature bulk diffusion stops so that the equilibrium coverage is not 
reached. In Fig. 5.13, the temperature below which there is no further segregation 
is assumed to be Tmin = 500 K. For the initial bulk concentration, the surface  
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Fig. 5.13. Surface equilibrium concentration of a segregating impurity as a function of 
temperature for three different bulk concentrations cs. It is assumed that the difference in 
the binding energy at the surface and in the interstitial site is Ead Es = 0.7 eV. The 
shaded area marks the region where there is no diffusion, so that the actual surface cover-
ages found experimentally after annealing are the ones marked at the upper diffusion limit, 
which is assumed to be at 500 K. 

concentration is nevertheless quite high. This surface concentration can be re-
moved effectively by sputtering the surface with noble gas ions (Sect. 2.3.2). In 
order to heal the surface damage the substrate must be annealed, whereupon fur-
ther impurity atoms segregate to the surface. By repetitive sputter-annealing 
cycles, the bulk impurity concentration is reduced. This in turn reduces also the 
surface concentration but the removal of impurities by sputtering becomes less 
and less effective as the leaching process advances. Since many experiments re-
quire a surface cleanness of 10-4 to 10-6, surface preparation can become quite 
tedious. 
 Figure 5.14 illustrates the basic principle of segregation and the experimental 
problem it might cause. Actual experimental data on segregation rarely fit the 
simple isotherm so perfectly as the typical segregating impurities carbon and sul-
fur form various ordered phases as a function of coverage. Carbon may even form 
a graphitic overlayer. Figure 5.14 shows the segregation of carbon on Ni(100) 
[5.32]. The sample was intentionally doped with carbon. The segregation curve is 
fitted to (5.101) with Es-Ead = 0.35 eV and a carbon bulk concentration of 0.5%. 
The fit is not unique, however, since the experimental data do not conform to a 
simple isotherm. 
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Fig. 5.14. Equilibrium carbon coverage on Ni(100) surface due to segregation from the 
bulk [5.32]. Coverage ad = 1 is defined with respect to the maximum coverage with a 
c(2 2) layer. The solid line is a fit to (5.101) with a carbon bulk concentration of 0.5% and 
a segregation energy of 0.35eV. The fit is not unique, however. 

5.4.4 Phase Transitions in the Lattice Gas Model 

The field of 2D-phase transitions is enormously rich, in experiment as well as in 
theory. Even comparatively simple adsorption systems display complex patterns 
of various phases, commensurate, incommensurate or disordered ones as a func-
tion of coverage and temperature. Transitions between phases, especially the 
order-disorder transition as a function of temperature have been studied exten-
sively using diffraction techniques. Particular attention was paid to the critical 
exponents, e.g. the temperature dependence of the intensity of a diffracted beam as 
the system moves from order to disorder. These critical exponents where dis-
cussed in terms of universality classes of particular theoretical models. Other 
interesting aspects concern the spatial distribution of coexisting phases and the 
domain walls separating the phases (Sect. 1.3.2). The material has been reviewed 
by Persson [5.2] and Patrykiejew et al. [5.33].  
 In the field of phase transitions, it proved to be more difficult than in most other 
areas of surface science to make theory match the experimental data. The theory 
of phase transitions, in particular if concerned with the critical exponents assumes 
a perfect homogeneity on the surface. By definition, critical exponents reveal 
themselves close to the phase transition when the spatial fluctuations of the system 
involve large surface areas. The closer the system is to a phase transition the more 
extended are the fluctuations. Small amounts of impurities or defects have there-
fore drastic effects on the behavior of the system. The intensity of a diffracted 
beam in an order-disorder transition, e.g. which according to theory should dive 
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into the zero line as (1-T/Tc)  with  the critical exponent characteristic for a par-
ticular universality class, in reality displays a rounded shape and approaches zero 
rather gradually. This may render an unequivocal determination of the critical 
exponent impossible, likewise the unambiguous determination of the type of lat-
eral interactions between the adsorbates. We exemplify these statements with the 
thoroughly and carefully studied order-disorder transition of hydrogen on Pd(100) 
[5.34, 35].  
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Fig. 5.15 Normalized intensity of the (1/2, 1/2) diffraction peaks. Solid line: experimental 
result for Pd(100)c(2 2)H with ad = 0.5 [5.34]. Dashed line: Monte Carlo simulation with 
repulsive nearest neighbor and attractive next-nearest neighbor interactions [5.35]. The 
dotted line is the intensity according to the Ising model with nearest neighbor interactions. 

Figure 5.15 shows the experimental intensity of the (1/2, 1/2) spot for the c(2 2) 
hydrogen overlayer [5.34] as a function of temperature (solid line). As an example 
for the result of analytically solvable models, the intensity according to the Ising 
model with nearest neighbor interactions is plotted as a dotted line. The insuffi-
cient modeling of the lateral interactions causes the deviation between experiment 
and theory at lower temperatures. The qualitatively different behavior near the 
phase transition however is caused by inhomogeneity of the surface in the experi-
ment. The inhomogeneity is crudely simulated by performing the calculation on a 
small lattice. The dashed line is the result of a Monte-Carlo simulation on a 40 40 
lattice with periodic boundary conditions by Binder et al. [5.35] with repulsive 
nearest neighbor and attractive next-nearest neighbor interactions. The simulation 
matches the low temperature regime quite well and displays a tail beyond the tran-
sition temperature, in qualitative agreement with the experiment.  
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Fig. 5.16. Adsorbates in a square lattice with nearest-neighbor repulsive interactions. Black 
and white circles represent the A- and B-sites.  

In order to elucidate the relation between the qualitative features of the phase dia-
gram and the lateral interactions between the atoms we consider the Ising 
Hamiltonian (5.70) on a square lattice. We assume repulsive interactions V0 be-
tween the nearest neighbors. Suppose one has a fractional coverage of ad = 0.5. 
The system is perfectly ordered in a c(2 2) pattern if only every other site is occu-
pied (black circles in Fig. 5.16). At the same time, the energy is minimal as no 
nearest neighbor sites are occupied. We denote the sublattice with the black circles 
by the letter A and the other one by B. Perfect order is then characterized by the 
fractional coverages 

0,2/ BA . (5.102) 

Here,  denotes the fractional coverage with respect to all sites. At higher tem-
peratures, some of the nearest neighbor sites may become occupied, whereby the 
system becomes disordered. Half order diffraction spots persist, albeit with a 
lower intensity. Above a particular transition temperature Tc, the half order dif-
fraction peaks vanish completely and the system is disordered. The state of 
disorder is characterized by an equal occupation of the sublattices A and B.  

BA  (5.103) 

We want to establish the relation between the transition temperature Tc and V0. A 
state close to the order-disorder transition is described by 

BA ,  (5.104) 

We assume now a mean field model in which the actual interaction Vi of an atom 
in a particular site i of the sublattice A with its neighboring atoms, which would 
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depend on the actual occupation of the neighboring sites, is replaced by the inter-
action with the mean occupation of the neighboring sites. 

B0A

4

1
,0A, 4VVVV ii . (5.105) 

The sum is over the four nearest neighbors. The mean interaction potential VA

renormalizes the energy of all sites by the same amount. The occupation statistics 
remains Fermi-statistics. With (5.104) the fractional coverage A becomes 

1e

1

B

0 )(4A
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V
 (5.106) 

Expanding (5.106) for small  and considering the limit 0  leads to the self-
consistency equation for the transition temperature Tc

B0 /)1(4 kVTc . (5.107) 

This mean field results for the phase diagram is plotted in Fig. 5.17. The maxi-
mum value of Tc occurs at  = 1/2 and is  

B0meanfieldc, / kVT . (5.108) 

This is considerably higher than the exact solution of the Ising-model  

B0Isingc, /57.0T kV . (5.109) 

The reason that Tc is so much higher in the mean field model is the total neglect of 
fluctuations. The fluctuations are also responsible for the fact that in the Ising 
model the ordered c(2 2) is confined to a narrow coverage range between 0.37 
and 0.63 (Fig. 5.17, dotted line). The inclusion of additional next-nearest neighbor 
attractive interaction stabilizes the c(2 2) structure in a wider coverage range. The 
dashed lines in Fig. 5.17 mark the range of stability for a ratio between next-
nearest neighbor interactions Vnnn to nearest neighbor interactions Vnn of -1/2. For 
Vnnn <0 the phase diagram shows a coexistence of the c(2 2) structure with a di-
lute and dense lattice gas phase, at low and high coverages respectively. Tricritical 
points occur at  0.31 and  0.69. All theoretical phase diagrams are symmet-
ric around  = 0.5 (particle-hole symmetry), whereas the experimental phase 
diagram displays some asymmetry. Such asymmetry may come about by three-
body forces [5.35] or by energy associated with the displacement in the atom posi-
tions due to the lateral interactions. Such displacements occur if the nearest or the 
next-nearest neighbor coordination are not symmetric [5.2]. As shown by Persson 
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[5.2], the consideration of the lateral relaxation in the atom positions skews the 
phase boundary towards the left, in agreement with the experimental data 
(Fig. 5.17). 
 At the time when the phase diagram Fig. 5.17 was first investigated experimen-
tally, the distribution of atoms on the available sites could merely be inferred from 
the diffraction data or obtained from Monte-Carlo simulations under the assump-
tion of a particular interaction potential. After the advent of the scanning tunneling 
microscope, direct observations of the position of atoms became possible. The 
coexistence of ordered phases with a lattice gas was observed in STM-images e.g. 
by Wintterlin et al. [5.36]. 
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Fig. 5.17. Phase diagram for a square lattice. All curves are normalized to their specific 
maximum transition temperature Tc at  = 1/2. The solid line is (5.108) obtained for the 
mean field model with repulsive nearest-neighbor interactions. The dotted line is obtained 
from a Monte Carlo simulation with the same type of interaction [5.35]. The dashed lines 
mark the phase boundaries for a system with additional attractive next-nearest neighbor 
interactions. The data points (black squares) refer to the Pd(100)c(2 2)H system of Behm 
et. al [5.34]. 



6. Adsorption

Surface Science is an interdisciplinary field. This is particularly true for the sci-
ence associated with adsorption and desorption. Physics and chemistry of 
localized and delocalized bond formation, thermodynamics and statistical physics, 
molecular dynamics as well as electrochemistry and catalysis meet here. Starting 
from a general discussion of bonding mechanisms, this sections deals with the 
thermodynamics of equilibrium phases and the kinetics of adsorption and desorp-
tion. The section concludes with a discussion of chemistry and the physical 
properties of the most common adsorbates. 

6.1 Physisorption and Chemisorption  General Issues

The nature of the bonding that is involved in adsorption is addressed by the some-
what antiquated terms physisorption (= physical adsorption) and chemisorption (= 
chemical adsorption). The terms are not well defined since in the older literature 
the distinction between physisorption and chemisorption was made according to 
the adsorption energy, with physisorption denoting the realm of lower adsorption 
energies. There are, however, weak chemical interactions as well. In the follow-
ing, we confine the term physisorption strictly to adsorption mediated by van-der-
Waals forces. Van-der-Waals forces originate in the ground state fluctuations of 
the electronic charge of an atom, which generates a dynamic dipole moment pfluct.
The electric field emerging from this fluctuating dipole at the position of another 
atom at distance r is proportional to pfluct/r

3. The field induces a dipole moment 
pind of strength pind pfluct/r

3 in the second atom. The energy of the induced dipole 
pind in the electric field of the original atom is negative (attractive interaction) and 
proportional to r 6. Consequently, atoms attract each other even in the absence of 
chemical bonding. At smaller distances, Pauli-repulsion between closed shells 
eventually balances the attractive van-der-Waals interaction. Pauli-repulsion is 
proportional to the overlap of wave functions and increases therefore exponen-
tially with decreasing distance. For convenience, the exponential dependence is 
traditionally replaced by an r 12-dependence in analytical calculations. The result 
is the Lennard-Jones potential 

6
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0 2)(
r

r

r

r
VrV , (6.1) 
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in which V0 is the potential at the equilibrium distance r0
9. For a physisorption 

system, this potential is the only interaction between the adsorbate and the atoms 
of the solid phase. In contrast to chemical interactions, the van-der-Waals interac-
tion is with all atoms of the solid. The interaction potential between an atom at 
ratom and the surface is therefore the sum over all two-body potentials (6.1),  

,

6

,atom

0
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,atom

0
0atomsurf 2)(

n nn rrrr
r

rr
VV . (6.2) 

The sum goes over all unit cells denoted by the triplet n = (n1, n2, n3) and the at-
oms in the unit cell denoted by . For the repulsive part only the nearest neighbors 
matter, for the attractive part, however, the summation has important conse-
quences for the functional dependence of the physisorption potential on the 
distance z from the surface. For not too small distances, the sum can be replaced 
by the integral 
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in which  is the density of atoms. The integration over three dimensions reduces 
the r 6 power law to a z 3 dependence of the potential. Figure 6.1 displays the re-
sulting potential for an fcc-structure when the van-der-Waals pair equilibrium 
distance r0 is 2.6 in units of the substrate bond distance as, which is chosen to ap-
proximately represent the case of Xe on Pt(100). The lateral variation of the 
minimum in the potential (6.2) is illustrated in Fig. 6.2. Shown is the variation 
from the atop-position to the fourfold site where the potential has its minimum. 
The potential is rather anharmonic around the minimum. If represented by a two-
dimensional Fourier-expansion, higher order Fourier-components must be em-
ployed. The z-position of the minimum potential varies with the lateral coordinate. 
The eigenstates of the physisorbed atoms are therefore not simply eigenstates of a 
two-dimensional oscillator (see also Sect. 5.4.2).  
 As straightforward as it is to write down an atom/surface potential for phy-
sisorption, the result is meaningful only in the limit of large distances from the 
surface. As the atom approaches the surface, other, chemical interactions come 
into play even in case of rare-gas adsorption. A well-studied example is the ad-
sorption of rare-gases on transition metals. Experiments show a considerably 
higher heat of adsorption than expected for physisorption [6.1, 2]. The large re-
duction of the work function (> 0.5 eV) is indicative of a considerable charge 
transfer from the rare-gas atom into the solid. More importantly, the description of 

9 Occasionally, V(r) is expressed in terms of a hard-wall distance. Then the factor 2 in the 
second term vanishes.
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Fig. 6.1. Van-der-Waals bonding to a surface of an fcc-crystal. The parameters are chosen 
to represent Xe on Pt(100). The distance z is in units of the surface lattice constant as. Solid 
line is the numerical solution for a pair-wise Lennard-Jones Potential. The dashed line is the 
continuum solution for the attractive part (6.3). 
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Fig. 6.2. Relative corrugation of the minimum in the physisorption potential (solid line). 
The potential deviates significantly from a simple cosine-function (dotted line). 

the interaction of rare-gas atoms with surfaces in terms of van-der-Waals interac-
tions yields a qualitatively wrong picture of the preferred adsorption site, the 
lateral interactions between the adsorbates and the vibrational states.  
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An early attempt to invoke density functional theory for the description of rare-gas 
adsorption was made by N. D. Lang [6.3] who studied rare-gases on a jellium 
substrate. J. E. Müller investigated the bonding of rare-gas atoms to transition 
metals [6.4]. Figure 6.3 shows the schematic picture developed by Müller for the 
example Xe on Pt. The overlap of the occupied Xe5p-states with the occupied 
Pt5d-states leads to bonding and anti-bonding states (dashed lines in Fig. 6.3). As 
both, the bonding and antibonding states are occupied the interaction is repulsive 
(Pauli-repulsion). The mixing with the unoccupied Pt5d states (named polariza-
tion states by Müller) leads to an overall downshift of the bonding and 
antibonding states, and thereby to a weak chemical bonding. Transferred into spa-
tial coordinates Müller found that the polarization of the metal causes a charge 
increase where the Coulomb-potentials of the metal and the Xe-atoms overlap. 
This effect is stronger when the Xe-atom sits in an atop position! This is contrary 
to what the van-der-Waals bonding predicts (Fig. 6.2). Needless to say, that also 
the magnitude of the lateral corrugation of the potential as well as the curvature of 
the potential in the z-direction is not at all represented by the Lennard-Jones po-
tentials! It is therefore no wonder that earlier attempts to describe experimental 

Xe5pPt5d, occ

Pt5d, unocc

Fig. 6.3. Schematic picture of the bonding of rare-gas atoms on a transition metal for the 
example of Xe on Pt: The coupling of the occupied Xe5p-states with the occupied Pt5d-
states leads to occupied bonding and anti-bonding states (dashed lines) and thereby to 
Pauli-repulsion. Mixing with the unoccupied Pt5d states (polarization states) leads to a 
considerable charge transfer and to an overall downshift of the electron states, and thereby 
to a weak chemical bonding. 

observations concerning the adsorption energies, lateral interaction energies and 
the vibration modes of the Xe-atoms in terms of Lennard-Jones potentials failed. 
The theory provides furthermore an understanding of what causes the large work 
function shift. The unoccupied d-states are localized on the substrate. The partici-
pation of these states in the bonding requires a charge transfer from the Xe-atom 
to the surface. The associated dipole moment with the positive end pointing away 
from the surface causes the reduction of the work function. The charge transfer is 
nicely exemplified with charge density contours. Figure 6.4 displays the contour 
lines of the charge density (r) in a Pt22-cluster with one Xe-atom adsorbed. In 
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order to emphasize the changes brought about by the bonding the charge density 
of the bare cluster and the bare Xe-atom is subtracted, so that 

(r) = (XePt22) (Xe) (Pt22) is plotted in Fig. 6.4. The dashed and solid lines 
correspond to charge deficit and surplus, respectively. The charge transfer from 
the Xe-atom to the Pt-cluster is clearly visible. A significant part of the charge is 
located not on the Pt-atom to which the Xe-atom is bonded but rather in a ring 
around the Pt-atom. This has consequences for the bonding of the adjacent Xe-
atom residing on the next-nearest neighbor Pt-atom (dashed circle in Fig. 6.4) 
since this second Xe-atom finds the states into which it would donate charge as a 
single atom already occupied by the first Xe-atom. The charge transfer to the sub-
strate is therefore hindered. This causes a repulsive interaction term that partly 
compensates the attractive van-der-Waals interaction. The interaction remains 
attractive (18 meV), but is significant lower than a pure van-der-Waals interaction 
(30 meV) [6.4]. The hindered charge transfer for a neighboring Xe-atom causes 
also a considerable downshift in the frequency of the vibration perpendicular to 
the surface from meV5.8h  for a single Xe-atom to meV7.3h  for a full 

monolayer or a Xe-island [6.5]. 

A B

Fig. 6.4. Left panel: top view on the Pt22-cluster with an adsorbed Xe-atom. The neighbor-
ing Xe-atom is drawn as a dashed circle. Right panel: charge density difference 

(r) = (XePt22) (Xe) (Pt22) along the intersection AB shown on the left. Dashed and 
solid contour lines indicate charge deficit and surplus, respectively. Note the net charge 
transfer into the substrate! 

The specific bonding described above predicts that the strength of the Xe-metal 
interaction scales with the deepness of the metal potential, which in general corre-
lates with the density of states at the Fermi-level. The bonding is particular strong 
on transition metals, but it should exist also for sp-metals and even for semicon-
ductor surfaces and graphite, because of the unoccupied conduction band states.  
 It should be noted that the picture developed here is based on a localized, quan-
tum-chemical approach to the problem. In that approach, the natural basis-set of 
wave functions are the eigenstates of individual atoms and the discussion is in 
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terms of local charges and bonds. A somewhat different picture emerges from 
theories that start from periodic lattices and describes the results in terms of the 
global density of states [6.6]. Neither one picture can be proven right or wrong. 
They are just different, more or less appealing ways to rationalize a result of quan-
tum mechanics.
 While the existence of a genuine van-der-Waals bonding on any of the surfaces 
that are in the mainstream of interest remains elusive, van-der-Waals forces domi-
nate at large distance from the surface. The z 3-dependence of the attractive van-
der-Waals interaction (dashed line in Fig. 6.1) exists for all molecules approaching 
the surface. The van-der-Waals attraction together with a polarization interaction 
and a Pauli-repulsion at close distances is therefore a basis for the discussion of 
the adsorption of chemically saturated molecules to which we turn now. Cases of 
particular interest are the dissociative adsorption of the diatomic molecules H2, O2,
and N2. These molecules, when they approach the surface, experience a potential 
similar to the one drawn in Fig. 6.1: a van-der-Waals attraction at large distances 
and a Pauli-repulsion at short distances, if the molecule does not dissociate. In 
addition, a state of molecular bonding may exist. The O2 molecule, e.g., binds 
strongly as a molecule. 
 Figure 6.5 illustrates the energetics of the adsorption process. The energy10 of 
the undissociated molecule as a function of distance from the surface z is plotted 
as a solid line. This may be the physisorption energy or the energy of the chemical 
bonding of the undissociated molecule with the surface. The figure also shows two 
examples of the energy variation of the atoms when the molecule is dissociated in 
the gas phase (dashed and dash-dotted lines). At large distances from the surface, 
the curves begin at half the dissociation energy of the molecule Ediss. Evidently, 
dissociation upon adsorption occurs only if the energy gained in bonding is larger 
than the dissociation energy. Depending on the dissociation energy, of the adsorp-
tion energy, on the equilibrium distances in the bound states, and on the overall 
shape of the potential curves, the crossover point between molecular and dissocia-
tive adsorption may or may not lie above zero (with reference to the ground state 
of the molecule in the gas phase). If the crossover point is above zero, the mole-
cule has to overcome an activation barrier for dissociative adsorption. 
 The one-dimensional model for dissociative adsorption as displayed in Fig. 6.5 
grossly oversimplifies the problem. The molecule has internal degrees of freedom 
(vibration, rotation, equilibrium distance between the atoms), the adsorbed atoms 
and the solid have vibrational degrees of freedom, and the molecule approaches 
the surface from different angles and strikes the surface at a different position with 
respect to the surface structure. For each vibration or rotational eigenstate of the 
molecule, for each angle of approach, each point of contact, one has a different 
energy/distance relation. Furthermore, while the molecule is on its course of ap-
proach, the bond length, the vibrational levels, the rotational energies respond to 
the interaction with the solid, the occupation of the energy levels in the molecule 

10 For simplicity and generality we use the term energy. The term stands for the correct 
thermodynamic potential according to the thermodynamic boundary conditions (Chapt. 4). 
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Fig. 6.5. Grossly simplified illustration of the energetics of the adsorption process for dia-
tomic molecules: The solid line represents the physisorption potential or the potential of 
whatever bond the molecule may establish as a whole with the surface. The dashed and 
dash-dotted lines show two possible cases for the energy of the dissociated molecule. De-
pending on the energy of dissociation in the gas phase, the equilibrium bond distance and 
the adsorption energy for the atoms, there may be a barrier for dissociation or not. 

changes, rotational energy is transferred into vibrational energy and kinetic energy 
is converted into phonons. Even electronic states may be excited, so that one 
leaves the realm of the Born-Oppenheimer approximation. Adsorption induced 
electronic excitations can give rise to chemo-luminescence [6.7] and hot electron 
emission [6.8]. In recent years, laser-technology has developed to a point where 
one is able to control and select the exact eigenstate of molecules in the gas phase. 
The energy transfer to the solid can be investigated in femtosecond pump-probe 
experiments, which has opened the new field of state selective chemistry [6.9].  
 Because of its extreme complexity and its multidimensionality, the problem of 
dissociative chemisorption is not amenable to a full quantum theoretical treatment. 
Currently, calculations involving 7 degrees of freedom are state of the art. A clas-
sical approach using molecular dynamics in connection with a potential derived 
from ab-initio calculations is however possible (see e.g. A. Gross [6.10]) 
 Without straining mental and computer capacities too much, one may move up 
one step from the simple scheme in Fig. 6.5 and consider the approach of a dia-
tomic molecule with a fixed orientation with respect to the surface. Vibrations and 
rotations as well as the structure of the surface are neglected. As an example, we 
consider the approach of a molecule, which has its axis parallel to the surface. Far 
away from the surface, the distance between the atoms is at its gas-phase equilib-
rium value rm. Figure 6.6 displays the equipotential contour lines of the molecule 
as it approaches the surface. It is assumed that no molecular adsorption state (as 
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typical for CO or O2) exists. The molecule travels along the path of minimum 
energy (dotted line). For smaller distances from the surface, the wave functions of 
the molecule and the solid begin to overlap and the equilibrium bond distance 
between the molecule increases. The molecule may or may not encounter an acti-
vation barrier; eventually the potential becomes completely flat with respect to the 
distance between the atoms: the molecule is dissociated. For a structured surface, 
one would have a different 2D-potential for each x, y-starting position in the gas-
phase with respect to the structured surface and each initial orientation of the 
molecule. The potential would also depend on the initial angle of the molecular 
trajectory with respect to the surface. The orientation of the molecule would 
change as it approaches the surface. In total, the model would involve six inde-
pendent coordinates. 
 While calculations that include vibrational and rotational excited states can be 
performed nowadays, one would like to explore what can be said about the ther- 
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Fig. 6.6. Schematic drawing of the contour lines of the atom potential for a molecule ap-
proaching a flat surface ("elbow plot"). For large distances, the potential has a minimum at 
the gas-phase equilibrium bond distance. As the molecule draws closer to the surface, the 
bond distance increases. Eventually the potential is independent of the atom-atom distance. 
The molecule may or may not encounter an activation barrier along the path (solid and thin 
dash-dotted contour lines).  
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modynamics of dissociative adsorption without resorting to sophisticated theory. 
With respect to the probability of dissociative adsorption, a simple approach is to 
postulate that the molecule travels on the hypersurface of coordinates along the 
path of minimal energy so that the effective activation barrier is the minimum 
barrier along this reaction coordinate. The probability of dissociative adsorption, 
the sticking coefficient, can then be expressed in terms of certain properties of the 
transition state, which leads to the transition state theory of rates (Sect. 10.2).  
 The complexity of the molecule-surface interaction is also reflected in the de-
sorption process. Dissociatively adsorbed molecules recombine during desorption. 
If the molecules travel along a path that involves an activation barrier, they must 
gain kinetic energy. Concerning the velocity component perpendicular to the sur-
face, the desorbing molecule must have a kinetic energy that reflects the height of 
the activation barrier. Part of the energy may also go into vibrational and rota-
tional excitations. Even in the absence of an activation barrier, the occupation of 
rotational and vibrational states is in general not given by the thermal equilibrium 
distribution that would correspond to the substrate temperature Ts. One might 
think of building a clever perpetuum mobile (perpetual motion engine) by adsorb-
ing molecules at surfaces and receiving hyperthermal molecules desorbing in 
return. Alas, the principal of detailed balance ensures that the second law of ther-
modynamics is not violated. For each direction of the impinging molecule, each 
velocity, each point of impact, each internal excitation, the sticking coefficient is 
such that the differential fluxes in and out are identical in equilibrium. Alterna-
tively, one may argue that the principle of detailed balance is the reason why 
desorbing molecules have a nonthermal velocity distribution and a nonthermal 
distribution on the vibrational and rotational levels since evidently these molecules 
in general should have a different sticking probability.  
 Detailed balance is an extremely powerful principle. It can be used to perform 
calculations on the kinetics starting at either end of a process and obtain informa-
tion on the reverse process. It is also an indispensable check on quantum statistic 
calculations that detailed balance is obeyed. Not all models or assumptions one 
might be inclined to make or to employ for the sake of easing the task fulfill this 
requirement. On a more elementary level, the principle of detailed balance can be 
applied to express the rate of desorption into a particular angle in terms of the 
sticking coefficient of molecules traveling the reverse direction and the chemical 
potential of the adsorbed phase. This is helpful insofar as the sticking probability 
is a measurable quantity, and it is often close to unity in case of non-activated 
adsorption.  
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6.2 Isotherms, Isosters and Isobars

6.2.1 The Langmuir Isotherm 

We consider the equilibrium between an ideal gas and an adsorbed phase de-
scribed by the non-interacting lattice gas model. By equating the chemical 
potentials (5.15) and (5.96, 5.97) one obtains  
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Here, Eg is the ground state energy level of the gas phase and  denotes the num-
ber of (equal) atoms into which in molecule dissociates upon adsorption, hence 
is either 1 or 2. For  = 1, equation (6.4) represents the Langmuir Isotherm. The 
isotherm describes the equilibrium between two phases, the gas phase and the 
adsorbate phase. It is therefore, that only the properties of the two phases enter, 
and not the pathway by which the equilibrium is established.  
 This statement may warrant a further remark. In the chemical literature, the 
Langmuir Isotherm (and other equilibrium properties) is almost exclusively de-
rived by considering adsorption and desorption kinetics and by equating the 
adsorption rate with the desorption rate to allow for equilibrium. This treatment 
introduces (within that framework) undefined kinetic parameters, and thereby 
obscures the true nature of the Langmuir Isotherm. Furthermore, the dependence 
on ad (the left hand side of (6.4)) is introduced as a property of the adsorption 
kinetics, namely that the dependence of the sticking probability on the coverage 
should be proportional to 1 ad, which is rarely if ever the case. Furthermore, 
according to this "derivation", the isotherm would depend on the coverage de-
pendence of the sticking probability, which is incorrect. 
 Solving (6.4) for the coverage ad yields 
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The equilibrium constant Keq(T) is 
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Figure 6.7 displays the isotherms for  = 1 and 2. For non-dissociative adsorption, 
the coverage rises linearly with the pressures in the small coverage/pressure re-
gime to level off as the coverage increases. For dissociative adsorption of a di- 
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Fig. 6.7. Adsorption isotherms in the non-interacting lattice gas model for non-dissociative 
adsorption (Langmuir Isotherm) and the dissociative adsorption of a diatomic molecule. 

atomic molecule, the coverage initially increases proportional to the square root of 
the pressure, and levels off more quickly. Full coverage may not be reached at all 
for kinetic reasons. As a rule, dissociative adsorption requires two empty nearest-
neighbor sites rather than two empty sites somewhere on the surface. As the cov-
erage approaches unity, the number of nearest neighbor pairs reduces more rapidly 
than the number of pairs at some arbitrary distance. Eventually, only single sites 
with no nearest-neighbor empty site around will remain on the surface. The full 
coverage is therefore not reached at all. Rather the adsorption stops at about 95% 
coverage [6.11]. Note, however, that this is a kinetic argument stating that equilib-
rium may not be reached; it does not concern the equilibrium itself. Given enough 
diffusion and long enough time, the dispersed empty sites will disappear. 

6.2.2 Lattice Gas with Mean Field Interactions 
the Fowler-Frumkin Isotherm 

Experimental isotherms rarely conform to the Langmuir Isotherms because of the 
lateral interactions between adsorbed species. Figure 6.8 shows three isobars for 
the molecular adsorption of CO on a Ni(111)-surface as an example [6.12]. The 
pressure is varied by an order of magnitude. The decay of the coverage with in-
creasing temperature is much slower than for the Langmuir Isotherm (dotted line). 
The slower decay can be interpreted in various ways. The binding energy of CO to 
the Ni-substrate might decrease when neighboring sites become occupied, differ-
ent sites may become occupied, or there may be a direct repulsive interaction 
between the CO-molecules. Isotherms do not distinguish between these possibili-
ties.
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To account for a variation of the mean adsorption energy with coverage one may 
write an additional coverage dependent term into the chemical potential of a lattice 
gas (5.96).  

)(ln
1

ln adadvib,B
ad

ad
Badad WZTkTkE . (6.7) 

The factor  is  = 1 for atom adsorption and  = 2 for the dissociative adsorption 
of diatomic homonuclear molecules. The expression is easily generalized to dia-
tomic molecules consisting two different atoms. The term W( ad) describes the 
change in the adsorption energy with coverage. It can also be understood as a 
mean field approach to describe lateral interaction between the adsorbed species. 
In the context of adsorption, this mean field approximation is called Bragg-
Williams approximation (cf. Sect. 5.4.1). The approximation is equivalent to the 
molecular field approximation in magnetism (Sect. 9.5) 
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Fig. 6.8. Adsorption isobars for CO on Ni(111) [6.12]. The decay of the coverage is much 
slower than in the Langmuir Isotherm since the effective binding energy increases as the 
coverage becomes smaller. The coverage is here defined as the number of CO-molecules 
per surface atom.  
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With the mean field interaction added, the isotherm assumes the form 

pTKTk

W

)(e
1 eq

)(

ad

ad B . (6.8) 

The equilibrium constant Keq(T) is as in (6.6). A positive W( ad) stands for an 
increasing energy level of the adsorbed state for larger coverages, hence for repul-
sive interactions between the adsorbed species. Negative W( ad) stand for 
attractive interactions. Equation (6.8) holds for arbitrary analytical forms of 
W( ad). Consider for example repulsive dipole/dipole interactions: The dipoles 
can be electric dipoles or elastic dipoles (3.81). The interaction energy scales with 
the distance r as r 3 and W( ad) becomes

2/3
adad )( wW . (6.9) 

Dipole interactions are of the order of a few meV and are therefore small com-
pared to other interactions or to the variations in the adsorption energy. To account 
for the latter, frequently a linear variation of W( ad) with ad is assumed,  

adad )( wW . (6.10) 

Depending on the scientific community, the resulting isotherms are named 
Fowler-isotherms (physics) [6.13] or Frumkin-isotherms (electrochemistry) 
[6.14].  
 Figure 6.9 shows a set of isotherms for non-dissociative adsorption and various 
values of w in units of kBT. The coverage is now plotted vs. the logarithm of the 
pressure, which is proportional to the chemical potential of the gas-phase. The 
case w = 0 represents the Langmuir Isotherm. For positive values of w, the equilib-
rium pressure is higher for a given coverage, the coverage increases more slowly 
with rising pressure. For w < 0, the isotherm is steeper. All isotherms are symmet-
ric around ad = 0.5. The slope at this point is 
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ad
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1
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. (6.11) 

A rough estimate of the interaction energy is therefore obtained from the slope at 

ad = 0.5,
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p
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1
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Fig. 6.9. Adsorption isotherms with lateral interactions between adsorbates in the Bragg-
Williams approximation. The coverage is plotted vs. the logarithm of the pressure, i.e. vs. 
the chemical potential of the gas phase. The thin solid line (w = 0) is the Langmuir Iso-
therm. For w > 0, the coverage rise more gradually with pln ; the chemical potential of the 
gas phase has to be larger to overcome the repulsive interactions in the adsorbed phase. For 
attractive interactions, the uptake is faster. Eventually, the adsorbate phase condenses into a 
"lattice liquid". The thick solid lines separates stable from instable regions. 

Similarly, from the slope of isobars at ad = 0.5 the lateral interaction is obtained 
as

Tk
T

TQw B

1
ad 4 . (6.13) 

At a critical value wc = 4kBT the slope of the isotherm becomes infinite at 
ad = 0.5, and below 4kBT one obtains formally three different coverages for a 

given pressure. This means that the system is instable and not adequately de-
scribed by the continuous curves. As in the case of the van-der-Waals gas, the true 
curve is given by the Maxwell construction of a vertical line leaving the same area 
to the calculated curves on both sides of the line (thin solid lines in Fig. 6.9). The 
resulting isotherms then call for an increasing coverage in the low-pressure re-
gime. At a particular critical pressure, which corresponds to the critical coverage 
given by the fat solid line in Fig. 6.9, more atoms are adsorbed without a pressure 
increase until an upper coverage limit given by the same fat line is reached. From 
thereon the coverage increases again according to the rising pressure. The system 
behaves very much like a condensation into a liquid state, although the adsorbate 
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remains in a lattice gas state. We remark that negative values of w stand for attrac-
tive interactions between the adsorbed species. The microscopic structure of the 
condensed adsorbed phase consists therefore of (large) close-packed adsorbate 
islands and uncovered areas on the surface.  
 The interesting isotherms produced by attractive interactions are typical for 
rare-gas adsorption, where the adsorbed atoms attract each other through van-der-
Waals forces. As discussed in Sect. 6.1 this attraction may be partly balanced by 
repulsive chemical interactions. However, even then the interaction remains at-
tractive. Figure 6.10 shows the adsorption isotherms of xenon on graphite for three 
different temperatures as measured by Suzanne et al. [6.15]. Beyond a particular 
pressure, which depends on the temperature, the coverage rises abruptly from a 
lower to an upper critical value (compare Fig. 6.9). The process repeats for further 
monolayers at higher pressures until the effect of the substrate vanishes and the 
condensed phase grows indefinitely. From the isotherms, one obtains a heat of 
adsorption of about 0.24 eV/atom. This value is comparable to the heat of adsorp-
tion of xenon on platinum [6.2]. This and the fact that further layers condense at 
higher pressures is indicative of a chemical interaction between graphite and xe-
non as discussed in Sect. 6.1 for xenon on platinum. 
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Fig. 6.10 Isotherms at three different temperatures for the first layer adsorption of xenon on 
graphite (after ref. [6.15]). Above a particular pressure, the coverage rises abruptly from the 
lower critical coverage to the higher critical coverage. The curve repeats itself for the sec-
ond and further monolayers until the influence of the substrate vanishes and the condensed 
phase grows infinitely. A heat of adsorption of about 0.24 eV/atom is derived from the 
isotherms. 
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Lateral interactions between chemisorbed species are frequently attractive at long 
distances and always repulsive at short distances. However, the attractive part 
does not necessarily show up in the isotherms, as in that case the chemisorbed 
species tend to grow in islands of a particular structure. For denser layers, the 
adsorption energy typically decreases as more substrate surface bonds become 
engaged in the bonding to the adsorbate. While this effect is not a lateral interac-
tion between adsorbates, it has the effect that the energy level of the adsorbate 
rises with the coverage. Isotherms, which are less steep than the Langmuir Iso-
therm, are therefore typical for chemisorption. In terms of the Bragg-Williams 
model, this means positive values of w. With a proper choice of w, or at least with 
a particular function W( ad) a quantitative agreement with experimental isotherms 
or isobars is nearly always obtained. Since isotherms represent an integral prop-
erty of the gas-surface interactions, fine details of the lateral interactions such as 
phase transitions in adsorbed layers are hardly visible in the experimental data due 
to the limited precision of the measurements.  

6.2.3 Experimental Determination of the Heat of Adsorption  

Experimentally, the ambient pressure is not as easily varied as the temperature. 
Adsorption equilibria are therefore mostly investigated with isobars: Here, the 
coverage is measured as a function of the surface temperature while the ambient 
pressure is held constant. Figure 6.11 displays a set of isobars that were calculated 
from the Langmuir Isotherms. The parameters are chosen such that the curves 
could represent very crudely CO-adsorption on transition metals in ambient pres-
sures ranging from 10 9 to 10 5 mbar. The temperature dependence of the 
vibrational and rotational partition functions is neglected. From curve to curve, the 
pressure is varied by one order of magnitude. If it were not for the temperature 
dependent prefactor factors in (6.4), each order of magnitude in the pressure 
would displace the isotherm by the same amount. Experimental data on a set of 
isobars as displayed in Fig. 6.11 can be used to calculate the isosteric heat of ad-
sorption Q( ad) by employing the Clausius-Clapeyron equation,  

)/1(
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)(

B

eq
ad Tk

p
Q . (6.14) 

This heat of adsorption is nearly but not completely equal to the difference in 
ground state energy of the gas-phase Eg and Ead. Neglecting again the contribu-
tions from the rotational and vibrational partition functions in (6.4) one obtains  

TkEEQ Badgad 2

5
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Fig. 6.11. A set of Langmuir Isobars for pressures varying by an order of magnitude. Be-
cause of the temperature dependent prefactor in (6.4) the Langmuir Isobars are shifted by 
an amount which increases with the temperature. 

For chemisorbed systems, the energy of adsorption Ead = Eg Ead is of the order 
of one eV or more, so that the difference between the heat of adsorption Q and 

Ead becomes marginal. For weakly chemisorbed species and isobars obtained at 
higher pressures, and comparatively high temperatures, the difference could mat-
ter. In principle, the temperature dependence of the heat of adsorption could also 
be determined from the isobars using the Clausius-Clapeyron equation. In reality, 
the data rarely cover a sufficiently large p/T-range to do so. Figure 6.12 displays 
the typical Arrhenius-plot for ln peq( ad) vs. T 1 that would be used to determine 
the heat of adsorption. Even for the pseudo-experimental data calculated from the 
Langmuir Isotherm, which is free of experimental errors, the deviations of the data 
points from a straight line (solid line in Fig. 6.12) are hardly visible. Therefore, 
experiments cannot resolve the temperature dependence of the prefactor and of the 
heat of adsorption.  
 It is important to realize in this context that nominal equilibrium experiments 
on single crystal surfaces in vacuum are strictly speaking not completely in equi-
librium insofar as only the temperature of the sample is varied. The temperature of 
the gas phase is determined by the walls of the vacuum chamber and therefore 
remains at about 300 K. This means that only the temperature in the temperature 
dependent terms of the chemical potential of the adsorbed state is varied [6.16]. 
With respect to the isotherms, these are the temperatures in the exponential term 
and in the vibrational partition function of the adsorbed state. 
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Fig. 6.12. Arrhenius plot of the equilibrium pressure for which the coverage is ad = 0.5 as 
calculated from the Langmuir Isotherm (6.4) (Fig. 6.11). The variation in the slope caused 
by the temperature dependent prefactor is hardly visible, despite the fact that the pressure 
range covers four orders of magnitude. Given the experimental errors, the temperature 
dependence of the heat of adsorption and therefore the temperature dependence of the 
prefactor cannot be obtained from experimental data.  

Neglecting the vibrational excitations, the heat of adsorption obtained from iso-
bars measured in an UHV-chamber is 

adgadUHV )( EEQ . (6.16) 

As an example we show the heat of adsorption of Xe on Pt(111) as a function of 
coverage in Fig. 6.13. The coverage was measured using the elastic scattered in-
tensity of a thermal beam of He-atoms [6.2]. The method is extremely sensitive 
and does not perturb the adsorbed layer. Up to a coverage of about  = 1/3 the 
heat of adsorption rises because of the attractive interactions between the Xe-
atoms. After that, the hard-core repulsion reduces the heat of adsorption. 
 For a long time, Arrhenius-plots as shown in Fig. 6.12 and thermal desorption 
spectra (Sect. 6.3) were the only way to obtain information on the heat of adsorp-
tion on well-defined single crystal surfaces. Direct calorimetric measurements 
were not feasible because of the very small heat released in an adsorption process 
in relation to the heat capacity of a bulk crystal. The development of an extremely 
sensitive single crystal calorimeter in combination with a molecular beam adsorp-
tion by D. A. King and collaborators was a major step forward [6.17, 18]. The 
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Fig. 6.13. Isosteric heat of adsorption of Xe on Pt(111) (after Kern et al. [6.2]). The cover-
age  is the fractional coverage in relation to the number of surface atoms. For small 
coverages, the heat of adsorption increases with coverage due to attractive interactions. At 
about  = 1/3, the hard-core repulsion sets in and the heat of adsorption drops sharply. The 

solid line is a heuristic fit with 20103/1 10265267meV/Q . The fit is used later 

in the context of thermal desorption. 

equipment is shown schematically in Fig. 6.14. The metal single crystals have a 
thickness of merely 0.2 m. The crystal is prepared by epitaxial growth on a water 
dissolvable single crystal salt (e.g. NaCl). The supporting crystal is dissolved af-
terwards to obtain a freestanding film, which is then mounted on a support ring. 
The gas is dosed from a molecular beam source. The source is calibrated employ-
ing the spinning rotor gauge (Sect. 2.2.1). The gauge sits in a housing featuring a 
small tubular orifice, which can be moved into the beam. The equilibrium pressure 
inside the housing when the beam is directed into the tubular orifice can be con-
verted into the number of particles in the beam per second, since the pressure and 
the conductance of the tube yield the flux out of the housing. The sticking coeffi-
cient on the sample is measured by observing the signal of reflected molecules 
from the beam using a mass spectrometer. If the signal is as high as when an inert 
gold surface is moved into the beam instead of the sample then the sticking coeffi-
cient is zero. It is one, when no beam molecules are reflected from the sample. 
The heat of adsorption increases temporarily the temperature of the sample. The 
increase is measured by an infrared detector. Light pulses of defined energy from 
a He-Ne Laser calibrate the IR-bolometer. The results for the heat of adsorption 
obtained by the direct measurements agree in general rather well with data ob-
tained from isobars [6.18].  



 6  Adsorption __________________________________________________________________________ 264

He-Ne Laser

shutter

lens

molecular beam

gold flag

KBr window IR
Detector

mass spectrometer

IR Lens

spinning rotor
stagnation gauge

sample

prism

Fig. 6.14. Set-up for a direct measurement of the heat of adsorption after Stuck et al. [6.18]. 

6.2.4 Underpotential Deposition 

The term underpotential deposition (upd) refers to the deposition of metal ions 

with a charge of +ze ( z
AMe ) on a substrate of a different material, mostly another 

metal MeS. If the equilibrium potential at which this deposition occurs is positive 
of the equilibrium potential for the formation of the solid phase of the deposited 
metal, then this phenomenon is called underpotential deposition and the corre-
sponding difference is the upd-shift. The reason for the existence of upd is the 
same as for the filling of a first monolayer (or the sequential filling of more layers) 
of a rare-gas on a substrate at a pressure below the equilibrium pressure of its solid 
phase. The binding energy between the rare-gas atoms and the substrate is larger 
than the binding energy in a kink site of the crystalline phase of the rare-gas. For 
rare-gas/solid interactions, the difference in the binding energy could amount to a 
factor of two. For metal-on-metal deposition, the differences are smaller. Because 
of this smallness, other factors such as the structure of the upd-layer as a function 
of the density, or a possible stabilization of the layer by ions from the electrolyte 
play an important role for the magnitude of the upd-shift and as to whether upd 
occurs at all.  
 The processes, which are compared, are illustrated in Fig. 6.15. The equilib-
rium between the solid phase and the electrolyte concerns the equilibrium between 
a metal atom at a Halbkristallage (kink site in half crystal position, see Sect. 1.3.2) 
and the metal-ion in the electrolyte (Fig. 6.15a). The reaction between the two 
states of the metal atom can be written as  

zeMeMe z  (6.17) 
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The energies involved in the reaction are the cohesive energy, the energy required 
to remove an electron from the bare atom, the energy to bring the electron from 
the vacuum level into the solid, and the solvation energy of the metal ion. The 
electrode potential at which this reaction is in equilibrium is the Nernst-potential. 

A

Mez+ Mez+

(a) (b)

S

A A

Fig. 6.15. (a) Electrochemical deposition of bulk material A and (b) of a layer of the mate-
rial A on a substrate S of a different material. If the latter case (b) occurs at a potential that 
is positive of the Nernst-potential of material A it is called underpotential deposition (upd). 
The upd-layer is stable in the potential range between the upd-potential and the Nernst-
potential. Underpotential deposition requires that the mean binding energy for an atom in 
the upd-layer of material A is larger than the cohesive energy (binding energy to a kink 
site) of material A.  

The upd-reaction can be written as 

zeMeMeMeMe z
ASAS  (6.18) 

The equilibrium electrode potential depends on the structure of the substrate and 
the adsorbed layer. Because of the lateral interactions in the upd-layer, the equilib-
rium potential also depends on the coverage. Phase transitions in the upd-layer 
affect the upd-potential as well as the possible co-adsorption of anions from the 
electrolyte and the formation of a compound structure with these anions. In other 
words, upd-layers are even more complex than the typical adsorbate layers in 
UHV-physics. However, just as for adsorbates in vacuum one does not need to 
have the full understanding of the complexity of upd-layers to obtain a qualitative 
picture of the behavior of isotherms.  
 In order to describe the equilibrium thermodynamics of upd we need expres-
sions for the chemical potentials of the various phases involved. We begin with 
the electrolyte. We assume that the electrolyte is sufficiently dilute so that ions do 
not interact with each other. In that case, their partition function is that of inde-
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pendent particles like for the ideal gas. From the free energy F of the ideal gas 
(5.9) one obtains for the chemical potential in terms of the density ,

ln)()/()2/(ln B0rotvib
2/3

B
2

B0 TkTZZTmkhTk .  (6.19) 

Here, we are interested only in the concentration dependence. We have therefore 
stored all other terms in a temperature dependent chemical potential 0(T). For 
sufficiently dilute electrolytes, the chemical potential of the ions is therefore pro-
portional to the logarithm of their concentration. The concentration is now defined 
by the molar ratio with respect to the solvent. In terms of this concentration zMe

the chemical potential of the ions Mez+ in a dilute electrolyte is  

zzz MeB0,MeMe
ln)( TkT . (6.20) 

For larger concentrations, (6.20) is no longer valid and the chemical potential 
becomes a complex function of the concentration of the ions, the concentration of 
all other ions in the electrolyte and the properties of the solvent. Debye and 
Hückel [6.19] derived a mean field solution to the problem. However, in general 
the chemical potential can only be determined experimentally via reaction equilib-
ria. Chemists like to keep the simple functional form of (6.20) and hide the 
complexity of the functional dependence on the concentration by introducing an 
activity ,...)( zMe

a  that is defined by the chemical potential of ions of a particu-

lar concentration.  

,...)(ln)()( zzzz MeB0,MeMeMe
aTkT  (6.21) 

Underpotential deposition is defined with respect to the equilibrium electrode 
potential for bulk deposition. We therefore consider this case first. In Sect. 5.1.3 
the chemical potential of the solid phase with reference to the vacuum level was 
derived as (5.16) 

)/ln(3 Bcohs TTkE . (6.22) 

As in (6.20) we put terms arising from vibrational partition function into a tem-
perature dependent ground state chemical potential s,0(T). In the course of the 
reaction (6.17) z-electrons are left behind at the Fermi-level of the metal. To con-
sider equilibrium of the reaction (6.17) their energy can either be added to the 
chemical potential of the electrolyte or be subtracted from the chemical potential 
of the solid. We choose the latter option to stress the point that the electrons sit on 
the metal. Subtracting the energy of z-electrons ze( ref) with reference to an 
arbitrary reference potential ref  one obtains 
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)(z)( ref0,ss eT . (6.23) 

Equilibrium between the ions in the electrolyte and the solid requires that 

)(z)(ln)( refeq0,sMeB0,MesMe zzz eTTkT . (6.24) 

The equilibrium potential is therefore  

z

z

Me
B0,s0,Me

refeq ln
zz

)()(

e

Tk

e

TT
. (6.25) 

Apart from a constant that is characteristic for the system, the equilibrium elec-
trode potential is therefore proportional to the logarithm of the ion concentration. 
For each order of magnitude in the concentration the equilibrium potential shifts 
by

C20atmeVz/2.5810ln
z
B

eq e

Tk
. (6.26) 

The corresponding equilibrium condition for an upd-layer can be obtained if one 
hides the complexity of a real system in a mean field approach (Sect. 6.2.2) and 
writes for the upd-phase   
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The coverage  is defined as the fraction of the saturation coverage in the upd-
layer. The equilibrium potential is now 
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In experiments, the temperature and the electrolyte concentration is kept fixed. 
Equation (6.28) then relates potential and the coverage in the upd-layer. Fig-
ure 6.16 shows isotherms for the upd of a Me2+ metal as a function of the potential 
for various values of w/kBT. In all cases the potential is referred to the potential at 
which ad = 0.5. Depending on the sign and magnitude of the interaction constant 
w one has a steep or a gradual transition region. For w/kBT < 4 one obtains a 
sudden change in the coverage as indicated by the vertical short-dotted line in 
Fig. 6.16. From general reasoning, one would expect the interaction between the 
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atoms in a metal upd-layer to be strongly attractive. STM studies show that metal 
upd-layers grow as a dense layer in islands or from steps. An abrupt change in the 
coverage at a particular electrode potential is therefore expected for metal upd. 
However, because of the experimental difficulty to measure static charges, upd is 
almost never studied in equilibrium. Rather one uses voltammograms, where the 
potential is swept at a particular rate (Sect. 2.3.2). A few equilibrium isotherms on 
single crystal surfaces of silver and copper were reported in the late seventies 
[6.20]. They show abrupt as well as smooth transitions within a potential range of 
50 mV. A smooth transition, however, can also result from surface inhomogenei-
ties. As these early studies had not STM-control over the surface quality and since 
it does not take much of structural inhomogeneity to produce a 50 mV shift in 
binding energy, it remains open whether upd-isotherms of metals are abrupt or 
smooth. 
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Fig. 6.16. Model isotherms for underpotential deposition. Parameter is the mean-field inter-
action constant w. For metal upd, one would expect strong attractive lateral interactions 
since the atoms in the upd-layer are densely packed even at partial coverages. The upd-
transition should therefore be sharp as indicated by the dotted vertical line. 

According to the model, the upd-deposition saturates for negative potentials, since 
the chemical potential becomes infinitely large at  = 1. Real isotherms tend to 
display a slow further uptake of atoms as the upd-layer becomes compressed. At 
more negative electrode potentials equilibrium with bulk crystal deposition is 
eventually reached. Then, the growth continues indefinitely if the concentration of 
ions is kept constant. 
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From (6.28) and (6.25) one obtains the difference in the equilibrium potentials for 
upd and bulk deposition, which is noted as the upd-shift upd It is convenient to 
define the upd-potential as the potential at the point of inflection (  = 0.5) and 
take as the ground state chemical potential upd,0(T) the chemical potential of the 
upd-layer at that coverage.   

)5.0,()(
z

1
adupd,0s,0equpdeq,upd TT

e
 (6.29) 

Equation (6.29) is the recipe to calculate, at least approximately, the upd-shift 
upd: Lacking better knowledge, one disregards the vibrational partition functions 

and calculates the difference in the ground state energies per atom for the bulk of 
the deposit (the negative of the cohesive energy) and the ground state energy of a 
surface covered with the deposit. This way the problem is amenable to treatment 
by standard total energy calculations. If the structure of the upd-layer is known at 
a particular coverage, e.g. to be a compressed layer at saturation, one may fur-
thermore neglect the entropic factors from site occupation and calculate the upd-
shift directly for the particular structure [6.21, 22].  

6.2.5 Specific Adsorption of Ions 

The term specific adsorption of ions refers to a situation where ions from an elec-
trolyte form a chemical bond with the surface as an adsorbed layer, in the same 
way as atoms or molecules chemisorbed from the gas phase might do. As for 
chemisorption, the term specific adsorption implies that a surface compound and 
not a bulk compound is formed in the process. Hence, specific adsorption and 
chemisorption concern the same final product, a layer of molecules or atoms 
chemically bonded to the substrate surface. The difference is in the initial state, 
which is more complex in the case of an electrolyte as it consists of an ensemble 
of solvent molecules, the solvation shells of the ions and counter ions in the elec-
trolyte. The process of specific adsorption therefore involves at least a partial 
stripping of the solvation shell. Some kind of a solvation shell may remain as the 
chemisorbed layer may include H-bonded water molecules, OH , or H+. The ions 
in the electrolyte carry a positive or negative charge that is quantized in units of 
the elementary charge. In forming the chemical bond with the surface, the charge 
is transferred to the solid. The bond may retain a partial ionic character 
(Sect. 3.1.3); However, this merely means that the bond with the substrate atoms 
is polarized, not ionic as a whole. Insofar the term "specific adsorption of ions" is 
somewhat misleading, especially when the adsorbed species is addressed in the 
notation for ions, e.g. as 2

4SO  or 4HSO . Specific adsorption of ions is a ubiqui-
tous phenomenon, which has been studied extensively using the traditional 
methods of electrochemistry such as voltametry and chronocoulometry 
(Sect. 4.2.4) as well as infrared spectroscopy, x-ray diffraction and tunneling mi-
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croscopy. Well studied is the relatively simple adsorption of halogens on the coin-
age metals, in particular gold.  
 The adsorption isotherms for specific adsorption are derived the same way as 
the isotherms for underpotential deposition. The adsorbed phase is treated in the 
mean field approximation. The relation between the coverage ad and the elec-
trode potential el, the Frumkin-isotherm, is obtained by equating the chemical 
potential of the adsorbed phase with the chemical potential of the ions in solution.  
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The reference potential 0 is a function of the binding energy of the ions at the 
surface and the solvation energy. The sign of the second term depends on the 
charge of the ions in solution, negative for a positively charge ions, and vice versa. 
As an example, Fig. 6.17 shows the adsorption isotherm for iodine on a gold film 
[6.23]. The coverage was determined by chronocoulometry and, ex situ, by x-ray 
photoemission spectroscopy (XPS). The coverage vs. potential fit to the Frumkin-
isotherm (6.30) with w/kBT = 12, which indicates a relatively strong repulsive 
interaction between the iodine atoms. Figure 6.17 seems to indicate a complete 
saturation at sat = 0.2 V. By applying more positive potentials on the electrode, 
one may nevertheless compress the iodine layer even against the Pauli-repulsion 
between the ions because of the large energy e( sat) per atom provided by the 
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Fig. 6.17. Fractional coverage of iodine on a Gold film. The coverages where determined 
using chronocoulometry and x-ray photoemission (XPS) (after Bravo et al. [6.23]). The 
solid line is a fit to the Frumkin-isotherm with w/kBT = 12. 



  6.2  Isotherms, Isosters and Isobars  __________________________________________________________________________ 271

0.3 0.4 0.5 0.6 0.7 0.8

0.46

0.48

0.50

0.52

 0.1M NaBr
 0.01M NaBr
 0.001M NaBr

C
ov

er
ag

e 

Electrode potential   vs. AgCl / V

Br on Au(111)

Fig. 6.18. Coverage of electrodeposited bromine on Au(111) (after Magnussen et al. [6.25]. 
The coverage is in Br-atoms per surface Au-atoms. The solid lines are Frumkin-isotherms 
shifted with respect to each other by kBT/e ln10. 

electrode potential. This electrocompression can lead to a sequence of phases as a 
function of coverage [6.24]. Electrocompression of compact halogen layers was 
studied by Magnussen et al. [6.25]. Figure 6.18 shows the Br-coverage of a 
Au(111)-surface in the regime of a uniformly compressed hexagonal bromine 
layer. The layer is incommensurate with the substrate in the entire range. The solid 
lines in Fig. 6.18 are Frumkin-isotherms that are displaced along the x-axis with 
respect to each other according to the change in the concentration of Br -ions in 
the solution by  

10ln
z
B

e

Tk
 (6.31) 

with z = 1. The fact that the charge of one electron appears in the shift is consis-
tent with the reasoning above that the ions of the solution have to give up one 
electron in forming the surface bond. Experimentally the observed shift with con-
centration do not always conform to (6.31) with integer multiples of the electron 
charge. This happens if the chemisorbed layer of ions involves the incorporation 
of a fractional monolayer of other ions e.g., OH , or H+. To describe this effect 
heuristically by conventional thermodynamics the term electrosorption valency 

was introduced. With reference to (6.30)  can be defined as  
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The incorporation of non-stoichiometric amounts of OH  and H+ is presumably 
the reason why the isotherms for sulfate adsorption display a non-integer electro-
sorption valency. Figure 6.19 shows isotherms for sulfate adsorption on Au(111) 
as reported by Shi et al. [6.26]. The data was already discussed in Sect. 4.2.4 
(Fig. 4.8) in the context of Maxwell relations and chronocoulometry. The solid 
lines in Fig. 6.19 are again fits to the Frumkin-isotherm, now with w = 13.5kBT.
The curves are rigidly shifted with respect to each other assuming an electrosorp-
tion valency of one. For low coverages, this shift is approximately in agreement 
with experiment, indicating that sulfate ions in aqueous solution are monovalent, 

solvated 4HSO -ions. The experimental data deviate substantially for larger poten-

tials and non-saturated coverages. A convincing interpretation in terms of a 
structural model for the disordered sulfate adlayer is still lacking. 
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Fig. 6.19. Surface coverage of Au(111) with SO4 (after Shi et al. [6.26]) for various con-
centrations of sulfate in a supporting electrolyte (0.05M KClO4+0,02M HClO4+xM 
K2SO4). The solid lines are Frumkin-isotherms with w = 13.5kBT. The isotherms are shifted 
with respect to each other assuming an electrosorption valency of one.  
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6.3 Desorption

6.3.1 Desorption Spectroscopy 

Thermal Desorption Spectroscopy (TDS) is one of the oldest techniques in surface 
science [6.27, 28]. In early work, it was used to study desorption from ribbon- 
shaped tungsten filaments which were rapidly heated by passing an electric cur-
rent through the filament. Differently strong adsorbed species would thereby 
desorb in the sequence of their binding energies, giving rise to pressure bursts that 
were detected by a pressure gauge. TDS is therefore a spectroscopy of the activa-
tion energies for desorption. If the adsorption process does not involve an 
activation energy, as is frequently the case, then the activation energies for desorp-
tion roughly correspond to the heats of adsorption (Fig. 6.5 and eqs. (6.15, 16)). 
TDS is then a spectroscopy of the heats of adsorption. Because of the use of fila-
ments, the method was also named flash filament technique.
 Modern versions of the technique use quadrupole mass spectrometers 
(Sect. 2.2.1) for detection and simultaneous chemical analysis of the desorbing 
species. Single crystal surfaces other than tungsten are not easily prepared as rib-
bons. Rather they come in the form of disks or as bead crystals (Sect. 2.1). 
Heating such a crystal in vacuum, inevitably causes desorption also from those 
surface areas that are neither properly prepared nor of the desired crystallographic 
orientation. It is therefore necessary to ensure that only the species desorbing from 
the surface of interest are probed. This is best achieved by placing the mass spec-
trometer into a separately pumped housing that is connected to the main chamber 
via a tube with a diameter smaller than the single crystal surface area. The orifice 
of the tube is brought close to the crystal, so that the species desorbing from the 
sides of the crystal are not in line-of-sight of the mass spectrometer. The desorp-
tion-signals from these species are sufficiently suppressed if the pumping speed of 

Mass spectrometer

Crystal

Cap

Filament
for

heating

Fig. 6.20. To avoid interference from species desorbing from the sides of the crystal the 
entrance of the mass spectrometer is covered by a glass cap. The inside of the cap should be 
gold plated and electrically grounded to prevent distortion of the electric fields inside the 
mass spectrometer. 



 6  Adsorption __________________________________________________________________________ 274

the main chamber is high enough so that the pressure increase during desorption is 
small. Simple, but rather effective is also to cover the opening of the ionization 
chamber of the mass spectrometer with a glass cap that ends into a tube pointing 
towards the sample (Fig. 6.20). The cap should be gold-coated on the inside with 
the gold film electrically grounded to avoid charging of the inner walls. Alterna-
tively, the cap can be made from stainless steel [6.29].  
 In 1962 Redhead proposed to turn flash desorption into a quantitative method
for the determination of activation energies for desorption [6.30] by raising the 
temperature linearly in time. 

tTtT 0)(  (6.33) 

This has become the standard procedure in TDS. Since the temperature is in-
creased according to a certain program, thermal desorption spectroscopy is 
occasionally also called Temperature Programmed Desorption (TPD). To calcu-
late the pressure increase as function temperature Redhead made a simple ansatz 
for the desorption rate  
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Here, rdes is number of desorbing species per time and surface area, Eact is the acti-
vation energy for desorption, nad is the number of adsorbate sites per area, 0 is a 
rate constant, n is the "order of the reaction" and ad is again the fractional cover-
age of adsorbate sites. The order is n = 1 for the direct desorption of the adsorbed 
species. If the desorption requires a recombination of two adsorbed atoms then it 
seems reasonable to assume that the rate is proportional to  2, hence desorption 
should be of second order. Zero order desorption should occur if the desorption 
product results from an autocatalytic surface reaction. However, we shall see 
shortly that this interpretation of experimentally determined exponents is too sim-
plistic. 
 With rising temperature, the desorption-rate increases exponentially as long as 
the coverage is not significantly reduced. For zero-order desorption, the rate drops 
to zero when the surface is void of adsorbates. For first and second order desorp-
tion, the rate passes through a smooth maximum to become eventually zero when 
the surface is depleted of adsorbates. The maximum of the desorption-rate is eas-
ily calculated. The coverage changes with time as  
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The maximum in the desorption rate corresponds to the point of zero slope of rdes

and therefore to the zero of the second derivative of the coverage. After inserting 
(6.33) and (6.35) in (6.34) and solving for the zero of the second derivative of ad
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with respect to time one obtains an implicit solution for the temperature Tm at 
which the maximum occurs 
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Here, ad,m is the coverage at the maximum of the desorption rate which is ap-
proximately equal to half the initial coverage ad,in. For second order desorption, 
the maximum shifts with the initial coverage (to lower temperatures), while the 
maximum is independent of coverage for first order desorption. The numerical 
solution to (6.36) is well described by 

eV/)/K10lg(2034710K/ act
1
inad,0

13
max ET n . (6.37) 

The equation can be used to roughly estimate the activation energy for desorption 
by assuming a value for the rate constant 0. Both, the rate constant and activation 
energy can be determined from experiment if desorption spectra are measured 
with different heating rates. A variation of the rate by two orders of magnitude is 
however required to keep the error reasonably low. Figure 6.21 displays the com-
plete desorption spectra calculated from the Redhead-ansatz (6.34) for n = 0, 1, 2. 
The heating rate is set to  = 1 K/s. The activation energy and rate constant were 
chosen as 1.5 eV and 1013 s 1, respectively, and the initial coverage is varied from 

 = 0.1 to 1.0 in steps of 0.1. Zero order spectra are characterized by an exponen-
tial increase in the rate, followed by a sudden drop to zero. The drop-off occurs 
the earlier the smaller the coverage is. First order desorption spectra are also 
somewhat skewed to the low temperature side. The peak position is independent 
of coverage. In second order desorption, the peak position shifts to lower tempera-
tures with increasing initial coverage. Common to all spectra is that the peak 
position depends essentially linear on the activation energy and somewhat on the 
rate of the temperature increase. 
 With his ansatz for the desorption rate, Redhead made three assumptions, nei-
ther one is fulfilled in reality. Most importantly, the activation energy changes 
with coverage. The rate constant 0 is to be replaced by a temperature dependent 
prefactor, and the coverage dependence of the rate can be significantly more com-
plicated than assumed in (6.34). The most important consequence of these 
complications is that the simple classification of the spectra according to the order 
of desorption cannot be upheld. To understand these effects, we need to develop a 
more detailed understanding of the desorption process. 
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Fig. 6.21. Desorption spectra for the desorption order n = 0, 1, 2 calculated from (6.34) 
under the assumption of a constant heating rate  = 1 K/s, a rate constant  0 = 1013 s 1, and 
an activation energy Eact = 1.5 eV. The initial coverage is varied from 0.1 to 1 in steps of 
0.1.

6.3.2 Theory of Desorption Rates  

The theory of kinetic processes is significantly more sophisticated than the theory 
of equilibria, because of the many channels, which couple the degrees of freedom 
of the adsorbed species to the degrees of freedom of the desorbing species. It is 
however, possible to derive an expression for the rate of desorption that contains 
mostly equilibrium properties of the adsorbed phase and the gas phase and a single 
parameter, which account for the kinetics. This parameter is the sticking probabil-
ity for a gas phase species (see also Sect. 6.1). This quantity is amenable to 
experimental determination, and is often near unity. The calculation of the desorp-
tion rate is based on the fact that in equilibrium the adsorption and desorption rates 
per area are equal. The flux F of molecules impinging on the surface from the gas 
phase is known from kinetic gas theory (2.3) as 
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The adsorption rate per area rad is then  
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The sticking probability s( ad, T) depends on the surface coverage ad and the 
temperature T. In equilibrium, the rate of desorption and the rate of adsorption are 
equal and the pressure is the equilibrium pressure peq.
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The equilibrium pressure can be expressed in terms of the chemical potential of 
the gas phase (5.15), and in equilibrium this is equal to the chemical potential of 
the adsorbed phase ad( ad, Ts). The desorption rate is therefore  
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While this is the desorption rate in equilibrium one can argue that the rate is not 
affected when the gas phase is taken away: adsorption and desorption rates per 
atom site are of the order of 1 s 1. The internal relaxation times of a solid-state 
system are at most of the order of picoseconds. Therefore removing the gas phase 
cannot lead to a redistribution of energy over the internal degrees of freedom of a 
solid-state system and hence does not lead to a change in its thermodynamic prop-
erties. Equation (6.41) therefore describes the desorption rate even when no gas 
phase is present.  
 The rate contains an exponential term and various temperature dependent 
prefactors. The first one is the sticking coefficient, which contains all kinetic as-
pects of the problem. In particular, the sticking coefficient may involve an 
activation energy. We note that, the temperature in (6.41) is the crystal tempera-
ture, even if in an actual desorption experiment the crystal temperature differs 
from the temperature of the ambient gas phase. This follows from the fact that 
(6.41) was derived from an equilibrium situation. The temperature dependence of 
the sticking coefficient as an experimental quantity must be measured also in an 
equilibrium situation. In reality, the sticking coefficient is mostly measured with 
the gas phase at room temperature and the crystal at higher or lower temperature. 
In the case of activated adsorption, this so-measured sticking coefficient could 
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deviate substantially from the sticking coefficient in equilibrium, since the prob-
ability to overcome the activation barrier should depend mostly on the kinetic 
energy of the molecules in the gas phase. The second term kBT/h is familiar from 
transition state theory (Sect. 10.1.3). It has the dimension of a frequency and 
amounts to 6.25 1012 s 1 at 300 K. This frequency is often, erroneously, confused 
with the vibration frequency of an atom in the potential well and misinterpreted as 
an "attempt frequency". The third term is the ratio of density of the atoms in the 
phase space in vacuum and on the surface. Depending on the mass of the desorb-
ing species and the density of sites on the surface, it can amount to a factor of 
hundred or thousand. Even for atom desorption the prefactor can therefore be as 
large as of 1015. Of the gas phase partition functions Zvib and Zrot only the latter 
contributes a larger factor. For CO, e.g., the rotational partition function is 120 at 
300K.  
 In order to discuss (6.41) further we insert the mean field solution (6.7) for the 
chemical potential of the adsorbed phase. We consider explicitly three cases, (I) 
desorption of rare-gases, (II) desorption of diatomic molecules with particular 
attention to CO, and (III) desorption of a diatomic molecule that is dissociated in 
the adsorbed state.  

Case I: desorption of rare-gases 

The partition function in the gas phase contains only translations. The vibrational 
frequencies in the adsorbed state are low, so that there is a contribution from there. 
The rate of desorption is  
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We discuss this equation with the system Xe on Pt(111) in mind, for which the 
thermodynamic data as well as vibration frequencies have been measured [6.2]. 
The heat of adsorption was shown in Fig. 6.13 and was fitted by a heuristic func-
tion. To conform to (6.42) the coverages in Fig. 6.13 have to be scaled to a 
saturation coverage for which we take sat = 0.37. To calculate the desorption 
spectrum one needs the sticking coefficient. As an approximation, we assume that 

)1(),( ad0ad sTs  with s0 = 1. This cancels the (1- ad)-term in the denomi-

nator of (6.42). The vibration quantum  for the vertical motion is about 
3.5 meV [6.2]. We assume that the parallel vibration frequencies have the same 
value, so that the vibration partition function for the adsorbed state becomes (zero 
point energy neglected).  
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Finally, we convert the difference Eg  Ead into the heat of adsorption by using the 
definition (6.14) and the equilibrium condition between the chemical potential of 
the gas-phase (5.15) and the adsorbate phase (6.7). 
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Equation (6.42) then becomes 
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The resulting desorption spectra for a heating rate of  = 1 Ks-1 are displayed in 
Fig. 6.22 for the coverages 0.1 to 1.0 (solid lines). The compressive interaction 
between the adsorbed Xe-atoms at full coverage cause the early desorption at low 
temperatures. The low temperature tail vanishes for ad = 0.9 and lower. Without 
that tail, the spectra resemble those of zero-order desorption (Fig. 6.21) although 
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Fig. 6.22. Desorption spectra calculated for Xe on Pt(111) for coverages ad = 0.1 to 1 in 
steps of 0.1. The spectra are typical for rare-gas desorption from transition metals. The 
spectra look as if the desorption were of zero order (Fig. 6.21) because of the attractive 
interaction between the adsorbate atoms. The long tail at low temperatures marks the early 
desorption of species from the compressed layer when repulsive interactions prevail. With-
out interaction the full coverage desorption spectrum would look as indicated by the dotted 
line.
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the desorption is first order. This seeming zero-order shape results from the attrac-
tive interactions between the adsorbed Xe-atoms. The dashed line in Fig. 6.22 is 
the spectrum calculated for zero interactions, with the heat of adsorption set to its 
maximum value of 310 meV (Fig. 6.13). 

Case II: desorption of CO 

Thermodynamics and kinetics of adsorption and desorption of carbon monoxide 
has been studied on many surfaces, in particular on the transition metals. There is 
consensus that the heat of adsorption decreases with coverage, although different 
studies come to different conclusions concerning the magnitude and the functional 
dependence on the coverage. For adsorption of CO on Pd(100), e.g., Behm et al. 
find that the heat of adsorption stays nearly constant almost up to saturation cov-
erage and then drops sharply to 2/3 of its initial value [6.31]. Yeo et al. find a 
continuous, almost linear decrease [6.32]. The authors furthermore disagree on the 
coverage dependence of the sticking coefficient. This may be an indication that 
the method matters by which a result is obtained. Behm et al. measured the stick-
ing coefficient by exposing the surface from the gas phase ambient pressure at 
350 K and the heat of adsorption via isobars. Yeo et al. measured the sticking 
coefficient using a normal incidence CO beam, and the heat of adsorption was 
determined by calorimetry at 300 K. The sticking coefficient may depend on the 
orientation of the incoming CO molecules and the coverage dependence of the 
heat of adsorption could depend on whether the CO-layer is ordered (Yeo et al.) or 
disordered because of the higher temperature (Behm et al.).  
 For a survey on the qualitative features of CO-desorption spectra, these subtle-
ties need not be taken into account. We model the spectra by assuming a heat of 
adsorption of 1.65 eV and a linear decrease down to 2/3 of the initial value at satu-
ration coverage. This corresponds roughly to the coverage dependence of the heat 
of adsorption measured by Yeo et al. [6.32]. The saturation coverage on Pd(100) is 
0.56 CO atoms per surface atom [6.31]. For our purpose, the sticking coefficient is 
sufficiently well described by adad 1),( Ts  [6.31, 32]. The prefactor con-

tains the rotational partition function of the gas phase molecule. CO on Pd adsorbs 
in a bridge site. The species has therefore one low lying vibrational mode from the 
hindered translation. We assume the frequency to be as for Ni(100) 
(  = 3.7 meV, Sect. 5.4.1). The desorption rate is then 
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Here the conversion of the difference Eg  Ead into the heat of adsorption by using 
the definition (6.14) and the equilibrium condition (6.4) adds a factor exp( 5/2) to 
the prefactor 0(T), which thereby becomes 
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The calculated value is in reasonable agreement with the measured value of Behm 
et al. (3 1016 s 1 at 500 K [6.31]).  
The calculated desorption spectra for a heating rate of 14 K/s are displayed in 
Fig. 6.23. Because of the reduction of the heat of adsorption, the spectra shift to-
wards lower energies for higher coverages. The overall width of the individual 
spectra reflects the amount by which the heat of adsorption changes with coverage 
for a given initial coverage. According to Fig. 6.23, desorption from a fully cov-
ered surface begins already below 300 K. A surface dosed at 350 K with CO with 
the CO-gas pumped off afterwards would therefore not display the low tempera-
ture part of the set of spectra shown in Fig. 6.23 [6.31]. CO-desorption spectra 
obtained after dosing a Pt(111) surface with CO at 100 K are very similar to the 
spectra shown in Fig. 6.23 [6.29]. 

100 200 300 400 500
0

2

4

6

0.0 0.5 1.0

0.6

0.8

1.0

D
es

or
pt

io
n 

ra
te

 d
/d

t/
 1

0-3
 s

-1

Temperature / K

 Desorption of CO

 Q
/Q

0

 Coverage 
ad

Fig. 6.23. Calculated desorption spectra for CO-desorption from a Pd(100) surface for 
coverages ad = 0.1-1 in steps of 0.1. The insert shows the assumed dependence of the heat 
of adsorption on the coverage. The broad appearance of the peak for high coverages is 
caused by the dependence of the heat of adsorption on the coverage.  

It is also instructive to look at a set of desorption spectra calculated with the as-
sumption that the heat of adsorption drops sharply beyond a particular coverage, 
e.g. because sites with a lower binding energy becomes occupied. Figure 6.24 
displays a set of desorption spectra for that case. The heat of adsorption is as-
sumed to drop down to 90% of its initial value at ad = 2/3 (see insert in 
Fig. 6.24). Otherwise, the data are as for Fig. 6.23.  
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Case III: desorption of a dissociated diatomic molecule 

Diatomic molecules like N2, O2, H2, CO and NO, frequently dissociate upon ad-
sorption. On transition metals, oxygen and hydrogen dissociate without an 
activation barrier. Desorption is therefore again determined by the heat of adsorp-
tion. As the molecules recombine in the process, desorption should be of second 
order. A second order process also follows from the simplest possible ansatz for 
the chemical potential of the adsorbed phase (5.97). Using (5.97) one obtains for 
the desorption rate 
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Fig. 6.24. Desorption spectra when the adsorbate fills sequentially two different sites of 
different binding energy. The coverages is varied between ad = 0.1 and 0.9 in steps of 0.1. 
The insert shows the assumed shape of the functional dependence of the heat of adsorption 
on the coverage. Otherwise, the data are as for Fig. 6.23. 

As an example we consider desorption of H2 from a Pd(100)-surface. Adsorption 
and desorption of hydrogen, the sticking coefficient and the heat of adsorption for 
this surface has been studied by Behm et al. [6.33]. The vibration levels of H in 
the adsorbed state are too high to contribute to the partition function. The same 
holds for the molecular vibration in the gas phase. The prefactor 0(T) is now 
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Fig. 6.25. Calculated desorption spectra for hydrogen on Pd(100) for coverages ad = 0.1-1 
in steps of 0.1. The coverage dependence of the heat of adsorption (solid line in insert) is 
taken from the experimental data (open squares [6.33]) 

The heat of adsorption stays constant up to about 70% of the saturation coverage 
which is at  = 1.3 hydrogen atoms per Pd-surface atoms (see insert in Fig. 6.25). 
The zero coverage sticking coefficient is s0 = 0.5 which indicates non-activated 
adsorption. The sticking coefficient decreases for higher coverages. For our pur-
pose, the decrease is well enough described by adad 1),( Ts . Behm et al. 

find for the prefactor in desorption at about 400 K the value 1.4 1013 s 1 [6.33]. 
Our calculated value 1.9 1013 s 1 at 400 K compares well with that experimental 
value. The calculated desorption spectra are displayed in Fig. 6.25. The desorption 
temperature and the overall shape of the curves agree favorable with the experi-
ment [6.33], but the hump around 250 K carries more weight in the experiment. 
This weight depends on the shape of curve describing the heat of adsorption vs. 
coverage (see insert in Fig. 6.25). If the heat of adsorption falls off at a lower cov-
erage, then the fraction of molecules desorbing in the low temperature regime 
increases. If the spectra display a hump, then the heat of adsorption stays ap-
proximately constant in a certain coverage range (compare Fig. 6.24).  

Summary 

In the early days of surface physics the various humps and peaks in desorption 
spectra were addressed as "states". These states were denoted by Greek letters and 
numbered in the sequence of their position on the temperature scale; , … 
would denote weakly bound, e.g. physisorbed species, would denote 
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chemisorbed species. The understanding was that the peaks should correspond to 
individual species of different nature, for example species adsorbed in different 
sites. We have seen in the preceding section that humps and peaks can also arise 
from lateral interactions between the adsorbed species, which may or may not be 
concomitant with a change in the adsorption sites or a restructuring of the surface. 
Hydrogen on Pd(100), e.g. occupies only bridge sites [6.33]. Carbon monoxide on 
the other hand frequently changes the preferred site on the surface as a function of 
coverage. An example is CO on Pt(111) where CO first adsorbs in the atop sites 
and later in bridge sites. Despite the change in site, the desorption spectra look 
very similar to the set of curves displayed in Fig. 6.22 [6.34]. On the other hand, a 
quantitative description of the desorption spectra for the same system, self-
consistent with isotherms, the sticking coefficients, and the partial coverages in 
the two sites is a formidable task that involves sophisticated and detailed consid-
erations (for a very lucid discussion see [6.35]). In summary, one may state that 
desorption spectra while providing quick and qualitative information on the ad-
sorption system are difficult to interpret in detail since equilibrium properties and 
kinetic effects are intertwined.   

6.4 The Chemical Bond of Adsorbates

6.4.1 Carbon Monoxide (CO) 

Carbon monoxide has been the drosophila (fruit fly) of Surface Science. Not only 
is adsorbed CO the by far most studied molecule; it has also been the molecule of 
choice to test new methods of surface analysis. There are reasons why CO became 
so popular. It adsorbs dissociatively and in a molecular state. As a molecule, CO 
can occupy different surface sites and may form complex surface lattices, depend-
ing on the coverage and the type of substrate. Research on CO adsorption and 
surface reactions involving CO was stimulated in the 70ties by the development of 
exhaust catalysts for the automotive industry. More recently, interest in CO ca-
talysis was renewed in the context of methane reformation in fuel cells. 
 Among the scientific questions, that evolved in connection with CO adsorption 
was whether and on which materials CO would adsorb dissociatively. Desorption 
spectroscopy is not conclusive in that regard as CO would always desorb as a 
molecule even if adsorbed as separate oxygen and carbon atoms. It was one of the 
great successes of surface vibration spectroscopy using inelastic electron scatter-
ing (Sect. 7.4). that, with respect to the tungsten surface, the question could be 
decided in favor of dissociative adsorption [6.36]. From systematic studies, the 
picture emerged that all transition metals in the Periodic Table left of a boundary 
between iron and cobalt dissociate CO upon chemisorption at room temperature. 
After completion of a monolayer, additional CO molecules bind to the surface in 
molecular form if the surface is at low temperatures. Elements to the right of the 
boundary bond CO as a molecule. For the transition metals near the boundary, 
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dissociation depends on the surface orientation and on the presence of defects on 
the surface. Surface atoms with a lower coordination such as kink atoms or step 
atoms dissociate CO more easily. 
 Molecular bonding of CO involves the Highest Occupied Molecular Orbital
(HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO). For CO, the 
HOMO is the 5 -orbital, which is a bonding orbital for the CO-molecule. The 
LUMO is the 2 *-orbital which is antibonding with respect to the CO molecular 
bond. The energies of both orbitals with reference to the vacuum level lie near the 
Fermi-level of transition metals. Coupling with the metal electrons broadens the 
molecular levels. The 5 -orbital forms bonding and antibonding combinations 
with the unoccupied metal states and thereby establishes a chemical bond to which 
the CO-molecule contributes two electrons. Thereby charge is donated to the sur-
face. The 5 -orbital carries the largest weight on the backside of the carbon atom 
(Fig. 6.26). The CO-molecule therefore bonds in an upright position with the car-
bon pointing towards the surface.  

C

5

2 * 2 *

O2 * 2 *

Fig. 6.26. Orbital scheme of the CO-molecule. As the largest weight of the 5 -orbital is on 
the backside of the carbon atom, CO bonds with the carbon atom pointing towards the 
surface. 

The 2 *-orbitals form bonding and antibonding combinations with the occupied 
metal states. Electrons from the metal are back donated into the molecule. Since 
the 2 *-orbital is an antibonding orbital for the CO-molecule this back donation 
weakens the internal chemical bond of the CO molecule. The bonding mechanism 
for CO was first proposed by Blyholder [6.37]. Because of the described bonding 
mechanism, CO binds effectively to transition metals with their high density of 
states at the Fermi-level. The binding energy is around 1.5 eV. The binding energy 
with the coinage metals Cu, Ag, Au is significantly lower. The overlap of the 5
orbital with the metal orbitals is best for the a-top site. For the 2 *-orbital, the 
bridge site between two metal atoms provides the best overlap. Both effects ap-
proximately compensate each other so that the binding energy of CO is not very 
site specific. The preferred binding sites may therefore depend on the coverage. 
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On Pt(111) e.g., adsorption is first in the atop site up to a coverage of 1/3 of a 
monolayer. Further CO molecules are then adsorbed in the two-fold bridge site. 
Adsorption of CO in various sites is easily distinguished by vibration spectros-
copy. Bridge bonding to two or more surface atoms leads to a larger overlap with 
the 2 *-orbital and therefore to a larger back donation of electrons into the anti-
bonding orbital of CO. This weakens the molecular bond. The simplest indicator 
of bond weakening is the CO-stretching vibration. Adsorption in bridge site leads 
to a lower CO-stretching vibration. The reasoning based on vibration spectroscopy 
is particular convincing if sites are occupied in sequence.  

2100

1850

470

380

0 1000 2000

Energy loss in wave numbers / cm-1

In
te

ns
ity

 (
ar

b 
un

its
)

Pt(111)+CO

Fig. 6.27. Electron energy loss spectrum of 2 eV electrons backscattered in specular reflec-
tion from a CO-covered Pt(111) surface [6.29]. The energy loss is given in spectroscopic 
units (8.065 cm 1 = 1 meV). The mode pair 2100 cm 1/470 cm 1 belongs to CO in the a-top 
site, the pair at 1850 cm 1/380 cm 1 to CO in the two-fold bridge site. The spectrum corre-
sponds to half a monolayer coverage for which the system realizes a c(4 2) structure (see 
insert). 

Figure 6.27 shows an electron energy loss spectrum (Sect. 7.2.2) for 0.5 monolay-
ers of CO on Pt(111) [6.29]. The frequencies are given in wave numbers (cm 1).
The CO stretching vibration at 2100 cm 1 and the associated metal-carbon vibra-
tion at 470 cm 1 (corresponding to the vibration of the entire molecule against the 
surface) belong to CO in the a-top site. This pair of modes is the only one seen at 
low coverages. The CO stretching mode at 1850 cm-1 and the metal-carbon mode 
at 380 cm-1 belong to CO in the bridging site. At half monolayer coverage, the 
CO-molecules form a c(4 2) overlayer (insert in Fig. 6.27).  
 Substantially larger back donation than on the bridge sites occurs when elec-
tron-donating hydrocarbons [6.38] or alkali metals are coadsorbed. For CO 
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coadsorbed with potassium on Pt(111), CO frequencies as low as 1380 cm-1 have 
been observed [6.39, 40]. Note that the c(4 2) overlayer can also be realized with 
CO only in bridge sites by shifting the CO-unit cell with respect to the substrate. 
This was the structure originally proposed for CO on the Ni(111)-surface as there 
only one species was found for the ordered c(4 2) structure [6.41]. Later, how-
ever, LEED and photoelectron diffraction showed that CO occupies the hcp and 
fcc threefold hollow sites on Ni(111) [6.42, 43]. The Ni(111) surface thereby be-
comes rumpled and the CO-molecules are slightly tilted with respect to the (111)-
orientation.  
 Tilted configurations are also realized for the compressed (2 1) p1g1 structure 
of CO on Pd(110) [6.44] and the (2 1) p2mg structures of CO on Ni(110) [6.45] 
and Rh(110) [6.46]. In all these cases, CO occupies the two-fold bridge site. On 
the Cu(110) surface, however, CO sits in the a-top site and is perpendicular ori-
ented [6.47]. 

c(4x2) CO/NO c(4x2) NO

Fig. 6.28. (left) c(4 2) structure of CO [6.42, 43]. The same structure was proposed by 
Materer et al. for the c(4 2) structure of NO on Ni(111) [6.48]. An alternative proposition 
for the c(4 2) cell of NO on Ni(111) with more strongly and differently tilted NO mole-
cules is shown on the right [6.49]. 

6.4.2 Nitric Oxide (NO) 

The electronic structure of NO is similar to CO, except that now the 2 * orbital is 
occupied by one electron. NO bonds always with the nitrogen atom and mostly in 
upright position. Because of the lower lying, partially occupied 2 * orbital NO has 
a larger tendency to bond in bridging configurations. In Fig. 6.28 two alternatives 
for the c(4 2) structures for NO on Ni(111) are compared.  
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6.4.3 The Oxygen Molecule 

Oxygen is a rather peculiar molecule. The formal double bond results from the 
occupation of three bonding and one antibonding orbital formed by the four p-
electrons per atom. The splitting between the bonding and antibonding 5  orbitals 
is large because of the large overlap of the pz atomic orbitals oriented along the 
molecular axis. The antibonding 5 * orbital therefore remains unoccupied. The px,y

atomic orbitals which are oriented perpendicular to the molecular axis form the 
degenerate 2 bonding orbitals and the 2 * antibonding orbitals. The 2  orbitals 
are occupied with two electron pairs, the 2 * orbital with one electron pair. If the 
molecule is ionized by removing one electron from the 2 * orbital the bond 
strength increases. Even the doubly ionized O2

2+ molecule is stable and so is the 

2O -ion. The ground state of the oxygen molecule is a spin polarized triplet 

g
3 -state (of the 2 * electrons). By photoexcitation, the molecule can be 

brought into the more reactive singlet g
1 -state, which exists at a 0.98 eV higher 

energy. Because of the presence of hot filaments, a fraction of the oxygen mole-
cules in a vacuum chamber is in the singlet state. One should be aware of this fact 
when studying reaction kinetics of oxygen molecules on surfaces that adsorb the 
triplet oxygen molecule but with a low sticking probability. 
 Since the energies of all electrons in the O2-molecule lie below the Fermi level 
of substrates, positively charged species are not realized in surface bonds of the 
O2-molecule. However, by a reconfiguration of the orbitals, the O2-molecule can 
employ the 2  and 2 * electrons to form bonds with surface atoms without disso-
ciating. This flexibility accounts for the large variety of chemical bonds in which 

the O2-molecule can engage: A partially ionized 2O -state, the superoxo-state 

with the oxygen bonded to one surface atom (formal molecular bond order is 1.5 
in that case) and the peroxo-state in which the molecule bonds with two atoms 
either to one or to two surface atoms. In the latter case, the formal bond order of 
the molecular bond is 1.0. Neither of these surface bonds is very strong. Molecular 
forms of adsorbed oxygen therefore exist only at low temperatures. Figure 6.29 
shows an electron energy loss spectrum of the Pt(110) surface after adsorption of 
O2 at 30 K [6.50]. In addition to physisorbed O2 (1553 cm-1) the spectrum shows 

three more losses which are associated with the O2 stretching vibration: the 2O -

state (1262 cm 1) and two peroxo-states with the O2-molecule bonding to one or 
two surface atoms (934 cm 1 and 863 cm 1, respectively). Oxygen dissociates on 
platinum upon annealing so that at 300 K only the spectral features of oxygen 
atoms survive. 
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Fig. 6.29. Electron energy loss spectrum of the Pt(110) surface after deposition of molecu-
lar oxygen at 30 K (upper panel). Four different forms of O2 are discernible. After heating 
to 300 K, the oxygen molecule dissociates and the spectrum displays the spectral features of 
adsorbed oxygen atoms (lower panel) [6.50]. 

6.4.4 Water  

The importance of water/surface interactions for many areas of physics, chemistry, 
including electrochemistry, and biology can hardly be overestimated. One might 
therefore think that surface scientist should have responded to the challenge by 
making adsorption of water a prime objective of their research activities. It is, 
however, only lately that water adsorption has found the deserved attention, pri-
marily for experimental reasons. Most experimental tools for structure analysis 
and spectroscopy employ electrons. Water has an extremely high cross section for 
electron-stimulated dissociation and desorption, rendering most electron based 
techniques useless, except if one can work with very low doses. Moreover, water 
interacts weakly with surfaces and therefore adsorbs only at low temperatures. The 
stable form of a layer of water molecules on a surface involves hydrogen bonds 
with other water molecules in the hexagonal configuration of a double layer re-
sembling the structure of ice (Fig. 1.51). These double layers have been 
considered in Sect. 1.5 in the context of the solid/electrolyte interface. Here we are 
concerned with the adsorption of water monomers on surfaces. Adsorbed mono-
mers of water exist at very low temperatures (T  20K) as metastable species 
[6.51].  
 To prepare for the understanding of the water/surface bond we consider first the 
bonding in the molecule itself. The two hydrogen atoms in the water molecule are 
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bonded by the oxygen px and py orbitals. The bond is strongly polarized with the 
charge shifted towards the oxygen atom, which gives rise to the large dipole mo-
ment of the water molecules (1.85 Debye, 1 Debye = 1/4.80 eÅ). The bond angle 
(104.5°) is larger than the 90° subtended by the unperturbed p-orbitals because of 
hybridization with the s-orbital and the Coulomb-repulsion between the hydrogen 
atoms that are partly divested of their electrons. The remaining four of the six 
valence electrons of oxygen form two lone pair orbitals, each occupied by two 
electrons. The chemical bond with the substrate is established by the formation of 
bonding and antibonding orbitals between an occupied lone pair orbital and the 
unoccupied substrate states. The bonding of the water molecules therefore in-
volves a charge donation into substrate states. The polarity of the bond causes a 
reduction of the work function. The work function is further reduced by the dipole 
moment of the water molecule itself. The total work function shift is therefore 
described by attributing a dipole moment to each water molecule, which consists 
of two components one from the dipole moment of water p(H2O) and one from the 
dipole moment associated with the bonding to the surface p0. The total dipole 
moment p is p = p0 + p(H2O)cos  with  the angle between the HOH-plane and 
the surface normal [6.53]. 

Fig. 6.30. The binding of a single water molecule on a Pt(111) surface [6.52, 53]. 

Theory has shown that the molecule binds best in the on-top sites. As the highest 
occupied (lone pair) orbital, the HOMO, is perpendicular to the plane of the mole-
cule, the molecule is approximately planar to the surface [6.52, 53] (Fig. 6.30). 
The flat configuration of the molecule in an on top position was rediscovered in 
2003 and it was shown that the angles  range between 75° and 84° [6.54] (Table 
6.1). On some surfaces, water dissociates partially into H and OH. The oxygen 
pre-covered platinum is one case [6.55, 56]. OH-groups also play an important 
role as an intermediate in the famous catalytic reaction of oxygen and hydrogen to 
water [6.58] which was the first catalytic reaction ever reported (Döbereiner 
lighter [6.57]). 
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Table 6.1. Binding energies and orientation of single water molecules on {0001} and 
{111} metal surfaces after Michaelides [6.54]. The surface bond does practically not affect 
the HOH-bond angle. 

Substrate Ru Rh Pd Pt Cu Ag Au 

Energy /eV 0.38 0.42 0.33 0.35 0.24 0.18 0.13 

Angle 84° 81° 83° 83° 75° 81° 67° 

Another case of partial dissociation which is of considerable technological impor-
tance is the Si(100) surface. This surface dissociates water with a sticking 
coefficient near unity even at 90 K and bonds the OH-group to one of the dangling 
bonds of a dimer and the hydrogen on the other to produce an ordered (2 1) struc-
ture [6.59, 60]. The asymmetric dimer of the clean surface (Fig. 1.24) becomes 
nearly symmetric. Because of the OH-groups, the surface is hydrophilic 
(Sect. 2.1.2). The hydrogen desorbs upon annealing, leaving the surface partly 
oxidized. Thermal oxidation of the Si(100) surface is therefore facilitated by add-
ing water to the oxygen atmosphere (wet oxidation).

6.4.5 Hydrocarbons 

We begin the discussion with the saturated hydrocarbons such as methane (CH4), 
ethane (C2H6), propane (C3H8) etc., or cyclohexane (C6H12). Saturated hydrocar-
bons can establish a bond with the surface atom only via one or more hydrogen 
atoms in the form of a hydrogen bond, similar to one form of bonding of a net-
work of water molecules with the surface as considered in Sect. 1.5. This 
somewhat unusual and a priori unexpected hydrogen bond was discovered in 1978 
by vibration spectroscopy [6.61]. Figure 6.31 shows one of the original electron 
energy loss spectra representing the dipole active (Sect. 7.4.2) vibration modes of 
C6H12 adsorbed on Pt(111). Most of the vibration modes are at least approximately 
where the gas phase molecule has them. The corresponding gas phase modes are 
indicated in the figure together with their enumeration i according to the chemi-
cal nomenclature. The broad intense loss in the range of the CH-stretching modes, 
but significantly downshifted compared to typical CH-stretching frequencies has 
no counterpart in the gas phase spectrum. The large intensity of the feature indi-
cates that the mode has a large dynamical dipole moment. Together with the large 
width, this calls for the hydrogen atoms engaged in hydrogen bonding with the 
surface.
 An unperturbed cyclohexane molecule may engage up to three hydrogen atoms 
in hydrogen bonding (Fig. 6.32). There are two principally different possibilities 
for hydrogen bonding with three H-atoms. One form would involve the H-atoms 
of three immediate carbon neighbors, the H-atoms labeled 1, 2 and 3 in Fig. 6.32. 
The alterative is bonding with the H-atoms labeled 2, 3 and 4 in Fig. 6.32. At least 
one of the modes visible in the spectrum belongs to a degenerate representation 
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Fig. 6.31. Electron energy loss spectrum of cyclohexane (C6H12) adsorbed on Pt(111) rep-
resenting the vibration spectrum of dipole active modes (after Demuth et al. [6.61]). Most 
of the modes appear at the same position where the gas phase molecule has them. The 
broad intense feature with the maximum at 2590 cm 1 has no counterpart in the free mole-
cule. It is attributed to the CH stretching vibration of the hydrogen atoms forming a 
hydrogen bond with surface atoms.  
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43

Fig. 6.32. The cyclohexane molecule may establish up to three hydrogen bonds with the 
surface. There are two possibilities; either the hydrogen atoms labeled 1-3 or the atoms 
labeled 2-4 make the bond with the surface.  

(the CH2 twist mode  = 1261 cm 1). This mode should not possess a dipole 
moment perpendicular to the surface when the molecular skeleton is oriented par-
allel, which may be an indication that the molecule would is canted with respect to 
the surface, thereby realization H-bonding with the atoms 1-3. However, this ar-
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gument assumes that the carbon skeleton of the cyclohexane molecule remains 
unperturbed for which there is no proof. 
 The binding energy of this specific form of hydrogen bonding with surface is 
much stronger than a van-der-Waals bond, which is consistent with the fact that 
cyclohexane remains bonded to the surface up to a temperature of 160 K. Anneal-
ing to higher temperatures causes dehydrogenation to benzene (C6H6) via an 
intermediate having the stoichiometry of C6H9 [6.62]. Hydrogen bonding of hy-
drocarbons to surfaces is not confined to cyclohexane, rather it seems to be the 
standard form of bonding for saturated undissociated hydrocarbons and for unsatu-
rated hydrocarbons when adsorbed at low temperatures [6.61]. In view of this fact 
and considering that the hydrogen bonding is of outmost importance for all cata-
lytic reactions involving hydrocarbons (hydrogenation, dehydrogenation, 
hydrogenolysis, isomerization, hydrocracking, and cyclization) it is surprising that 
little attention has been paid to this form of surface bond. 
 Unsaturated hydrocarbons may also bond via hydrogen bonding at low tem-
peratures. Transition metal surfaces exposed to unsaturated hydrocarbons at room 
temperature however either crack the molecule or engage the -electrons of the 
hydrocarbon to form carbon-metal -bonds. A molecule like ethylene (C2H4) e.g. 
thereby rehybridizes from sp2 to sp3 type bonding. The carbon-carbon bond order 
reduces to one. A thoroughly studied system is ethylene on Si(100) [6.63-65]. 
According to these studies, ethylene binds to the Si-dimers in a di-  configuration 
with the Si-dimer bond left intact (Fig. 6.33) [6.64]. 

Fig. 6.33. Ethylene (C2H4) bonded to the Si-dimers on the Si(100) surface in a di-  con-
figuration. The state of lowest energy may involve a C-C axis rotated by 11° around the 
surface normal and the CH2 groups twisted with respect to each other by 27° [6.64]. 

Acetylene (C2H2) also rehybridizes upon adsorption to form -bonds with the 
surface. The frequency of the C-C vibration shifts from 1974 cm-1 to about 
1200 cm 1 [6.66]. The comparison to the frequencies of the C-C stretching vibra-
tions of ethylene and benzene (1623 cm 1 and 992 cm 1, respectively) indicates 
that the bond order of the carbon bond changes from three to about 1.5. The sym-
metry of the acetylene molecule changes along with the rehybridization. The 
minimum change would involve an upwards bending of the CH-bonds within the 
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plane spanned by the C-C axis and the surface normal to yield C2v symmetry. 
Electron energy loss spectroscopy on acetylene on Ni(111) [6.66] and Fe(110) 
[6.67] showed that all modes have a dipole moment perpendicular to the surface 
which indicates that the molecule/surface complex has no symmetry element. 
Using X-ray photoelectron diffraction (XPD) the positions of the carbon atoms on 
Ni(111) were determined to be in the nonequivalent fcc and hcp sites [6.68]. To-
gether with the results from vibration spectroscopy one arrives at the two 
alternative models displayed in Fig. 6.34. The hydrogen atoms are moved out of 
the Ni-C-C-Ni symmetry plane to either assume a cis or a trans configuration 
(Fig. 6.34). The molecule/surface complex contains no symmetry element. 

cis trans

Fig. 6.34. Structure models for acetylene on the Ni(111) surface. Neither the cis nor the 
trans configuration has a symmetry element (point group C1) since the two carbon atoms 
are in nonequivalent sites.  

Benzene is one of the most studied hydrocarbon adsorption system. The NIST 
structure library lists no less the 15 different solved structures involving benzene 
on various surfaces of Co, Ni, Pd, Pt, Rh and Ru [6.69]. Among these structures 
are some very intriguing co-adsorption systems with CO and NO. Early studies of 
benzene adsorption on Pt(111) and Ni(111) employing electron energy loss spec-
troscopy found the CH out-of-plane bending mode to have the strongest 
perpendicular dipole moment [6.70]. It was therefore concluded that the carbon 
skeleton of the molecule should lay flat on the surface while the C-H bonds may 
be bend upwards. From the number of A1-type modes (Sect. 7.2.3, Table 7.2) it 
was concluded furthermore that benzene sits in a site of C3v symmetry with the v-
planes cutting through the C-C bonds. Later structure analysis confirmed both, the 
flat orientation and the position of the v-planes. As an example Fig. 6.35 shows 

the structure of benzene in the ordered )77( R19.1° structure on Ni(111) 
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[6.71] and the co-adsorption structure with CO in a )33(  unit cell on Pd(111) 

[6.72]. 

(a) (b)

v

v

Fig. 6.35. Two ordered structures of benzene (C6H6) on surfaces. (a) )77( R19.1° 

structure of benzene on Ni(111) [6.71]. The benzene ring lies flat on the surface over the 
hcp site. The local symmetry is C3v with the v-planes cutting through the C-C bonds as 
concluded already in 1978 from vibration spectroscopy [6.70]. (b) (3 3) structure of ben-
zene coadsorbed with two CO molecules (dark shaded balls) per unit cell on Pt(111) 
[6.72]. Here, the benzene rings as well as the CO-molecules are centered on the fcc-site. 
Dashed lines indicate the surface unit cells.  

6.4.6 Alkali Metals 

The adsorption of alkali metals on surfaces was studied already in the 1920ties. 
The interest was stimulated by the alkali atom induced reduction of the work func-
tion of surfaces, primarily the tungsten surface, and the thereby enhanced thermal 
emission of electrons11. The work function is reduced because alkali atoms have a 
low ionization threshold and energy is gained by donating the single outer s-
electron into the unoccupied states of the substrate. The alkali/surface bond is 
therefore strongly polar, with the positive end of the dipole moment pointing away 
from the surface. The reduction of the work function 0 is described by the equa-
tion 

11 For the younger generation: In those "radio-days" the three terminal device that made 
radio communication possible was the electron tube with a thermal cathode as an electron 
emitter, the anode and at least one grid to control the flux of electron toward the anode.
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Here, pz is the dipole moment of the alkali atom/surface complex, ndip is the area 
density of the dipoles, 0 is the vacuum permeability and e is the electron charge. 
Since the initial dipole moment associated with the partial ionic bond of the alkali 
atoms is of the order of 1 eÅ, the work function drops rapidly as a function of 
coverage. However, the dipole moment reduces quickly with increasing coverage 
so that the slope of the work function vs. coverage becomes smaller as soon as the 
overage exceeds a few percent. We discuss the physics of the alkali-induced work 
function reduction in detail for a specific system, namely for Li on Mo(110) sur-
faces. Figure 6.36 shows the decrease of the work function for that case [6.73]. 
The dipole moment calculated from the initial slope is about 0.5 eÅ, but decreases 
rapidly with increasing coverage. At around  = 0.4, the 2s-electrons overlap 
sufficiently to establish a metallic character of the lithium. After passing through a 
minimum, the work function change levels off at 1.9 eV. The work function of 
the composite system comp = 4.6 1.9 eV = 2.7 eV is nearly equal to the work 
function of lithium ( Li = 2.9 eV).  
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Fig. 6.36. Work function change of Mo(110) upon adsorption of lithium. The coverage is in 
fraction of the number of molybdenum surface atoms. Circles are experimental data [6.73] 
with the dashed line to guide the eye. The dipole moment drops very rapidly with coverage. 
At high coverage, the work function of the compound system is essentially the work func-
tion of pure lithium. The solid line is a fit to the Topping-model which yields an initial 
dipole moment of 0.56 eÅ and an electronic polarizability of e = 10 Å3.
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The decrease of the dipole moment per atom with increasing density of the alkali 
atoms can be understood as a depolarization effect, at least for very low coverages 
where the s-wave functions of the alkali atoms do not overlap (Topping-model
[6.74]). According to that model, the dipole moments of all the alkali atoms pro-
duce an electric field at each dipole site that is oppositely oriented to the dipole. If 
one attributes an electronic polarizability e to the alkali/surface complex, this 
electric field reduces the effective dipole moment associated with the alkali atoms. 
The electric field generated by the 2D-lattice of dipoles is 

ij
ijz rp 3E  (6.51) 

The sum extends over all distance rij from an arbitrary origin. As an exception, 
(6.51) is written in the cgs-system, because the standard tables of electronic po-
larizabilities tabulate e in cgs-units12. With this depolarizing field, the dipole 
moment reduces to 
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For a hexagonal close packed lattice the lattice sum is 

ij
ij nr 2/3

dip
3 9.8  (6.53) 

The reduction of the work function has then the form 

2/32/3
sels

0
0 cgs)(9.81/ nn

p
e z  (6.54) 

Here we have replaced the area density of dipoles ndip by the density of surface 
atoms ns and the fractional coverage . The solid line in Fig. 6.36 is a fit of (6.54) 
to the data points up to  = 0.5. From the fit, one obtains the dipole moment and 
the electronic polarizability of the Li/Mo surface complex as  

56.0zp eÅ and e(cgs) = 10 Å3 (6.55)

12 In the cgs-system e has the dimension of a volume that is of the order of the atom vol-
ume. In the S.I: system e(S.I.) has also the dimension of a volume if it is defined by the 
equation E(S.I.)e0p . This e(S.I.) differs from e(cgs) by a factor of 4 , so that 

e(S.I.) = 4 e(cgs). 



 6  Adsorption __________________________________________________________________________ 298

The model reproduces the experimental data quite well for small coverages. The 
Topping model even produces a minimum in the work function change, which, 
however, lies outside the realm of validity of the model. 
 In order to understand the alkali-induced change in the work function from the 
standpoint of quantum mechanics it is useful to look at the spatial extensions of 
the wave function participating in the bonding. Quantum chemical calculations of 
the charge density distribution are helpful in that regard. With respect to the dis-
cussed example, we refer to charge density calculations performed on a Mo23-
cluster [6.75]. The (110) surface is represented by a layer of 14 Mo-atoms. The 
second layer consists of 9 atoms (Fig. 6.37). Figure 6.38 shows the charge density 
contours of the difference between the Li/Mo surface complex and the Mo-cluster 
and the Li-atom 

)Li()(MoLi)Mo( 2323  (6.56) 

Dashed and solid contour lines indicate negative and positive charges, respec-
tively. The large extension of the Li2s electron catches ones eye. In the outer 
sphere, the Li2s charge density is diminished and placed mainly between the Li 
atom and the Mo surface atoms, but even there the charge spreads over several 
neighbors and spills out over the edges of the cluster. The reason for this large 
extension of the bonding charge is that the Li2s electrons, because of their spatial 
extension cannot establish a bond with the localized Mo4d-orbitals, as positive 
and negative overlap integrals cancel. The charge transfer from the lithium atom 
to the molybdenum surface is therefore into the unoccupied sp-states above the 
Fermi level. The broad spatial extension of the charge density enables the use of 
electron states right above the Fermi-level. As more Li atoms assemble on the 
surface the Li atoms are competing for the empty states right above the Fermi 
level, and the net charge transfer to the surface is reduced. This explains qualita-
tively the reduced dipole moment per Li-atom for larger coverages. In view of the 
large lateral extension of the bonding charge density one would expect the reduc-
tion of the dipole moment to become effective already for coverages when every 
second long bridge site is occupied, i.e. for  = 0.25. This is about where the Top-
ping model begins to fail (Fig. 6.36). 
 A further consequence of the large extension of the alkali valence s-electron is 
that the adsorption of alkali metals is not very site specific. Together with the 
large repulsive interaction likewise mediated by extended s-electrons, this gives 
rise to an enormous diversity of surface structures. The NIST library lists over 140 
alkali structures for which the crystal structure has been determined [6.69]. These 
structure determinations merely amount to a very small fraction of the ordered 
structures that have been observed qualitatively and the solved crystallographic 
structures only concern the low index surfaces of Ag, Al, Cu, Ni, Pt, Pd, Rh, Ru 
and Si. A review of the crystallographic surface structures shows that all the stan-

dard surface lattices (2 2), c(2 2), c(4 2), 30)33( R  are realized. In 

agreement with the reasoning above, there is no universally preferred site. On 
(100) surfaces one finds on top sites as well as hollow sites, on (111) surfaces 
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atop, hcp and fcc site-occupation is realized. For aluminum, surface alkali atoms 
frequently replace a substrate surface atom and even surface alloy formation has 
been reported. The (110) surfaces of fcc metals are all relatively unstable with 
respect to a (2 1) reconstruction. The adsorption of alkali metals can therefore 
trigger a (2 1) reconstruction even on those fcc metal that possess unreconstructed 
(110) surfaces when adsorbate-free (Sects. 1.2.1 and 1.2.4, Fig. 1.14). 

Li[001]

[110]

[110]

Fig. 6.37. Mo23-cluster representing the (110) surface. Light and dark shaded balls repre-
sent first and second layer Mo-atom, respectively. The long bridge site of the Li-atom has 
the highest binding energy. 

[110]

Li

MoMo

Mo Mo

Mo Mo

Mo

Fig. 6.38. Charge density difference  = (Mo23Li)- (Mo23)- (Li) in the (001)-plane 
(Fig. 6.37). Dashed and solid contour lines indicate negative and positive charges, respec-
tively. The contour lines represent densities 2n3 10-4 eÅ-3 for n = 15,…+15 (after Müller 
[6.75]).  
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A very interesting consequence of the low site specificity of the alkali atom bond-
ing is the small activation barrier for diffusion. Diffusion of alkali atoms on metal 
surfaces is extremely fast: At room temperature local deposits can spread over 
distances of mm within minutes [6.76, 77].  
 It should be mentioned finally that alkali metals at surfaces play an important 
role as promoters of catalytic reaction. For a comprehensive treatise of alkali atom 
adsorption the reader is referred to a volume edited by Bonzel, Bradshaw and Ertl 
[6.78].  

6.4.7 Hydrogen 

Among the first row elements hydrogen is a special case. Contrary to the alkali 
metals, the ionization energy is high. The electronegativity is in the range of stan-
dard transition metals. The bonding to surfaces is therefore local and covalent. As 
a molecule, hydrogen does not posses a HOMO or LUMO near the Fermi-level of 
substrates. Thus, the hydrogen molecule does not chemisorb at surfaces. The van-
der-Waals interaction with surfaces is likewise small because of the small po-
larizability of the hydrogen molecule. On transition metal surfaces, hydrogen 
dissociates spontaneously without a significant activation barrier. The atom pre-
fers sites of high coordination. The W(100) surface and presumably the other 
(100) surfaces of bcc-metals are exceptions. The smallness of the hydrogen atom 
renders it impossible to establish a chemical bond with all four W-atoms in the 
fourfold hollow site. Here, the bridge site is preferred. The hydrogen atom even 
draws the two W-atoms closer together, causing a reconstruction (Fig. 1.29). On 
the standard semiconductor surfaces such as Si, Ge, GaAs etc. the activation bar-
rier for dissociative adsorption is large, the sticking coefficient for the H2

molecule therefore extremely low. The formation of a surface bond to hydrogen 
atoms requires an exposure to atomic hydrogen.  
 Because of its small mass the hydrogen atom acts as a quantum particle which 
acts as a quantum wave packet with respect to diffusive and vibrational motion on 
surfaces. Figure 6.39 shows the diffusion coefficient of hydrogen versus the recip-
rocal temperature for W(110) [6.79]. Above 150 K, the diffusion coefficient 
follows the standard Arrhenius-type behavior. However, the diffusion coefficient 
levels off to a constant value for temperatures below 150 K. In that temperature 
regime, the hopping from site to site takes place via a quantum mechanical tunnel-
ing process, which is temperature independent. 
 A further manifestation of the quantum nature of hydrogen motion is the occa-
sionally broadening of the features in the vibration spectrum of hydrogen. An 
example is hydrogen and deuterium on Ni(110) at monolayer coverage (Fig. 6.40 
[6.80]). The vibration features of hydrogen at 1070 cm 1 and 640 cm 1 are signifi 
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Fig. 6.39. Diffusion coefficient of hydrogen on W(110) as a function of the reciprocal tem-
perature (after Auerbach et al. [6.79]). Above 150 K, the diffusion coefficient shows the 
normal Arrhenius-type behavior. At low temperatures, the diffusion is via a tunneling proc-
ess from site to site and therefore temperature independent. 

cantly broader than the corresponding features of deuterium at 750 cm 1 and 
510 cm 1. A similar broadening was observed for hydrogen on Mo(110) [6.81]. 
The reason for the broadening is that the first excited vibration state of hydrogen is 
delocalized and acquires a band structure. The energy of the vibration state de-
pends on the parallel component of the wave vector q|| [6.82] in the same way as 
an electron energy depends on the k-vector. 
 The wave vector dependence of the energy of the excited state (q||) is not to 
be confused with a phonon dispersion relation for periodic lattices when the atoms 
are treated as classical particles. The quantum dispersion here exists even for a 
single hydrogen atom in a periodic potential. Vibrational excitations, e.g. by ine-
lastic electron scattering, correspond to transitions between band states, e.g. 
between the ground state and the first excited state. For zero momentum transfer 
to the electron the transitions between the band states are vertical (Fig. 6.41). The 
width of the energy loss peaks in Fig. 6.40 therefore results from the quantum 
dispersion of the excited state. The dispersion vanishes if the excited states are 
perfectly localized, and the description of the hydrogen atom as a wave packet 
becomes identical to the description as a classic particle.  
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Fig. 6.40. Electron energy loss spectrum of the surface vibrations of the (2 1) hydrogen 
and deuterium covered Ni(110) surface. The vibration features of hydrogen at 640 cm 1 and 
1070 cm 1 are significantly broader than the corresponding features for deuterium due to 
the quantum nature of the hydrogen atom [6.80].
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Fig. 6.41. Because of the small mass of the hydrogen atom, the excited vibration states of 
hydrogen may become delocalized quantum states possessing energy bands. Due to the 
dispersion of the energy bands of the excited states, the vibrational losses acquire a width 
even at fixed momentum transfer q||. The arrows indicate the possible transition for 

q|| = 0  The dashed line marks the zone boundary. 
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6.4.8 Group IV-VII Atoms 

This section considers the surface bonding and the structure of adsorbed oxygen, 
sulfur, nitrogen and carbon atoms. The surface phases of these elements, in par-
ticular on metal surfaces, belong to the most studied surface systems. Although 
oxygen, sulfur, nitrogen and carbon belong to different rows in the Periodic Table, 
structures and properties of surface phases of these elements on metals are rather 
similar. Adsorption phases of oxygen are typically prepared by dissociation of the 
oxygen molecule. The nitrogen molecule dissociates spontaneously only on very 
reactive surfaces, e.g. the transition metals on the left side of the Periodic Table. 
On other surfaces, nitrogen surface layers can be prepared by adsorption of NH3 at 
low temperature followed by thermal annealing to dissociate NH3 and desorb the 
less strongly bound hydrogen. Sulfur and carbon layers are conveniently prepared 
by H2S and acetylene adsorption, respectively, and the subsequent decomposition 
of the molecule and hydrogen desorption. To improve the long-range order on the 
surface the samples are typically annealed to higher temperatures either during or 
after completion of the adsorption process.  
 Carbon, nitrogen, oxygen, sulfur, bond to surface atoms via their px,y,z-electrons. 
The occupation of the p-electron system for these adsorbates ranges from four to 
six. Correspondingly, these atoms can entertain four, three and two covalent bonds 
(for carbon, nitrogen and oxygen/sulfur, respectively), which would call for ad-
sorption sites involving the corresponding number of surface atoms. However, on 
metals, in particular on transition metals, the high density of unoccupied electron 
states at the Fermi-level enables covalent bonding also with fully occupied orbitals 
of the adsorbate (cf. the -bond of CO, Sect. 6.4.1). Therefore, all the 2p and 3p-
atoms (including fluorine and chlorine) typically assume the sites of highest coor-
dination on metals to maximize their bond energy. Examples are the threefold 
hollow site on (111) surfaces of fcc-metals, the fourfold hollow sites on the 
fcc(100) and bcc(100) surfaces, or one of the two equivalent three-atom coordina-
tion sites on the bcc(110) surfaces. In most cases, two or more ordered structures 
exist for different surface coverages. Examples are the p(2 2) and c(2 2) struc-
tures of oxygen and sulfur on Ni(100), corresponding to coverages of  = 0.25 

and  = 0.5, respectively, and the p(2 2) and 30)33( R  structure of oxygen 

on Ni(111) corresponding to  = 0.25 and  = 1/3, respectively. On the (100) 
faces, in particular of bcc metals, adsorbed atoms in the fourfold hollow site bond 
strongly to the substrate atom in the second layer underneath. In the case of nitro-
gen adsorption on W(100), the nitrogen atom even has its shortest bond distance 
and therefore its strongest bond with the second layer atom. The surface structure 
of that system is displayed in Fig. 6.42 [6.83]. As illustrated in the figure, the size 
of the fourfold hollow site is larger than the size of the nitrogen atom. The site has 
room for a sphere of 0.87 Å radius while the radius of nitrogen is only about 0.76 
Å. On the Ni(100) surface, the fourfold hollow site would have room for a sphere 
of merely 0.73 Å radius, just not enough to accommodate the nitrogen atoms in 
the surface plane. While the nitrogen atom can establish a bond also with the sec-
ond layer nickel atom, the length of that bond remains with 1.99 Å larger than the 
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typical Ni-N bond length. The bond to the Ni-atom in the second layer is therefore 
under tensile strain; consequently, the bonds to the surface Ni-atom are compres-
sively strained. The Ni-atoms yield to the compressive in-plane strain by engaging 
in a clockwise and counterclockwise rotation, which causes the p4g reconstruction 
[6.84]. 

W(100) c(2 2) N Ni(100) p4g(2 2) N

Fig. 6.42. Two surface structures involving nitrogen at 50% coverage [6.83-85]. The 
dashed lines indicate the unit cells. On the tungsten surface, the nitrogen atom has the 
strongest bond with the second layer W-atom. The bond distance is 2.13 Å while the bond 
distance to the atoms in the surface plane is larger 2.275 Å. On the Ni(100) surface, nitro-
gen causes a strong compressive surface stress in the surface layer, forcing the Ni-atoms to 
move out of their position by a clockwise and counterclockwise rotation. 

The clockwise and counterclockwise rotation of the nickel atoms can be under-
stood as a phonon softening phase transition on the c(2 2) surface. We discuss 
this issue here in the framework of a simple force field model (see also Sect. 7.1). 
The displacement pattern of the reconstructed phase corresponds to the A2-phonon 
on the c(2 2) surface at the X -point of the surface Brillouin zone. As this surface 
phonon mode is entirely localized in the first Ni-layer its frequency is easily ex- 
pressed in terms of nearest neighbor central force field [6.86]: the atoms are 
thought to be connected by springs. The force constant of the springs are equiva-
lent to the second derivative of the nearest neighbor potential between the nickel 
atoms  (cf. Sect. 7.1.2). For the particular displacement pattern shown in 

Fig. 6.43, the bonds to the adsorbates do not enter as long as one stays with central 
forces. To mimic the stress in the surface one assumes that the springs connecting 
the Ni surface atoms in the surface plane are loaded, hence one assumes the first 
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(a) (b)

first layer

second layer

L L'

(c)

u

Fig. 6.43. (a) Displacement pattern of the A2-phonon on the c(2 2) surface at the X -point 
of the surface Brillouin zone. The small balls represent second layer atoms. The squares 
mark the position of the carbon/nitrogen atoms. (b) and (c) sketches serving for the calcula-
tion of the frequency of the A2-mode in terms of the nearest neighbor central force field 
(see text). 

derivative of the potential between the nickel atoms in the surface plane 11  to be 

nonzero (Stability of the lattice requires that the first derivative vanishes in the 

bulk). Such a nonzero 11  corresponds to a macroscopic surface stress (s)

(Sect. 4.2.2) 

nn11
(s) / a  (6.57) 

when ann is the nearest neighbor distance between the nickel surface atoms. A 
compressive stress between the nickel surface atoms corresponds to a negative 

11 . The frequency of the A2 surface phonon is calculated with the help of the 

sketches in Fig. 6.43. The bonds to the second layer (Fig. 6.43b) contribute an 
effective spring constant of 

45cos2 2
12f . (6.58) 

The springs to the second layer orthogonal to the plane of drawing are not strained 
to first order and do not contribute. The bonds in the first layer are also not 
strained to first order (Fig. 6.43c), but now we have assumed a nonzero first de-
rivative of the potential. Expanding the potential into the displacements u yields 
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so that this term adds a force constant  

nn11 /2 af . (6.60) 

The frequency is therefore given by 
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The A2-phonon mode becomes soft when  

4// nn11 a . (6.62) 

The bulk force constant '' can be calculated from the maximum phonon fre-
quency of bulk nickel to '' = 37.9 N/m. With (6.62) one can estimate the surface 
to become unstable with respect to the p4g-reconstruction for a surface stress of 

9.4 N/m [6.87]. Direct measurements of the adsorbate induced surface stress 
(Sect. 3.3.3) have been carried out for carbon on the Ni(100) surface. Carbon 
causes the same p4g-reconstruction. It was found that the reconstruction begins 
when the stress reaches 6 N/m in reasonable agreement with the simple force 
field model (see [6.87] for further details).  
 The strong bonding and the preference of high coordination sites adsorption of 
O, S, C, and N may lead to a complete restructuring of the surface [6.88]. An ex-

ample is the 45)222( R  structure of oxygen on Cu(100) shown in Fig. 6.43 

[6.88]. When oxygen is adsorbed in low doses at room temperature or below, it 
first adsorbs in the fourfold hollow site [6.89, 90]. At a coverage of  = 0.34 the 
surface undergoes a first order disorder-order phase transition and eventually, after 

annealing to 500 K, displays a well ordered 45)222( R  pattern at a cover-

age of  = 0.5. The surface crystallographic structure of this phase was analyzed 
by LEED [6.88], Photo Electron Diffraction (PED) [6.91] and by Surface Ex-
tended X-ray Absorption Fine Structure (SEXAFS) [6.90]. According to these 
studies, the surface structure involves a missing row of copper atoms. The oxygen 
atoms reside merely 0.25 Å above the Cu-surface plane. Each oxygen atom has 
bonds to four copper atoms with bond distances of 1.92 Å and 2 1.82 Å to the Cu-
atoms in the surface plane and 2.15 Å to one Cu-atom in the second plane. This 
geometry engages all three p-orbitals of oxygen and therefore makes for a particu-
lar stable bonding. 
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Fig. 6.44. The 45)222( R  structure of oxygen on Cu(100) [6.88, 90, 91]. The dashed 
line marks the surface unit cell. 

Another manifestation of the strong preference of the 2p and 3p atoms for the 
fourfold hollow site is the restructuring of the Ni(111) surface by carbon, nitrogen 
and sulfur. For theses adsorbates, the first layer of nickel has the structure of a 
(100) surface [6.92] with the Ni-atoms rotated in a clockwise and counterclock-
wise pattern as in the p4g reconstruction of Ni(100), however with a larger unit 
cell [6.93, 94]. 
 In most cases, the surface phases of oxygen, sulfur, carbon and nitrogen are 
metastable with respect to the nucleation of clusters of a bulk compound. Ex-
tended exposure of nickel to oxygen, e.g., leads to the formation of NiO clusters in 
the surface. The nucleation of NiO clusters is furthered by defects. Nickel surfaces 
containing many defects continue to adsorb oxygen after completion of a c(2 2)
oxygen surface layer with only a mild drop in the sticking coefficient and form 
NiO clusters readily, whereas on defect-free surfaces the oxygen uptake saturates 
with the c(2 2) oxygen layer.  
 Silicon represents the other extreme with respect to oxygen adsorption. Silicon 
is so reactive that no particular surface phase with oxygen atoms exists. Oxygen 
dissociates readily on clean silicon surfaces and the oxygen atoms are inserted into 
Si-Si bonds to form Si-O-Si bonds as in quartz. A molecular state can also be sta-
bilized at low temperatures [6.95, 96]. No structures with long-range order exist 
for either the molecular or the dissociated state. Upon adsorption of oxygen at 
room temperature, a severely disordered silicon oxide grows with a wide range of 
Si-O-Si bond angles and Si-O distances. At room temperature, this so-called natu-
ral oxide layer grows up to a thickness of about 30 Å in air. The local order in 
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terms of the range bond lengths and bond angles improves if the exposure to oxy-
gen is made at higher temperatures or if the surface is annealed after room 
temperature exposure [6.95]. The oxidation states of the silicon atoms after room 
temperature exposure range from SiI (one of the four Si-bonds bond to oxygen) to 
SiIV (all four Si-bonds bond to oxygen as in quartz). The mean oxidation state 
increases towards the SiIV-state with increasing exposure of the silicon surface to 
oxygen and for higher oxidation temperatures. Because of the technological im-
portance of ultrathin SiO2-layers and the SiO2/Si interface, this surface system 
belongs to the most investigated surface/interface systems at all [6.97].  



7. Vibrational Excitations at Surfaces

Many aspects of the chemistry of adsorbates were revealed through the vibration 
spectra of the adsorbed species on surfaces, as the vibration frequency spectrum is 
characteristic for the strength and the type of the bonds. The development of ex-
perimental techniques for studying surface vibrations was therefore a major step 
forward in the understanding of surface chemistry. Of fundamental interest are the 
vibrational excitations of clean, two-dimensional periodic surfaces, the surface 
phonons. The general basis for the consideration of vibrational excitations is the 
Born-Oppenheimer approximation [7.1]. According to this approximation, the 
electronic eigenstates follow the moving atoms adiabatically, which means than 
the electron energy levels change with the atom positions, but the electrons remain 
in the same eigenstates. The total energy of the solid as a function of the atom 
position therefore plays the role of a potential for the atom motion. We begin this 
section by looking into the consequences of the Born-Oppenheimer approximation 
for periodic surfaces. 

7.1 Surface Phonons of Solids 

7.1.1 General Aspects 

The potential  for the atom motion depends on the coordinates {r(n)} of all at-
oms in the solid. The potential can be expanded into a Taylor series around the 
equilibrium positions denoted as r0(n).
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Here, u (n) is the deviation of the atom n from the equilibrium position in the 
Cartesian direction . The first derivatives vanish, as the expansion is around the 
global minimum of the potential. If higher order terms are neglected, the equation 
of motion for a particular atom n in the Cartesian direction  is 
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in which M(n) is the mass of the atom n. The system of equations (7.2) technically 
couples all atom motions to each other. In reality, the coupling vanishes rapidly 
for larger distances. For an approximate picture of the vibration spectrum the con-
sideration of nearest and possibly next-nearest neighbors often suffices. For a 
three-dimensional periodic structure, the system of equations (7.2) is separated 
into a subsets of 3s equations, with s the number of atoms in the unit cell, by the 
ansatz

)()(i
,0

0e )( ntunu rqq  (7.3) 

The quantized plane wave solutions of the type (7.3) are the phonons of the 3D-
solid. A flat surface/interface breaks the 3D-translational symmetry of the solid, 
which gives rise to solutions of (7.2) that are localized at the surface/interface in 
the sense that the vibrational amplitude decays in an essentially exponential man-
ner away from the surface/interface. These modes are called surface (interface) 
modes, or surface (interface) phonons. A schematic overview over the spectrum of 
eigenmodes at a surface is shown in Fig. 7.1. The frequencies are displayed as 
function of the component of the wave vector parallel to the surface q||. In this 
projection, bulk modes form a continuum because their wave vector perpendicular 
to the surface remains arbitrary. The continuum of bulk phonons is shown as a 
shaded area in Fig. 7.1. The frequency of a surface phonon is uniquely determined 
by q||. Surface phonons have therefore a defined dispersion branch in this graph. 
They are plotted as solid lines. Genuine surface modes can exist only if no bulk 
phonons of the same symmetry are present in the same q|| range. In addition to 
the surface phonons, so-called surface resonances exist.  

Surface phonons

Resonances

q||
Zone

boundary

(q||)

Fig. 7.1. Schematic drawing of the spectrum of phonons and resonances vs. the wave vector 
parallel to the surface q||. The shaded area is the continuum of bulk modes. Solid lines rep-
resent surface phonons of the substrate; dotted lines are resonances.  
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Surface resonances are bulk phonon modes, which have large amplitudes at the 
surface (dotted lines in Fig. 7.1). One of the surface phonons shown in the figure 
has an acoustic limit ( 0)(lim

0
q

q
). The number of surface phonons with an 

acoustic limit can range between one and three, depending on the elastic constants, 
the structure of the substrate, the orientation of the surface, and the direction of q||

on the surface (Sect. 7.1.4). Along high symmetry directions, the plane spanned by 
the surface normal and the direction of q||, called sagittal plane, may coincide with 
a mirror plane of the structure. An example would be the [011] direction on a 
(100) surface. In that case, the surface phonons are even or odd with respect to the 
sagittal plane. The odd mode is polarized perpendicular to the mirror plane. In 
other words, the mode is a shear horizontal mode, while the polarization vectors of 
the even modes lie in the sagittal plane. 
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Fig. 7.2. (a) Top view on the (001) surface of an fcc-structure (see also Appendix). Large 
light-grey and small dark-grey circles represent surface and second layer atoms, respec-
tively. The solid line is the surface unit mesh. The dashed line is the projection of the fcc-
lattice on the surface. (b) Bulk Brillouin zone of the fcc-structure. A few high symmetry 
points are marked. Starting from the center  the X-point can be reached in two ways: by 
moving in the [001] and in the [110] direction. (c) Surface Brillouin Zone (SBZ) and pro-
jected bulk Brillouin-zone are shown as solid and dashed lines, respectively. The X-point of 
the projected bulk zone coincides with the -point of the adjacent SBZ. 
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The maximum of q|| is given by the boundary of the Surface Brillouin Zone (SBZ) 
which may differ from the boundaries of the projection of the bulk Brillouin-zone 
onto the surface plane. This is illustrated in Fig. 7.2 for the (001) surface of the fcc 
structure (see also Appendix). Along the [110] direction the X -point of the SBZ 
is half way to the X-point of the projected bulk zone which therefore coincides 
with the -point of the adjacent SBZ. 

7.1.2 Surface Lattice Dynamics 

Theoretical studies of surface modes are most conveniently performed on a slab of 
N layers of unit cells with two equivalent surfaces. We denote the 2D-unit cells by 

),( 21|| lll , the layers by lz, and the atoms in the unit cells by the index . A dis-

placement of the atom  in the unit cell l|| of the layer lz in the direction  is de-
noted as u (l|| lz ). In this notation the equations of motion become 

zl
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l

llll&& . (7.4) 

It is convenient to introduce mass-normalized amplitudes  
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2/1

|| zzz lulMl ll . (7.5) 

We are interested in solutions with a time dependence of the form )iexp( t .

After inserting this time dependence, (7.4) becomes  
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where we have introduced the dynamical matrix
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The dynamical matrix is symmetric with respect to the interchange of primed and 
non-primed symbols (action forces are equal to reaction forces) and depends only 
on the difference |||| ll  because of the translation symmetry. Equation (7.6) ad-
mits solutions in the form of plane waves parallel to the slab. 

)(i
||||

||0||e);()( zl
zz lel

lrqql  (7.8) 



  7.1  Surface Phonons of Solids  __________________________________________________________________________ 313

Inserting (7.8) into (7.6) yields the secular equation for the eigenvectors 
);( || zle q  and the eigenfrequencies )( ||qs
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in which ),;( || zz lld q  is the Fourier transformed dynamical matrix defined as 
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The eigenfrequencies are given by the zeros of the determinant 

0);;()(det ||||
2

zzs lld q1q  (7.11) 

The eigenmodes of an fcc-slab and (100), (111) and (110) surfaces were first stud-
ied by Allan, Aldredge and deWette invoking the Lennard Jones potential (6.1) 
[7.2-4]. While this central force potential is inadequate to describe the force field 
in a metal quantitatively, the qualitative features of the phonon spectrum and the 
character of the surface modes are correctly reproduced. Therefore, nearly all sub-
sequent papers followed the notation introduced in the pioneering work of Allen et 
al. We discuss their results for the (100) surface (Fig. 7.3).  
The surface phonon S1 exists throughout the SBZ. However, its character changes 
from purely shear horizontal polarization, i.e. odd with respect to the sagittal mir-
ror plane, along X  to become even with respect to the sagittal mirror plane 
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Fig. 7.3. Spectrum of modes of a 21-layer fcc-slab with (100) surfaces after Allen et al. 
[7.3]. The Surface Brillouin Zone (SBZ) is shown as an insert. 
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along M  with nearly shear vertical polarization. The modes S3 and S4 are polar-
ized in the sagittal plane along X  and M . They can exist as surface modes 
within the bulk band since the surrounding bulk modes are odd with respect to the 
sagittal plane. S2 and S5 are primarily localized in the second layer. S2 is even 
along M  while S5 is shear horizontal (=odd) along X . A prominent mode 
with a large amplitude at the surface is also the gap mode S6 which is horizontally 
polarized and localized almost entirely in the first layer at X . The higher num-
bered modes have their main amplitude in the second or third layer beneath the 
surface layer. 
 The large variety of surface modes with their different degrees of localization 
in first second and third layers may be bewildering. It is however straightforward 
to understand the origin of these modes if one considers particular high symmetry 
points in the SBZ. The discussion is particularly easy for the M -point of the SBZ 
if interactions between the atoms are restricted to nearest neighbor central forces. 
In the bulk of the material one has only one force constant, which is the second 
derivative of the pair potential between the atoms denoted as b . The first deriva-
tive vanishes in the bulk, as the crystal is assumed strain-free.  

+ - + -

+ - + -

+-+-

+-+-

[110]

[010]
M

X

Fig. 7.4. Illustration of the S1 surface vibration mode at the M -point of the SBZ (left 
panel) on a (100) surface of an fcc (or bcc) structure. The forces on the second layer atoms 
(small spheres) cancel. To the extent that the force field is restricted to nearest neighbor 
central forces the mode is completely localized in the surface layer. Corresponding modes 
exists also in the second layer and in all bulk layers. 

To account for differences in the bonding of atoms near the surface the force con-
stants connecting atoms within the surface layer, 11 , and between the first and 
second layer, 12 , differ from the bulk force constant. As an example we consider 
the S1 surface vibration mode at the M -point of the SBZ. The mode is entirely 
localized to the first layer because the forces on the second layer atoms (small 
spheres in Fig. 7.4) cancel. The frequency can therefore be calculated without ex-
plicitly solving the secular equation. 
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The second layer and further layer modes of the same type as depicted in Fig. 7.4 
are likewise decoupled from the rest of the lattice. Thus, the frequency of the sec-
ond layer mode, the S2-mode in the notation of Allan et al., is 

)(2)M( b12
2

2SM . (7.13) 

The maximum frequency bulk mode is likewise easily calculated in this model. It 
is found, e.g., at the M -point (cf. Fig. 7.3) and has the polarization vectors along 
[010]-direction. Every alternate layer vibrates with 180° phase shift so that the 
reduced mass appears in the equation of motion. The mode involves spring forces 
from eight of the twelve nearest neighbors around each atom. The frequency of the 
mode is therefore 
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If 12  is equal to the bulk force constant b , the S1 and S2 mode have their fre-
quencies at 1/2 and 1/2  of the maximum bulk frequency b. In the calculations 
of Allen et al. (Fig. 7.3) the frequency of these modes relative to the bulk modes is 
a little lower because of the longer range of the Lennard-Jones potential. At the 
surface, the mode with the same polarization as the bulk mode calculated with 
(7.14) becomes a genuine surface mode, namely the longitudinal polarized S3-
mode at the M -point. Its frequency is lower than the frequency of the bulk mode 
because of the missing neighbors. Since the mode is not localized to a single layer, 
the calculation of its frequency requires the solution of the secular equation (7.11).  

7.1.3 Surface Stress and the Nearest Neighbor Central Force Model 

While the strain in the bulk of the crystal vanishes in the absence of an external 
pressure, solid surfaces possess a surface stress that typically amounts to a few 
N/m (Sect. 4.2). If one models the surface stress within the nearest neighbor cen-
tral force model, the stress corresponds to loaded springs between the surface at-
oms, i.e. to a non-vanishing first derivative of the pair-potential. For the fcc (100) 
surface the relation between the first derivative of the potential connecting the 

surface atoms 11  and the surface stress )(
11

s  is 

)(
11nn11

sa , (7.15) 
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in which ann is the nearest neighbor distance. We study the effect of the stress on 
the S1-mode at M . By expanding the potential for vertical displacements of the 
atoms one obtains the frequency 

nn12
2 /42)M(

1
aM S . (7.16) 

A tensile stress, 0)(
11

s  leads to an upward shift of the frequency, a compressive 

stress to a downshift. The effect is the analogue of tuning a string instrument. For 
very large compressive stresses, the mode would become soft and the lattice 
would become unstable with respect to a reconstruction pattern that corresponds to 
the mode depicted in Fig. 7.4. The instability occurs at  

2/12
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The issue of stability of surfaces under stress was already discussed in Sect. 6.4.7 
in connection with the adsorption of oxygen, carbon and nitrogen atoms in a 
c(2 2) pattern. There it was shown that another mode, the A2-mode at X  (6.62), 
becomes soft and correspondingly the surface would be unstable if 

4// 12nn11
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which is for half the compressive stress than the S1-mode at M . Because of a 
selection rule (see Sect. 7.2.3) the A2-mode at X  cannot be observed by inelastic 
scattering of particles in the conventional scattering geometry, but the S1-mode 
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Fig. 7.5. Schematic plot of the dispersion of a mostly perpendicularly polarized surface 
phonon for surfaces under tensile surface stress, without surface stress and with compres-
sive surface stress (dashed, solid, and dotted line, respectively). 
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can, because the S1-mode is polarized within the sagittal plane and mostly vertical. 
The dispersion of the S1-mode along the M -direction and of the likewise mostly 
vertically polarized S4-mode along the X - direction has been studied for several 
fcc(100) and some bcc(100) surfaces. The dispersion of these two modes can be 
taken as a qualitative indicator of the sign and magnitude of the surface stress. The 
effect is schematically shown in Fig. 7.5. Tensile and compressive surface stresses 
lead to upwards and downwards shifts of the dispersion curve, respectively. The 
shift increases with the wave vector q||. Dispersion curves showing the signature of 
strong compressive stress have been observed in ultra thin iron films on Cu(100) 
[7.5] and for the c(2 2) oxygen covered Ni(100) surface [7.6].  
 The picture sketched above is appealing and it seems to work qualitatively. It 
should be said however that the relation between surface stress and the dispersion 
exists only in the framework of the nearest neighbor model. Rigorous theory does 
not produce a relation between the macroscopic quantity surface stress and the 
interatomic forces that determine the dispersion [7.7]. 

7.1.4 Surface Phonons in the Acoustic Limit 

The simple force field discussed above provides an easy access to the understand-
ing of the phonon spectrum of fcc-crystals. It even performs not badly on the 
quantitative side in materials like Cu or Ni, in particular if spring constants at the 
surface are adjusted to experimental data. However, central forces, regardless how 
many neighbors are considered, fail in the acoustic limit. It can be shown that 
central forces establish Cauchy relations between the elastic constants. For the 
cubic structure the Cauchy relation is c12 = c44. Iridium is the only fcc-material for 
which that relation approximately fulfilled. All other fcc- and bcc-materials are far 
off. On the other hand, the sound velocity of acoustic surface phonons can be cal-
culated within the framework of elasticity theory. The mathematics involved is 
elementary however quite unwieldy. The reader interested in details is referred to 
the definitive review of Wallis [7.8] and we limit the discussion here to a few 
qualitative aspects.  
 We consider first the elastically isotropic case. Since on an elastically isotropic 
medium the sagittal plane is a mirror plane in all directions, all modes belong 
either to the even or odd representation. The elastic isotropic medium sustains 
only a single, even surface wave, which is called the Rayleigh wave, named after 
Lord Rayleigh who calculated the sound velocity of these surface waves already in 
1887 [7.9]. For a derivation, see [7.10]. The displacement pattern of the Rayleigh 
wave is a mixture of longitudinal and transversal motion (Fig. 7.6) as the dis-
placements execute ellipses. Only in a particular depth the displacements vectors 
are transversal to the direction of propagation. The depth at which that happens 
depends slightly on the Poisson number . The displacement pattern in Fig. 7.6 is 
calculated for  = 0.3. Then the displacements are transverse at z = 0.144  when 

 is the wavelength. The sound velocity of the Rayleigh wave cRayleigh is 
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z = 0

z= -0.144

Fig. 7.6. Displacement pattern in a Rayleigh wave for a Poisson number  = 0.3. The dis-
placements are neither longitudinal nor transverse, but closer to the latter. Only in a particu-
lar depth z = 0.144 ,  being the wavelength, the displacements are purely transversal. 
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Fig. 7.7. Velocity of the Rayleigh wave relative to the sound velocity of the transverse 
wave as a function of the Poisson number .

between 0.874 and 0.955 of the velocity of the transversal sound wave ct, depend-
ing on the Poisson number (Sect. 3.3.1). Figure 7.7 shows the ratio cRayleigh/ct as a 
function of the Poisson number. For anisotropic cubic crystals elastic surface 
waves may exist in particular directions, however merge with continuum solutions 
in other directions, depending on the elastic constants. Shear horizontal surface 
waves (Love waves) also exist in certain high symmetry directions and on low 
index surfaces. 
 Surface Acoustic Waves (SAWs) are important for many technical applications. 
For example, they are employed in the construction of high frequency filters 
[7.11]. Figure 7.8 shows the scheme of such a filter. A slab of a piezoelectric ma-



  7.1  Surface Phonons of Solids  __________________________________________________________________________ 319

terial, e.g. LiNbO3, is equipped with interdigital metallic stripes. An electrical 
impulse on the transmitter imprints a surface wave train on the slab that travels to 
the receiver where it generates a train of electrical pulses. By proper shaping of 
the interdigital stripes, a sharp pulse representing a white spectrum is converted 
into a sinusoidal signal with a nearly Gaussian envelope. The Fourier spectrum of 
the signal at the receiver is a single frequency (because of the Gaussian envelope) 
with a bandwidth that is inversely proportional to the number of metallic stripes. 
Hence, the device acts as a frequency filter.

Fig. 7.8. Scheme of a high frequency filter using Surface Acoustic Waves (SAWs). The 
white spectrum of a short pulse imprinted on the device is converted into a harmonic signal 
of a narrow bandwidth in the receiver on the right. 

7.1.5 Surface Phonons and Ab-Initio Theory 

By virtue of the Born Oppenheimer approximation, phonons are a property of the 
electronic ground state. Since the eigenvectors of bulk phonons are solely deter-
mined by the symmetry at certain high symmetry points of the Brillouin zone, it is 
relatively straightforward to calculate the frequency of those phonons by ab-initio 
methods. For example, the longitudinal acoustical mode in an fcc-structure at the 
X-point (zone boundary in [100]-direction) consists of the motion of rigid next-
nearest (100)-planes moving against each other, leaving the center of gravity at 
rest. The parabolic potential associated with that motion can be calculated as the 
total energy for three positions of the (100)-sublattices with respect to each other. 
The calculation requires a doubling of the size of the unit cell. The method is 
known as the frozen phonon method. Modes at other critical points of the Brillouin 
zone and the elastic constants can be calculated within the same scheme. In order 
to obtain the phonon frequencies at arbitrary wave vectors the results are mapped 
onto the parameters of a physical meaningful interatomic potential that serves as 
an interpolation scheme. The type of potential depends on the nature of the chemi-
cal bonds in the crystal. For covalently bonded materials, central forces need be 
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supplemented by angle bending forces. Furthermore, electric dipole fields origi-
nating in the polarization of the electron orbitals upon a displacement of the atom 
position need be considered.  
 For surface phonons, the situation is more complicated as the frozen phonon
method does not work. Even at the high symmetry points of the SBZ, the eigen-
vectors are not known a priory, except for the few cases discussed in Sect. 7.1.2 
where the nearest neighbor model suffices. In all other cases, interlayer force con-
stants must be calculated for at least several layers below the surface, proceeding 
along the same lines as for frozen phonon calculations [7.12]. This requires a large 
number of total energy calculations for slabs with huge super-cells, at the corre-
sponding large expense of computer time and power. The results of such effort 
need still be mapped onto an interpolation scheme in order to obtain the full dis-
persion curve of surface phonons.  
 More effective is a method that calculates the elements of the dynamical matrix 
directly via a perturbation approach within in the Local Density Approximation 
(LDA) [7.13]. The method makes use of the Hellman-Feyman theorem according 
to which the force associated with a variation of a external parameters 

 = { i} (e.g. the displacements of atoms from their equilibrium position) is given 
by the ground-state expectation value of the derivative of the bare external poten-
tial acting on the electrons. We illustrate the method for a local potential V (r). 

The derivative of the ground-state energy of the electron system (el)E  relative to a 

set parameters  with respect to a particular parameter i is

r
r

r 3
)el(

d
)(

)(
ii

V
n

E
, (7.19) 

where n (r) is the electron density distribution and the integral extends over the 
entire space where n (r)  0. Total energy variations with respect to i are ob-
tained by integration of (7.19). In order to have the energy variations correct up to 
second order in  it is necessary to consider the expansion of the integrand to lin-
ear order. The dependence of the energy of the electron system on  = { i} is 
therefore
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The required expansion of the total energy is obtained by adding the correspond-
ing expansion of the interaction energy between the ion cores.  
 An alternative to full-scale ab-initio theory is the use of semi-empirical poten-
tials that mimic certain features of more rigorous exact theories. The so-called 
Embedded Atom Model (EAM) has been used quite successful [7.14]. In that 
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model, the total energy of a system is the energy gained by "embedding" an atom 
into the background charge density of all other atoms to which the pair repulsive 
interaction between the ion cores is added.   

i ij
ijij

i
iii rF )(

2

1
)(r  (7.21) 

In this expression, i is the electron density at the position of an atom i due to the 
other atoms in the system, Fi( i) is the energy to embed the atom i into the back-
ground density i, and ij(rij) is the core-core pair-repulsion between the atoms i
and j separated by the distance rij. A weakness of the method is that the charge 
density is not calculated self-consistently. Rearrangements of the electron density 
and changes of the screening properties are not taken into account. The advantage 
of the method is the high computation speed. The phonon spectra of surfaces with 
large unit cells, e.g. vicinal surfaces are therefore readily calculated [7.15-18].  

7.1.6 Kohn Anomalies 

Electron-hole pair excitations in metals and phonons cover the same phase space. 
An electron-hole pair excitation in which the electron is transported from one side 
of the Fermi-surface to the other changes the momentum of the electron system by 
about 2kF while requiring only a small amount of energy. Energy and momentum 
change can match those of phonon states which therefore display an anomaly in 
the dispersion at qc = 2kF. These Kohn-anomalies [7.19] constitute a breakdown of 
the Born-Oppenheimer approximation. As the matching condition for momentum 
and energy is fulfilled only by a few electron states, the effect is very small for 
bulk phonons. Merely the derivative of the dispersion curve becomes singular. In 
two dimensions, the effect may cause a noticeable dip in the dispersion curve it-
self. For a one-dimensional system, finally, the coupling between the electron and 
phonon excitations is so strong that the lattice becomes instable. This is the so-
called Peierls Transition [7.20] for one-dimensional metals with a half-filled band. 
At the surface of a bulk crystal, the surface electrons constitute a two-dimensional 
electron system (Sect. 8.2). The magnitude of the Kohn-anomaly in the surface 
phonon dispersion depends on the topology of the two-dimensional Fermi-surface 
of the surface states and on the strength of the matrix element, which couples elec-
trons and phonons. Figure 7.9 shows schematically a two-dimensional Fermi-
surface (i.e. a Fermi-contour) that has extended parallel sections and therefore 
many possibilities to fulfill energy and momentum conservation in electron pho-
non scattering. Fermi-surfaces like that are called nested Fermi-surfaces.
 Fermi-surface nesting and the corresponding strong Kohn-anomalies have been 
observed for the hydrogen-covered W(110) and Mo(110) surfaces at qc 0.9 Å-1

along the [001] direction. The anomalies were discovered in 1992 by Hulpke and 
Lüdecke using the technique of inelastic scattering of He-atoms [7.21]. The results  
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Fig. 7.9. Schematic picture of a nested Fermi-surface of surface states. The large number of 
electron-hole pair excitations with the same momentum change causes a pronounced anom-
aly in the dispersion of the surface phonon at qc = 2kF.
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Fig. 7.10. Surface phonon dispersion curves on the fully hydrogen covered Mo(110) sur-
face. The SBZ is shown on the right. The open squares are the data of Hulpke and Lüdecke 
[7.22], the filled symbols data of Kröger et al. [7.24]. The same large Kohn-anomaly is also 
found on the hydrogen covered W(110) surface [7.21, 23]. 

of Hulpke and Lüdecke actually displayed two branches in the critical region, one 
with an extremely deep dip, another with a smaller dip. The same two-branched 
anomaly was observed on the hydrogen covered Mo(110) surface [7.22]. Inelastic 
electron scattering on the same systems showed later that only the branch with the 
small dip is a phonon dispersion branch while the very deep dip is due to inelastic 
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scattering of He-atoms from the electronic degrees of freedom [7.23, 24]. The 
results are shown in Fig. 7.10 for the case of the Mo(110) surface. According to 
photoemission spectroscopy the electronic transitions causing the anomaly are 
transitions between hydrogen-induced surface states [7.25, 26]. However, the nest-
ing of the Fermi-surface is not as pronounced as shown in Fig. 7.9. The lengths of 
nearly parallel sections of the Fermi-surface hardly differ from surfaces that do not 
show anomalies in the dispersion. A particular large electron-phonon coupling on 
the hydrogen-covered surfaces must therefore be an important factor. 

7.1.7 Dielectric Surface Waves 

Dielectric surface waves are eigenmodes of dielectric continua for which the di-
electric function displays a resonance behavior. They represent a class of surface 
excitations of its own. Dielectric surface waves exist as phonons and as plasmons, 
i.e. as excitation of the electron system. In the present context, we are interested in 
dielectric surface phonons and focus on infrared-active materials with a single 
infrared-active eigenmode. Examples are the ionic crystals with ZnS, NaCl, or 
CsCl structure. The dielectric function is given by 
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in which st and  are the static dielectric constant and the dielectric constant at a 
frequency much larger than the resonance frequency 0  and  is a damping con-

stant. The real and imaginary parts of )(  are plotted in Fig. 7.11. The bulk of a 

crystal whose dielectric function is described by (7.22) sustains longitudinal and 
transverse polarization waves. A longitudinal wave is characterized by the condi-
tion  

0curl,0div PP . (7.23) 

The electric field E  obeys 

)(div))((divdiv 00 PEED . (7.24) 

In the absence of a charge density , longitudinal polarization waves exist if  

0)(  (7.25) 

which defines the frequency of the longitudinal polarization wave L  (Fig. 7.11). 

Transverse polarization waves obey 
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0curl,0div PP  (7.26) 

In the realm of electrostatics, curlE  vanishes identically. The frequency of trans-
verse polarization wave T is therefore the resonance frequency 0 where

)( . (7.27) 

This exhausts the possibilities for self-sustained electrostatic waves in the bulk.  
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Fig. 7.11 Real and imaginary part of the dielectric function of an infrared-active material 
with a single resonance frequency 0 (solid and dashed line, respectively).  

An additional solution exists at a flat interface between two dielectric half spaces 
that obeys 

0curl,0div EE . (7.28) 

Because of (7.28) the electric field is the gradient of a potential  that fulfills the 
Laplace-equation 

0  (7.29) 

The solution to (7.29) is a wave that is localized to the interface defined by z = 0. 

)(i
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The electric field lines of this surface wave are displayed in Fig. 7.1213.

-- - -- - - - -- --+ + + + + + + +++++

Fig. 7.12. Field lines of a dielectric surface wave. Inside the material, the lines mark also 
the polarization (with opposite direction). The divergence of the polarization at the surface 
leads to polarization charges as indicated. 

The frequency of the wave is defined by the boundary condition that the normal 
component of the dielectric displacement D must be continuous at the interface 
z = 0. 
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This requires that 

)()( )()(  (7.32) 

For the special case of a semi-infinite dielectric half space the condition reduces to  

1)(  (7.33) 

which is the defining equation for the frequency of the surface wave (Fig. 7.11). 
 Surface phonons of the type considered above are named Fuchs-Kliewer sur-
face phonons after the two researchers who postulated the existence of these pho-
nons [7.28]. Experimentally, these phonons were discovered by their strong 

13 An early version of that figure published in 1971 as Fig. 6 of [7.27] has the shape of the 
field lines incorrect. Despite of that, it has been copied over and over again in textbooks 
and reviews.



 7  Vibrational Excitations at Surfaces __________________________________________________________________________ 326

inelastic interaction with electrons reflected from the surface via the electric field 
that is associated with the surface phonons [7.29] (see also Sect. 7.4.2). Similar 
modes exist also in thin film systems, where each interface contributes one mode. 
To satisfy the boundary conditions at the interfaces the solution (7.30) is general-
izes to a linear combination of z-dependent exponentials that possesses a disconti-
nuity in the first derivative at each interface. Because of the boundary condition, 
the frequency spectrum becomes q-dependent (coupling dispersion).
 The electrostatic surface waves described above do not interact with light ex-
cept in special experimental arrangements where they are exposed as frustrated 
total internal reflections. To understand this, one needs to solve the equation of 
motion for infrared active phonon modes together with the full Maxwell-
equations. The result of such calculation for the semi-infinite half space is dis-
played in Fig. 7.13. The left panel shows the dielectric function )(  vs. fre-

quency for the case of vanishing damping. The right panel displays the various 
ranges of solutions vs. the reduced wave vector component parallel to the surface 
cqx/ T. The light line  = cqx marks the boundary between radiative and non-
radiative solutions. On the vacuum side, light waves can exist only to the left of 
the light line that is if qx < q = /c. In the ranges R1 and R'1, light waves from the 
inside are reflected at the boundary and part of the radiation is transmitted into the 
vacuum. In the range R2, )(  is negative which admits only exponentially de-

caying evanescent waves inside the dielectric medium. Hence, one has total reflec-
tion of light from the outside (Reststrahl region). Solutions in L1 and L'1
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Fig. 7.13. Left panel: dielectric function )(  vs. frequency for the case of vanishing 
damping. Right panel: solutions of the Maxwell equations for the dielectric half space vs. 
the wave vector component parallel to the surface qx in reduced units. Radiative and non-
radiative solutions exist on the left and right side of the light line xcq , respectively 
(see text for discussion). 
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correspond to total internal reflection from the inside. The regions marked by N 
sustain no solutions at all. The boundaries to the solutions of total internal reflec-
tion are given by the condition xcq)(  and are indicated as dashed lines. 
The surface wave of the dielectric half space is given by the condition 

xcq)1)(/()( , (7.34) 

which reduces to (7.33) for qx >> T/c. The coupled solutions of the polarization 
wave with the light are called polaritons. Since T/c is of the order of 10 5 of the 
Brillouin zone boundary the polariton dispersion is confined to a narrow region 
around the -point.  

7.2 Adsorbate Modes 

7.2.1 Dispersion of Adsorbate Modes 

The frequencies of the modes of adsorbed atoms depend on their masses and on 
the strength of the bond to the substrate. For strongly bound first, second and third 
row elements such as hydrogen, carbon, nitrogen, oxygen, sulfur, etc. the frequen-
cies are typically situated above the spectrum of the substrate phonons. The adsor-
bate modes are therefore genuine surface modes and their eigenvectors are highly 
localized to the surface. If the adsorbate atoms form an ordered lattice, the modes 
can be expanded into surface phonons and their frequencies are a function of the 
wave vector parallel to the surface.  
 Adsorbate atoms contribute three surface phonon branches for each adsorbate 
atom in the surface unit cell. The branches for one adsorbate atom per unit cell are 
schematically shown in Fig. 7.14. Frequency ranges and dispersion roughly corre-
spond to the case of Ni(100) covered with a c(2 2) overlayer of oxygen or sulfur. 
These atoms reside in the fourfold hollow site. At  and X  the parallel polarized 
modes are degenerate because of the symmetry of the adsorption site. The degen-
eracy is lifted, though marginally in the region between the high symmetry points. 
Quite generally, the dispersion is the smaller the larger the gap to the substrate 
phonon spectrum is. The reason is that for not too densely packed adsorbate layers 
the dispersion arises mostly from the coupling to the substrate motion and not 
from direct bonding between the adsorbate atoms. The dispersion branches of 
adsorbed hydrogen atoms are practically flat. Hence, the hydrogen atoms vibrate 
as if no other hydrogen atoms were present on the surface and the vibration modes 
are localized in all three dimensions. 
 There is a notable exception to the rule "the higher the frequency, the smaller 
the dispersion". That is if a vibrational mode bears a large dynamic dipole mo-
ment. The dipole moment causes a long range interaction that stiffens the fre-
quency when the amplitudes are in phase, hence at . The effect disappears 
quickly for larger wave vectors. To estimate the magnitude of the effect one may 
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consider a simple model of a 2D-lattice of harmonic oscillators vibrating perpen-
dicular to the surface plane that are coupled via the dipole field E   (dip):

)dip(*2
0rr iii eumum E&& . (7.35) 
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Fig. 7.14. Frequency spectrum of an adsorbate covered fcc (100) surface vs. the parallel 
component of the wave vector q|| in the [110] direction. The shaded area is the range of bulk 
phonons. Solid lines are dispersion curves of substrate surface phonons. Dashed lines are 
the dispersion branches of a c(2 2) adsorbate layer for strongly bonded atoms residing in 
the fourfold hollow site. The two branches of the parallel-polarized modes are degenerate at 

 and X  because of symmetry. The dotted line indicates a deviation from the standard 
dispersion curve near  due to dipole-dipole interactions. Also shown is the nearly disper-
sion less branch of a vertical motion of an adsorbed layer of rare-gas atoms (dash-dotted 
line). 

Here, e* is the effective charge associated with the vibration mode and 0 is the 
bare frequency without dipole coupling. The dipole field acting upon the oscillator 
i is the sum of the fields generated by all other oscillators.  

3)dip(
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jiji p rrE  (7.36) 
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Here, el is an electronic polarizability. At the -point all oscillators move in-
phase. The equation of motion then becomes 

0
)1(
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0rr ii u
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e
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where  stands for the dipole sum (7.36). The resonance frequency is therefore 
shifted upwards to 
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For adsorbates that carry a large effective charge like oxygen or carbon monoxide, 
shift amounts to a few meV. 
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Fig. 7.15. (a) Avoided crossing of the vertical polarized mode of a Kr monolayer on 
Pt(111) (circles) with the Rayleigh wave (dashed line). (b) Line width  of the mode vs. the 
wave vector q||. For small q||, the width is large because of radiative damping by anharmonic 
coupling to the bulk phonon bath (after Hall et al. [7.30]). 

 Almost free of dispersion are the vertical vibration modes of weakly bound 
physisorbed atoms whose frequencies for the most part lie well below the sub-
strate phonons (dash-dotted line in Fig. 7.14). In the )( ||q regime where the 
dispersion branch approaches the Rayleigh wave the adsorbate mode and the 
Rayleigh wave couple and the dispersion relations make an avoided crossing.
Crossing is avoided because the Rayleigh wave and the adsorbate mode belong to 
the same irreducible representations (A' of Cs) which has only non-degenerate 
states, whereas a crossing of the curves would involve one point of twofold de-
generacy. Figure 7.15a shows experimental data on the avoided crossing between 
the Rayleigh wave and Kr-modes on Pt(111) [7.30]. In the region of the avoided 
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crossing, the character of the modes changes from the Rayleigh wave type to a 
mode that is almost entirely localized on the Kr-atoms, and vice versa. Inside the 
band of bulk phonons, the Kr-mode is radiatively damped by anharmonic interac-
tions with the thermal bath of bulk phonon modes. This damping is visible as an 
increased line width (Fig. 7.15b). 

7.2.2 Localized Modes 

The term localized modes refers to vibration modes that are not only localized at 
to surface but also within the surface plane. Typical representatives of such modes 
are the modes of atoms forming a dilute disordered lattice gas and the internal 
vibration modes of isolated adsorbed molecules if their frequencies fall outside the 
range of substrate phonons. As the coverage increases, the vibration modes of the 
isolated species may couple with each other. The coupling causes a shift in the 
frequency spectrum of a particular species, which depends on the local environ-
ment around the species. The spectral response of the entire disordered layer 
shows therefore inhomogeneous broadening. This inhomogeneous broadening is 
the equivalent of the spectral width that is covered by the dispersion in ordered 
layers. If for example the adsorbate layer undergoes an order-disorder transition 
the width of the inhomogeneous broadening in the disordered phase reflects the 
magnitude of the dispersion in the ordered layer. In the limit of vanishing disper-
sion, the vibration modes of an ordered layer may be described either as disper-
sionless phonons or as localized vibrations. As long as one stays with the 
harmonic approximation, the distinction is purely semantic. That changes when 
anharmonic forces are admitted. Consider, e.g., the stretching vibration of an iso-
lated diatomic molecule: Due to the anharmonicity of the potential, the vibration 
states are not equidistant. For a typical potential the energy differences decrease 
for higher levels. The excitation energy between the ground state and the first 
excited state 1 is larger than the difference between the next two levels, and so 
forth. Consequently, the frequency of the first overtone is less than twice the fun-
damental. Such shifted overtones are also observed if molecules are adsorbed on a 
surface [7.31]. The coupling with the substrate opens the possibility for an addi-
tional feature in the same spectral range. If the molecules form an ordered lattice 
on the surface phonons of wave vector +q and q couple via anharmonic interac-
tion to form a two-phonon bound state [7.32]. This two-phonon bound state is 
distinct from the overtone frequency of an isolated molecule. 
 Localized modes of molecules reflect the nature and strength of the internal 
bonds of the molecules in the adsorbed state, and of the bonds that the molecules 
make with the surface. The spectroscopy of these modes provides therefore an 
access to surface chemistry whose importance can be hardly overrated. Several 
specific examples have already been discussed in Sect. 6 in the context of the sur-
face chemistry of simple molecules. Here, we briefly summarize a few general 
aspects of surface chemical analysis by vibration spectroscopy.  
 The question whether a diatomic molecule adsorbs dissociatively or not is an-
swered immediately and conclusively by the presence or absence of the stretching 
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frequency that is characteristic for the molecular bond. This concept was intro-
duced by Propst and Piper in 1967 [7.33] who studied the adsorption of H2, N2,
CO and H2O on the W(100) surface in vacuum using inelastic scattering of elec-
trons. Despite the poor energy resolution at the time (50 meV, equivalent to 

 400 cm 1) the authors were able to conclude that all these molecules dissociate 
upon adsorption on the bare tungsten surface. A more recent example with much 
better resolution was shown in Fig. 6.29 with the vibration spectrum of dissociated 
and non-dissociated oxygen molecules. Because of the sharpness of the vibrational 
features and their wide spectral range, the analytical power of vibration spectros-
copy reaches significantly beyond the simple question of dissociation. In 
Fig. 6.29, we have seen that the frequency of the oxygen-oxygen stretching vibra-
tion depends sensitively on the ionicity of the molecule and the strength of the 
internal bond.  
 If a molecule adsorbs on the surfaces, its rotational and translational degrees of 
freedom turn into vibration modes. The frequencies of these modes depend on the 
adsorption site. The corresponding spectral features can therefore be employed as 
an indicator of the adsorption site (cf. Fig. 6.27).  
 Decomposition of complex molecules into fragments and the appearance of 
reaction intermediates on the surface can be studied as well. An important factor 
in the chemical analysis of molecules and molecular fragments at surfaces is the 
existence of characteristic group frequencies, which are salient features of the 
local environment within a molecule. The vibration frequencies for CH-stretching 
modes, e.g., are in the wave number range of 2900-3400 cm 1. The precise fre-
quency depends on the nature of the bond that the carbon atom makes with the rest 
of the molecule (sp, sp2, or sp3 hybridization) and to some extent on the symmetry 
of the mode. The study of the mode spectrum therefore enables the determination 
of the presence or absence of a particular group of frequencies as well as the 
analysis of the type of bonding in which the carbon atom is engaged. Figure 7.16 
shows a sequence of spectra for methanol on Ni(110) as an example for a study of 
a decomposition reaction [7.34]. The spectra are obtained by inelastic scattering of 
electrons. Methanol adsorbed at 110 K displays vibration frequencies of the OH 
stretching and bending vibrations at 3269 cm 1 and 737 cm 1, the CH stretching 
vibrations of the CH3-group at 2821 cm 1 and 2948 cm 1, the bending vibrations 
of that group at 1154 cm 1 and 1451 cm 1 and the very prominent stretching vibra-
tion of the single-bonded CO-group in methanol at 1037 cm 1. A small amount of 
carbon monoxide (stretching mode at 2098 cm 1) is coadsorbed (The amount is 
small as the intensity of CO-peaks is very large). After annealing to 180 K for a 
few minutes, the methanol molecule has lost the hydrogen atom of the OH-group 
as evidenced by the disappearance of the OH stretching mode. Since the CH3-
modes and the CO-group mode remain, the adsorbed species must be a methoxy-
group. The methoxy-group decomposes further into adsorbed CO and H after 
annealing to 325 K (lower panel in Fig. 7.16). The hydrogen vibrations are not 
visible on the same intensity scale. 
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Fig. 7.16. Electron energy loss spectra of a Ni(110) surface dosed with 2L of methanol 
(1Langmuir = 10 6 Torr s). Top panel: after adsorption at 110 K; center panel: after an-
nealing to 180 K; lower panel: after annealing to 325 K.

Depending on the method used for surface vibration spectroscopy and the nature 
of the molecular vibration, the minimum surface coverage required for the detec-
tion of a species ranges from 1/1000 to 1/10 of a monolayer. This high sensitivity, 
together with the features described above, makes vibration spectroscopy unri-
valed by any other methods concerning the chemical analysis of surface species. 
The relative ease by which qualitative conclusion can be drawn from an inspection 
of the vibration spectrum is the strength of the method, and a weakness at the 
same time! A weakness in so far as not all the qualitative reasoning that has been 
put forward in the interpretation of vibration spectra have stood up to the test of 
time. For example, the assignment of adsorption sites of CO and NO molecules 
via the shifts of the stretching frequency has proved erroneous in several cases. On 
firm ground however, is the reasoning based on selection rules in connection with 
the local symmetry of adsorption sites to which we turn now. 
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7.2.3 Selection Rules

Localized modes at surfaces can be classified according to the irreducible repre-
sentations of the point group of the adsorbate/surface complex. The consideration 
of points groups, rather than space groups suffices for all but the (few) structures 
with glide planes. This is because the species are independent of each other if the 
vibration modes of the adsorbed species are localized in the sense of the preceding 
section. If adsorbates form an ordered structure and the vibration modes show 
dispersion, the consideration of merely point group properties suffices for modes 
at the -point or at other high symmetry points of the SBZ. The possible surface 
point groups, their irreducible representations and character tables were already 
introduced in Sect. 1.1.2. Here we are concerned with the classification of vibra-
tion modes according to the irreducible representations. In order to focus on the 
relevant issues, we first consider the selection rules in surface vibration spectros-
copy.
 A particular selection rule arises in conjunction with inelastic scattering of par-
ticles from phonons. As remarked in Sect. 7.1.1, phonons with a q-vector in a 
mirror plane of the substrate separate into even and odd states. In the special case 
where an atom lies on the mirror plane, the odd phonon mode involves a motion of 
that atom which is polarized perpendicular to the mirror plane while the two even 
branches are polarized within the mirror plane. If one considers an inelastic scat-
tering experiment, in which both the incoming particle and the scattered particle 
have their trajectories in the mirror plane, then the wave functions of the initial 
and the final state are even with respect to the mirror plane. The intensity of an 
inelastic scattering event is proportional to the square modulus of the matrix ele-
ments between the initial and final state and the phonon state. A matrix element 
constructed from an odd phonon state and the even initial and final states of the 
particle must change sign under the mirror operation is therefore identical zero. 
Hence, only the even modes are detectable in that scattering geometry. The odd 
modes become visible along the same direction if the mirror plane of the sample is 
tilted with respect to the scattering plane. Experiments of this type have been car-
ried out only in a few cases because of the required extra degree of freedom of the 
sample manipulator [7.35, 36].  
 The most important selection rule in the vibration spectroscopy of adsor-
bate/surface complexes concerns the modes at the -point. At this point, all spe-
cies on the surface move in-phase. Modes of this type are excited in infrared 
spectroscopy and by inelastic electron scattering when energy losses are observed 
in specular reflection. The interaction with infrared light is via the dipole moment 
associated with the vibration modes. The same is true for the dipole scattering 
mechanism in inelastic electron scattering, which is active in specular reflection, 
as will be discussed in Sect. 7.4.2. On a metal surface, the parallel components of 
dipole moments are perfectly screened by their image dipoles. The interaction is 
therefore only with those vibrations that bear a dipole moment perpendicular to 
the surface. This is the so-called surface selection rule. For all practical purposes, 
the rule applies also to semiconductor surfaces. The screening of the parallel com-
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ponent of the dipole moments is proportional to 1/ The intensity in the spectrum 
is proportional to 1/  2. Taking silicon as an example the scattering from vibrations 
bearing a parallel dipole moment is suppressed by a factor of about 150. Modes 
bearing a parallel dipole moment need be considered only in special experimental 
arrangements or on surfaces of wide band-gap insulators with their relatively 
small dielectric constant of 2-3. In Sect. 7.5.2 we shall see that modes with parallel 
dipole moments can make themselves visible by a reduction in the infrared surface 
resistivity of metals. 
 As shown in Sect. 1.1.2, a molecules/surface complex belongs to either one of 
the point groups Cs, C2v, C3v, C4v, C6v, C2, C3, C4, or C6 (or the trivial point group 
bearing no symmetry element at all). Here, we focus on the most frequent point 
groups that contain at least one symmetry plane Cs, C2v, C3v, C4v, and C6v.
Table 7.1 shows the character tables of these point groups again, supplemented by 
two columns. The entries in the penultimate column concern the transformation 
properties of translation and rotation. The translation along the z-axis belongs to 
the totally symmetric irreducible representations A' (Cs-group) and A1 (Cnv-
groups). Only the modes belonging to these representations carry a dipole moment 
oriented along the z-axis. In the language of group theory, the surface selection 
rule therefore states that only the modes belonging to the total symmetric repre-
sentation are active in inelastic electron scattering via the dipole scattering or in 
surface IR-spectroscopy. We note that the IR-selection rule in surface spectros-
copy differs from the IR-selection rule for molecules in the gas-phase. In the gas-
phase, e.g., IR-activity or Raman-activity are mutually exclusive if molecules have 
an inversion center. Since surface/molecule complexes are lacking a center of 
inversion, the rule does not apply there. Even more striking is that the stretching 
vibration of homonuclear diatomic molecules, which is not infrared-active in the 
gas-phase, becomes infrared-active on the surface, regardless of the orientation of 
the molecule. An example was shown in Sect. 6.4.3 with Fig. 6.29, which displays 
the dipole spectrum of adsorbed oxygen molecules. Even the stretching vibration 
of the relatively weakly bonded physisorbed oxygen molecule with its bond axis 
oriented parallel to the surface is clearly discernable in the spectrum. The physical 
origin of the perpendicular dipole moment associated with the vibration is the 
change in the charge transfer to the surface with the bond distance in the molecule, 
which generates a dipole moment that fluctuates along with the vibrational mo-
tion. 
 For the analysis of the vibration spectra of polyatomic molecules, one needs to 
know the number of modes belonging to the total symmetric representations and 
to the other representations. These numbers are the entries in the last columns of 
Table 7.1. The number of modes is expressed in terms of the number of atoms in 
certain positions with respect to the symmetry elements. The first row of each of 
the last columns shows the total number of atoms N expressed in terms of the 
number of non-equivalent atoms on (or off) the symmetry elements. For example, 
the number of nonequivalent atoms in a general position, i.e. not on any symmetry 
element is denoted by m. The actual number of such atoms in the molecule/surface 
complex depends on the symmetry elements of the group. For Cs with only one 
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mirror plane, the molecule/surface complex has twice as many atoms as the num-
ber m of atoms in non-equivalent positions off the mirror plane. The number of 
atoms in non-equivalent positions on the xz-mirror plane, mxz, contributes mxz at-
oms to the total number of atoms N. Hence for the point group Cs the total number 
of atoms is N=2m + mxz. For the other point groups the entries in the first row of 
the last columns are constructed accordingly. The number m0 is the number of 
atoms in non-equivalent positions on the rotation axis.  
 With the help of that notation, the number of eigenmodes belonging to each 
representation is easily calculated. We consider again the point group Cs as an 
example. The three possible displacement vectors of each of the m atoms in a gen-
eral position with respect to the symmetry element may transform either symmet-
rically or antisymmetrically with respect to the mirror plane. Hence each atom of 
type m contributes 3m modes to each of the irreducible representation A' and A''. 
The atoms on the mirror plane have two degrees of freedom within the mirror 
plane and one perpendicular to the plane and contribute the corresponding number 
of vibrations to the A' and A'' representations. The numbers of modes for the other 
groups are derived accordingly. The degenerate modes require extra consideration. 
The easiest, heuristic way to obtain the number of modes in terms of the atom 
positions is to subtract the modes of the non-degenerate representations from the 
total number of modes (which is 3N) considering that each of the E-modes is dou-
bly degenerate.  
 With the help of the entries in the last columns, one can calculate the number of 
modes in each representation, in particular the number of dipole active modes, for 
a known symmetry of the molecule/surface complex. Moreover, one can establish 
the type of mode; in the case of a hydrocarbon molecule e.g., whether it belongs to 
the carbon skeleton or is a mode associated with a hydrogen atom. Vice versa, one 
can establish the local site symmetry from the number of modes in the various 
representations, in particular from the number of dipole active modes. An impor-
tant question in that regard is how the eigenmodes of the molecule, classified ac-
cording to the irreducible representations of the point group relevant for the gas-
phase molecule, break down to the irreducible representations of the point group 
of the adsorbed state, provided the molecule stays intact. The answer is trivial for 
diatomic molecules. For a molecule that has many eigenmodes, may be some of 
them degenerate as e.g. in C6H6 (point group D6h), the breakdown of the modes 
into the irreducible representations of the surface point group requires a detailed 
consideration of the various modes, or the employment of the mathematical appa-
ratus of group theory. The results of such analysis are summarized in the so-called 
correlation tables. Table 7.2 and 7.3 are correlation tables for the two important 
molecular point groups D6h and D2h.
 The use of these correlation tables is exemplified with the adsorption of ben-
zene on the Ni(111) surface. The maximum possible symmetry on that surface is 
C3v. The analysis of the spectrum of the vibration modes for the ordered 

)77( R19.1° adsorption phase in connection with the dipole selection rule 
shows that the carbon ring is oriented parallel to the surface and that the symmetry 
of the molecular complex on the surface is C3v [7.37]. However, there are two 
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Table 7.1. Character tables of surface point groups as in Table 1.1. The upper left corner 
denotes the point group. The first column are the irreducible representations, the following 
columns are the characters of the classes of the group. The penultimate column describes to 
which irreducible representation the translations along the x, y and z-axes and the rotations 
around these axes belong. This classifies the eigenmodes of adsorbates that arise from the 
translation and rotation degrees of freedom. The first row of the final column gives the total 
number of atoms N in terms of the number of atoms in specific positions. The following 
rows contain the number of modes belonging to each representation. The numbers mxz, myz,
mv are the non-equivalent atoms on the mirror planes, m0 is the number of non-equivalent 
atoms on a rotation axis, and m the number of atoms in a general position. 

C2v I C2 xz yz N = 4m + 2mxz + 2myz + m0

A1 +1 +1 +1 +1 z 3m + 2mxz + 2myz +m0

A2 +1 +1 -1 -1 Rz 3m + mxz + myz

B1 +1 -1 +1 -1 x, Ry 3m + 2mxz +myz + m0

B2 +1 -1 -1 +1 y, Rx 3m + mxz + 2myz + m0

C3v I C3 N = 6m + 3mv + m0

A1 +1 +1 +1 z 3m + 2mv + m0

A2 +1 +1 -1 Rz 3m + mv

E +2 -1 0 x, y, Rx, Ry 6m + 3mv + m0

C4v I C4 C4
2

v d N = 8m + 4mv + 4md + m0

A1 +1 +1 +1 +1 +1 z 3m + 2mv + 2md + m0

A2 +1  +1 +1 -1 -1 Rz 3m + mv + md

B1 +1 -1 +1 +1 -1  3m + 2mv - md

B2 +1 -1 +1 -1 +1  3m + mv + 2md

E +2 0 - 2 0 0 x, y, Rx, Ry 6m + 3mv + 3md +m0

C6v I C6 C6
2 C6

3
v d N = 12m + 6mv + 6md + m0

A1 +1 +1 +1 +1 +1 +1 z 3m + 2mv + 2md + m0

A2 +1 +1 +1 +1 -1 -1 Rz 3m + mv + md

B1 +1 -1 +1 -1 +1 -1  3m + 2mv + md

B2 +1 -1 +1 -1 -1 +1  3m + mv + 2md

E1 +2 +1 -1 -2 0 0 x, y, Rx, Ry 6m + 3mv + 3md + m0

E2 +2 -1 -1 +2 0 0  6m + 3mv + 3md

Cs I xz N = 2m + mxz

A' +1 +1 z, x, Ry 3m + 2mxz

A'' +1 -1 y, Rx, Rz 3m + mxz
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types of C3v symmetries. One has the v-planes running through the carbon atoms; 
the other has the v-planes cutting through the carbon-carbon bonds. Different 
molecular modes belong to the A1 total symmetric representation in the two cases. 
For the former the B1u and B2g-modes assume A1-character, for the latter the B2u

and B1g-modes become A1-modes (Table 7.2). Experiments have shown that the 
B2u mode of the carbon skeleton (1310 cm-1 and 1420 cm-1 in the gas-phase and 
the adsorbed state, respectively) assumes A1-character, which means that the v-
planes are cutting through carbon-carbon bonds [7.37]. About 20 years later, this 
orientation was confirmed by structure determination (see Sect. 6.4.5; Fig. 6.35).  

7.3 Inelastic Scattering of Helium Atoms 

7.3.1 Experiment 

This section pays tribute to an experimental technique that has been instrumental 
in the discovery and in the study of the dispersion of surface phonons. The tech-
nique flourished in the 80ties and 90ties of the last century, largely because of 
instrumental improvements originating in the group of J. P. Toennies [7.38]. It is 
however almost forgotten by now, partly because science has moved on to other 
issues of interest, partly because the complexity of the technique prevented its 
commercialization. Fig. 7.17 illustrates the principle of the generation of a He-
beam by a supersonic expansion from a nozzle. He-gas is released from a high-
pressure cell into a vacuum chamber through a small orifice of 5-10 m diameter. 
The entrance opening of the trumpet-shaped skimmer has a diameter of 0.2-
0.4 mm. The skimmer is placed at a distance of about 8 mm from the orifice of the 
high-pressure cell. The combination of nozzle and skimmer defines the He-beam 
both with respect to angular and energy resolution. The majority of He-atoms does 
not move into the desired beam direction and cannot pass the orifice of the skim-
mer. These atoms are pumped off by a roughening pump that can handle large gas 
throughputs. In order to reduce the ambient He-pressure in the sample chamber 
the He-beam passes a further sequence of individually pumped chambers sepa-
rated by diaphragms with small orifices. In each of these chambers the He-atoms, 
which do not pass the orifice of the next diaphragm are pumped off. Eventually 
the ambient pressure in the sample chamber is only due to the He-atoms of the 
beam. The angular width of the beam is about 0.2°. The energy distribution is also 
small, for the following reason: Inside the high-pressure cell, the atoms have a 
thermal velocity distribution. Because of the high starting pressure, the density of 
atoms in the beam is very high in the initial stages of the expansion, right after the 
orifice. He-atoms traveling along the beam direction and possessing a different 
tangential speed undergo scattering events with each other. Except for the unlikely 
events of head-on collisions, the scattered He-atoms have trajectories that make a 
larger angle with the beam direction. These atoms can therefore not pass the ori-
fice of the skimmer to enter the next stage of differential pumping. Only those He- 
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i

1<p0<200 bar

Skimmer

Crystal

to pumps

Fig. 7.17. Schematic illustration of the production of a He-beam with a narrow energy 
distribution. 

atoms survive in the beam, which have nearly the same velocity. The width of the 
energy distribution depends on the initial pressure. The larger the pressure, the 
higher the density of He-atoms in the beam and the smaller is the resulting energy 
distribution. The width of the energy distribution is furthermore proportional to 
the temperature of the high-pressure gas cell. The production of undesired He-
clusters set an upper limit to the pressure and a lower limit to the temperature. 
Energy widths of 0.2 meV and 0.08 meV have been achieved for gas cells operat-
ing at liquid nitrogen and liquid helium temperature, respectively.  
 The energy of the beam can be calculated via simple thermodynamic reasoning. 
During the expansion process, energy must be conserved. In the limit that the 
velocity perpendicular to the beam direction is vanishingly small, the kinetic en-
ergy per atom in the beam is equal to the enthalpy per atom h0 in the high-pressure 
cell,

0B0v0p0

2
||

2

5

3

5

2
TkTcTch

mv
E . (7.40) 

Here, cp and cv are the specific heats per atom at constant pressure and volume, 
respectively, and T0 is the temperature of the cell. A liquid-nitrogen cooled nozzle 
should therefore produce a beam of 16.6 meV energy. Technically, the energy is a 
little larger (  18meV). 
 The energy spectrum of the scattered He-atoms is determined using the time of 
flight method. A rotating blade that has a narrow slit chops the He-beam into 
packages. The scattered individual He-atoms are detected by a quadrupole mass 
spectrometer that is situated at a distance of the order of 1 m from the sample. The 
time of flight is measured by gating the quadrupole signal with the chopper blade. 
The duty cycle can be improved to 50% by using choppers that have a pseudo-
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random distribution of slit widths in combination with mathematical matrix inver-
sion techniques to recover the desired time-of-flight signal. 
 Inelastic scattering events from surface phonons obey energy conservation and 
momentum conservation parallel to the surface. The phonon wave vector q|| is 
therefore

SI|| sinsin
2

h
h

EE
m

q  (7.41) 

where I and S are the angles of the incident and scattered beam with respect to 
the surface normal,  is the quantum energy of the phonon and E the energy of 
the He-beam before the scattering event. The plus and minus signs stand for en-
ergy gain and energy loss events, respectively. The crossings of the scan curve
(7.41) with the dispersion curve of a surface phonon mark possible scattering 
events. Fig. 7.18 shows possible events for a 20 meV beam and the approximate 
surface phonon dispersion curve (q||) on Ni(100) along the [110] direction. 
Positive and negative values of the energy correspond to phonon annihilation and 
creation, respectively. 
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Fig. 7.18. Scan curves (dashed line) for a 20 meV He-beam, 90° scattering angle and a 
phonon dispersion relation (solid line) that resembles the Rayleigh-phonon on Ni(100). The 
intersections of the scan and dispersion curves mark possible scattering events. Positive and 
negative values of the energy correspond to phonon annihilation and creation events, re-
spectively.
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The intensity of phonon annihilation and creation processes are proportional to n
and n+1, respectively where n is the occupation number according to Bose statis-
tics,

1/ 1e BTkn h . (7.42) 

The intensities of phonon annihilation and creation events are related by the 
Boltzmann factor 

Tk

n

n

I

I
B/

cr

an e
1

h . (7.43) 

The experimental set-up typically fixes the scattering angle between the incident 
and scattered beam. Here the angle is assumed to 90°. The momentum transfer to 
the surface is varied by rotating the sample. Fig. 7.18 shows two scan curves, one 
with  I =  S = 45° and a second one with  I = 34° and  S = 56°. Both scan 
curves intersect the phonon dispersion curve several times. The maximum number 
of intersections is four. A time of flight spectrum therefore displays up to four 
peaks that could result from the same phonon. The phonon dispersion curve of a 
particular branch is obtained by varying the sample orientation in small incre-
ments, by marking all data points in the (q||) space, and by running continuous 
curves through the data points thus obtained. The scan curve for  I = 34° and 

 S = 56° runs nearly parallel to the dispersion curve for a while. Considering the 
finite energy and momentum resolution, this means that scattering is possible in a 
large phase space. Correspondingly, the peaks from those events posses a high 
intensity and are broad in energy.  

7.3.2 Theoretical Background

The simples approach to inelastic scattering of particles is the Born-
approximation. In that approximation the scattering cross section is 

)()(ed
2dd

d 2)(i3

2

2
h

hh
EEV

k

km
rr rkk . (7.44) 

Here m is the mass of the particle, k and E denote wave vector and energy of the 
particle with the primed quantities referring to the scattered particle, V(r) is the 
total scattering potential, and  | and |  are the initial and final phonon states. 
The delta function ensures energy conservation. For scattering from a lattice of 
localized potentials around each atom, the dynamic part of the atom position vec-
tors can be expanded into phonon annihilation and creation operators and the scat-
tering cross section for one-phonon scattering events is readily calculated.  
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The Born approximation is valid for the scattering of fast particles from weak, but 
localized potentials, so that the particles are scattered only once and the interaction 
times are short. Because of the short interaction times, the scattered particles see 
the atoms at their instantaneous positions. The inelastic events result from the 
interference of the waves scattered by atoms in different spatiotemporal positions. 
Inelastic scattering of neutrons, e.g., is well described in the Born-approximation. 
However, He-atom scattering is more complicated as the atoms do not enter the 
crystal at all and are therefore not scattered by local potentials of individual atoms. 
The trajectories of He-atoms are turned around outside the surface were the elec-

tron density is very low, about 3
Bohr

5 /10 ae  (cf. Fig. 6.1). Hence, He-atoms nec-

essarily interact with more than one surface atom at a time. For a qualitative 
discussion of the inelastic scattered intensity the mechanics of Born scattering can 
be kept if the atoms are described by the classical phase  [7.39, 40] 

L
h

1
 (7.45) 

with L  the Lagrange function. For small displacements of the atom positions un

around their equilibrium positions rn the Lagrange function L  can be expanded 
as
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where Fn(r(t)) is the force that the atom n imposed on the scattered particle at its 
position r(t). Inelastic scattering from phonons is due to the second term. In the 
semi-classical picture the amplitude A of the scattered wave is  

...)i1(ee ph
i)i( 0ph0A . (7.47) 

Here ph is the phonon-induced total phase shift of the particle in the scattering 
event which is  

(t)))((dph nn
n

urF tth . (7.48) 

The second term of the expansion (7.47) gives rise to one-phonon scattering 
events. The cross section for one-phonon events is proportional to the square 
modulus of the scattering amplitude, whence  
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As the He-atoms are scattered only from surface atoms we need to consider 
merely displacement of these atoms. For simplicity, we consider a vertically polar-
ized phonon in a primitive surface unit cell  

)(i0
,,

||e)( n|| rq
nn

t
zz utu . (7.50) 

Here, rn|| is the two-dimensional vector pointing to the atom n in the surface and q||

is the phonon wave vector as before. Inserting (7.50) into (7.49) yields the one-
phonon cross section as proportional to the squared modulus of Fourier-
transformed forces on the scattered atom. 
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 (7.51) 

In order to discuss qualitative aspects of the frequency dependence of the cross 
section we consider a simple case, the (inelastic) reflection from a flat surface at 
perpendicular incidence. The potential V(z) has an exponentially repulsive part 
and an attractive part from the van-der-Waals forces (Sect. 6.1). 

3
0 )(e)( w

z zzcVzV  (7.52) 

The Fourier transform of the force acting on the scattered He-atom is thus 
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in which z(t) is obtained from the integration of 
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2
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m

z&  (7.54) 

Fig. 7.19 shows the result for the frequency dependence of the cross section for a 
particular set of parameters that was calculated by Harris and Liebsch for the 

Cu(110) surface (V0 = 12 eV, c = 1.52 eV 3
Ba , Bw 461.0 az , 1

Bohr39.1 a , with 

the Bohr radius aB = 0.529 Å 1 [7.41]).  
 The decay of the intensity for higher frequencies as shown in Fig. 7.19 was first 
discussed by Beeby and is therefore called the Beeby-effect [7.42] or slow colli-
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sion effect. The critical frequency beyond which the intensity falls off exponen-
tially is given by the condition 

/Hec v  (7.55) 

in which vHe is the velocity of the He-atom and  is the characteristic range of the 
potential. The velocity of a 20 meV He-beam is about 980 m/s. In absence of the 
attractive part the range of the potential can be estimated as  = 1/ . The resulting 
critical frequency of c = 4 THz is in approximate agreement with the solid line in 
Fig. 7.19. The critical frequency increases if the van-der-Waals attraction is in-
cluded since the potential has a longer range in that case. The slight increase of the 
cross section above the value at  = 0 is because the He-atom picks up some speed 
in the vicinity of the surface due to the van-der-Waals attraction. 
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Fig. 7.19. Frequency dependence of the one-phonon cross section for He-atom scattering 
(Beeby-effect) according to (7.53). The solid and dashed lines are for beam energies of 
20 meV without and with the van-der-Waals interaction, respectively. The dotted line is for 
beam energies of 100 meV with van-der-Waals interaction. The parameters V0 = 12 eV, 
c = 1.52 eVaB

3, zw = 0.461aB, and  = 1.39aB
1, with aB = 0.529 Å 1 are as calculated by 

Harris and Liebsch for the Cu(110) surface [7.41].  

Because of the Beeby-effect, the higher vibration modes of chemisorbed atoms 
and the internal vibrations of molecules cannot be observed in He-scattering. Ac-
cording to (7.55) the use of higher beam energies should help. Unfortunately, for 
higher beam energies the spectrum becomes completely dominated by multi-
phonon events. This is very nicely illustrated in Fig. 7.20 with spectra obtained on 
a monolayer of xenon adsorbed on Cu(100). The strongest contribution to the 



 7  Vibrational Excitations at Surfaces __________________________________________________________________________ 346

inelastic spectrum is from the dispersionless vertical motion of the xenon atoms. 
Multiphonon events therefore appear only at multiples of the single-phonon en-
ergy. For a beam energy of 8.1 meV (7.20a) only single phonon scattering events 
are visible. At Ei = 16.3 meV double and triple phonon loss and gain events ap-
pear. At Ei = 36.3 meV the spectrum is completely dominated by multiphonon 
scattering. The symbols "L" and "RW" stand for a longitudinal surface wave and 
the Rayleigh wave, respectively (after Gumhalter [7.43], see also [7.44]). 

In
te

ns
ity

(a)

(b)

(c)

Energy transfer / meV

"       "

Fig. 7.20. Inelastic scattering of He-atoms from a xenon covered Cu(100) surface for three 
different beam energies (a) Ei = 8.1, (b) 16.3, and (c) 36.3 meV. Momentum transfer is 
along the [100]-direction. The prominent loss and gain events are due to the dispersionless 
vertical motion of the xenon atoms. The peaks labeled "L" and "RW" correspond to a longi-
tudinal surface wave and the Rayleigh wave. The total scattering angle was 95.8° in all 
cases (after [7.43, 44]). 

Quantitative statements about the dependence of the cross section on the wave 
vector are less straightforward as it is problematic to calculate the phonon-induced 
corrugation of the potential far outside the surface. Qualitatively, one expects the 
phonon-induced corrugation at large distances to be much less if neighboring at-
oms move in anti-phase compared to the case where they move in-phase. The 
intensity should therefore decrease as one approaches the boundary of the SBZ. 
The effect is known as the Armand effect after G. Armand who discussed this 
topic first [7.45]. The decay of the intensity is particularly prominent on metal 
surfaces because of their smooth charge density outside the surface. Theoretical 
analysis predicts the decay to be [7.39, 45] 
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where qc is a parameter. Experimental results confirm the trend. For Ag(111) the 
decay that can be fit to qc = 0.62 Å-1 so that the intensity drops by an order of mag-
nitude at the zone boundary [7.46, 47]. For a recent review on the theory as well 
as on certain experimental aspects the reader is referred to an article of B. Gum-
halter [7.43]. 

7.4 Inelastic Scattering of Electrons 

7.4.1 Experiment 

Inelastic scattering of electrons or Electron Energy Loss Spectroscopy (EELS) is 
the most versatile technique for the investigation of vibrational modes on surfaces 
in vacuum. The energy resolution of present-day spectrometers is as high as 
1 meV. All vibration modes from the low frequency vibrations of physisorbed 
rare-gas atoms to the internal vibrations of molecules are accessible in a single 
scan. Furthermore, one can probe phonons in the entire Brillouin zone. By varying 
the electron energy, different scattering mechanisms can be employed, leading to 
different selection rules for the inelastic scattering. In this first subsection, we 
discuss some of the salient properties of electron spectrometers that are used for 
inelastic electron scattering.  
 The width of the energy distribution of electrons from thermal, field emission 
or photoemission cathodes is at least 200 meV. Energy selectors are required to 
make electrons useful for inelastic scattering from phonons. A second energy se-
lector is required for the analysis of the scattered electrons. The combined resolu-
tion of the electron monochromator and analyzer must be in the low meV range. 
Electrostatic deflector type selectors, as opposed to magnetic deflectors are used 
exclusively, because of the difficulty to shield magnetic fields effectively. Fig-
ure 7.21 displays a typical experimental set-up of an electron spectrometer. It 
comprises the electron emission system, two monochromators, lenses to image the 
exit slit of the monochromator onto the sample and further onto the analyzer en-
trance slit, two analyzers and a channeltron electron multiplier. In the interest of 
an optimum intensity of the signal, perfect as possible images of each aperture 
onto the next one are required. Just as in light optics, the phase space is conserved 
in the process of imaging. Because of the C2v symmetry of the optics around the 
beam direction, phase space conservation applies to the plane of drawing in 
Fig. 7.21 and perpendicular to the plane of drawing separately.  

.sin

.sin

constEh

constEs
 (7.57) 
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Here, E is the beam energy, s and h are the width and heights of the slit apertures, 
and  and  are the angular apertures in the plane and perpendicular to the plane 
in Fig. 7.21. The energy range of the electrons to be scattered at the sample is 
between a few and a few hundred eV. As the quantum energies of vibrational mo-
tions are a few hundred meV at the most, the energies of the inelastically scattered 
electrons are about the same as the energy of the incident electrons. Together with 
the condition of phase space conservation, this calls for an electron optics that is 
identical in the monochromator and the analyzer part, in reverse order. A small 
allowance may have to be made to match the electron optics of the monochroma-
tor to the tendency of high intensity beams to diverge because of the repulsive 
interaction between the electrons. 

Channeltron  First Analyzer Lenses B1 - B4

First monochromator

Second monochromator

Cathode

Cathode lenses

Second analyzer SampleScattering chamber

Fig. 7.21. Electron spectrometer for inelastic scattering of electrons from surfaces. 

Classical energy dispersive deflectors are the spherical deflector, which ideally 
has stigmatic focusing for a total deflection angle of 180° and the cylindrical de-
flector that focuses in the plane perpendicular to the cylinder axis at 127°. Metallic 
plates at both ends with slit apertures to achieve energy selections reduce the fo-
cusing angles in both cases whereby the spherical deflector looses its perfect stig-
matic focusing. For both devices, the basic equation that describes the image of 
the entrance slit at the exit-slit position is 

2
0

2
0p0Dentranceexit / rcrcEErcyy . (7.58) 

Here, r0 is the radius of the center path of the electron and yexit and yentrance are the 
deviations of the electron trajectory from the radius r0 at the entrance and exit 
slits, respectively. Ep is the nominal pass energy for electrons traveling tangential 
to the radius r0, E is the deviation from that energy, cD is a constant describing 
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the energy dispersion,  is the angle in the dispersion plane that the trajectory 
makes with the tangential path at the entrance slit,  is the corresponding angle 
perpendicular to the dispersion plane, and c  and c  are the second order angular 
aberrations in the dispersion plane and perpendicular to it, respectively. The first 
order term in  vanishes, as the devices possess first order focusing. The first or-
der term in vanishes for the spherical deflector because of symmetry. The con-
stants c , c  and cD are 4/3, 1 and 1.0 for the cylindrical deflector, and 1, 0 and 
2.0 for the ideal spherical deflector.  
 With the improvements in computing power, bundles of electron trajectories 
are calculated within a short time even on a PC. This has opened the possibility to 
design free-form deflectors whose properties can be optimized with respect per-
formance and ease of construction. The deflector that proved best in performance 
for the purpose of electron energy loss spectroscopy is illustrated in Fig. 7.22.  
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Fig. 7.22. Free-form electrostatic deflector that features stigmatic focusing, equipotential 
metal apertures and a correction of the angular aberration in the dispersion plane [7.48]. (a)
Cross section in the dispersion plane showing the deflector plates and the entrance and exit 
apertures. (b) Cross section perpendicular to the electron path showing the concavely 
shaped deflector plates. (c, d) As (a) and (b), yet with the dashed equipotential lines ob-
tained from the solution of the Laplace-equation for the device. 

The cross section in the dispersion plane shows deflector plates that are curved as 
for a cylindrical deflector (7.22a). Orthogonal to the dispersion plane the deflector 
plates are concavely shaped (7.22b) with a radius of curvature rc. Since the radial 
field is zero right after the entrance slit and right before the exit slit, electrons do 
not travel along the equipotential line that connects entrance and exit slit (7.22c),  
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Fig. 7.23. Electron trajectories in a free-form deflector of the type shown in Fig. 7.22. Pa-
rameter are the radial position of the entrance slit r0 = 33.5 mm, radii of inner and outer 
deflection plate ri = 20.5 mm and ro = 60 mm, respectively, and rc = 100 mm. (a) Radial 
position r( ) versus the deflection angle  for the entrance angles  = -4°,-2°, 0°, 2° and 4°. 
(b) Position perpendicular to the dispersion plane z( ) for the entrance angles  = -4°, -
2°,0°, 2° and 4°. (c) Deviation of the radial position from r0 at the exit slit as a function of 
the entrance angle .

Fig. 7.24. Electron energy loss spectrum of cyclohexane on W(110) showing the perform-
ance of advanced spectrometers. In addition to the gas-phase modes, the spectrum shows 
the shifted CH-stretching mode of the hydrogen atoms pointing towards the surface 
(Sect. 6.4.5) and surface induced splittings of the modes at 250 and 520 cm 1.
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but rather travel up to larger radii until midway of the path. This is illustrated in 
the upper panel Fig. 7.23. The concave curvatures in combination with the top and 
bottom cover plates ensure the stigmatic focusing while minimizing simultane-
ously the angular aberrations. The angular aberration in the dispersion plane can 
be reduced to zero, by making rc  1.3r0. However, the sum of the angular aberra-
tion coefficients c +c  stays constant [7.48]. In total, the device behaves nearly 
as an ideal sphere without fringe fields from the entrance and exit aperture. Unlike 
the ideal spherical deflector, the device is very robust with respect to high current 
loads. This is owed to the fact that the device has active stigmatic focusing 
whereas the ideal sphere has stigmatic focusing only because of the spherical 
symmetry. Figure 7.24 shows an example of a high-resolution spectrum obtained 
with the spectrometer featuring the free-form deflectors. 

7.4.2 Theory of Inelastic Electron Scattering

In inelastic scattering of electrons one distinguishes three types of mechanisms, 
scattering from long-range electric fields ("dipole scattering"), scattering from the 
short-range atomic potentials ("impact scattering"), and scattering via short lived 
resonances with molecular orbitals ("resonance scattering"). The mechanisms are 
illustrated in Fig. 7.25. Each mechanism has its own characteristic features, with 
respect to angular distribution of the scattered electrons, the dependence of the 
cross section on the electron energy, the selection rules that apply, and each 
mechanism requires a theory of its own. Resonance scattering, e.g. occurs in 
weakly bound molecules at particular electron energies. The electron is captured 
for a short time in a molecular orbit. After some time the molecule undergoes a 
Frank-Condon transition from the ionic state into the ground state and the electron 
is re-emitted. The trajectory of the emitted electron is determined entirely by the 
symmetry of the molecular orbit. As the final state of the molecule may be vibra-
tionally excited, the energy of the emerging electron is correspondingly lower (for 
a review see [7.49]). Since resonance scattering is less important for surface vibra-
tion spectroscopy as an analytical tool, we focus on dipole and impact scattering in 
the following. 

Dipole scattering - the dielectric theory of electron solid interaction

We consider the interaction of electrons with dipolar electric fields of elementary 
excitations at surfaces. The theory is not confined to vibration spectroscopy. It 
applies equally to other elementary excitations such as electronic transitions and 
plasma excitation in the limit of small momentum transfer. The theory of dipole 
scattering can be approached from three different viewpoints, each one having its 
own virtues and shortcomings.  
 One possibility is to consider the Hamiltonian of the free electron and treat the 
dipole fields associated with the elementary excitations as a perturbation in the 
spirit of the Born-approximation. The advantage of this approach is that it delivers 
the scattering kinematics, i.e. energy and momentum conservation. The disadvan-
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tage is that one has to focus on a particular type of elementary excitation. The 
second approach considers the Hamiltonian of the excitation and treats the elec-
tron at as external perturbation. Because of the smallness of the momentum 
change involved in inelastic scattering from long-range dipole fields the electron 
trajectory can assumed to be unperturbed by the inelastic event (cf. Fig. 7.25a). 
This treatment delivers the multiple losses straightforwardly. The disadvantage is 
that energy and momentum conservation have to be introduced ad hoc. 
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(c)
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e

Fig. 7.25. Illustration of the three different scattering mechanisms, which are operative at 
surfaces. Small-angle dipole scattering (a), wide-angle impact scattering (b), and resonance 
scattering (c).

The third possibility is to consider the inelastic interaction as a classical energy 
loss of a charged particle reflected from a surface. The advantage of the latter 
formulation is that it is independent of the specific elementary excitation. Solids 
and adsorbed species on solids are represented by their complex dielectric func-
tions ( ) and their complex dynamic polarizabilities ( ), respectively. In their 
specific realms of applicability, all three approaches lead to the same final expres-
sion for the inelastically scattered intensity. We pursue the third path in the fol-
lowing, usually known as the dielectric theory of inelastic electron scattering. As a 
matter of convenience, we do the derivation in Gaussian units. The theory was 
originally developed by Geiger [7.50] and Raether [7.51] for inelastic scattering of 
high-energy electrons in transmission geometry [7.52]. The low energy reflection 
case was first studied by Lucas and Sunjic [7.53] using the second approach. The 
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quantum theory of scattering for the reflection geometry was developed by Evans 
and Mills [7.54]. 
 In classical electrodynamics the total energy dissipation is  

),(),(dd
4

1 3 tttW rDrr &E  (7.59) 

where ),( trE  and ),( trD&  are the electric field and the time derivative of the dis-

placement, respectively. The integral extends over the entire space. By writing the 
energy loss that way, we have restricted our considerations to local and instanta-
neous dielectric responses. This approximation suffices in most cases of interest. 
We remark however that the surface response of metals due to electron-hole pair 
excitations is not properly described within the framework of local dielectric re-
sponse [7.55]. The total energy dissipation can also be expressed in terms of the 
probability ),( ||qP  for an energy loss of energy h  and momentum ||qh ,

0
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For surface losses, one may employ the two-dimensional Fourier expansion 
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Here the position vector is r = (r||, z), and the surface plane is at z = 0. The expan-
sion may be considered as an expansion into dielectric surface waves (Sect. 7.1.7, 
(7.30)). Contrary to (7.60), the integral extends over negative and positive . An 
analogous expansion holds for the displacement D (r, t ). The Fourier-components 
of D and E are related to each other by the dielectric function 

( ) =  1( ) + i  2( ), which we assume to be scalar for the moment. A possible 
dependence on q|| can be neglected as the scattering process is near q|| = 0, but still 
to the far-right of the light line (Fig. 7.13). By inserting (7.61) and the correspond-
ing equation for the displacement D(r,t) into (7.59) and by considering that the 
integrals  
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are representations of delta-function, one obtains the expansion for the energy loss 
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As the imaginary part of )(  is zero in vacuum, only the electric field inside the 

material E int(q||, z, ) matters and the integral extends only over the half-space 
0z . The integral over q|| and  has the form of (7.60). The integral over z is 

therefore the loss probability P(q||, ). The internal electric field is generated by 
the electron while it is approaching the surface from the outside and after it is 
reflected from the surface potential barrier or diffracted by the near-surface atoms. 
The electron also spends a short time inside the solid before it emerges in the vac-
uum again. For low energy electrons with their small penetration depth, this part 
may be neglected. The internal electric field therefore stems from a charge outside 
the solid. If the solid is a semi-infinite dielectric half-space in z  0, the relation 
between the internal field E int(q||, z, ) and an external field E ext(q||, z, ) is 
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The loss probability is therefore proportional to  
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The loss probability has a pole at the frequency of the dielectric surface wave 
(Sect. 7.1.7). As an example, we consider the dielectric function of an infrared 
active material in the case of small damping  (7.18).  
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the frequency of the Fuchs-Kliewer surface phonon. We thus learn that surface 
phonons are excited by electrons while the electrons are outside the solid; longitu-
dinal bulk phonons are excited by electrons inside the solid since the screening 
factor is )(/1  in that case. The same holds for plasmon excitations.  

We now consider the case of a thin dielectric layer of thickness d on a non-
absorbing substrate. The substrate/layer interface is at z = 0. The dielectric func-
tions of layer and substrate are denoted as )(s and b, respectively. It is as-

sumed that |  s( )q||d| <<  b. The potential  originating in a charged particle 
outside the solid is as if the layer did not exist. The potential is given by the poten-
tial of the bare charge and the image charge inside the solid 
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1
)(

b

br  (7.69) 

where r and r' are the vectors pointing from the charge and its image to a particu-
lar point (Fig. 7.26).  
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Fig. 7.26. Electric field lines of a point charge near a surface of a dielectric material with a 
dielectric permeability b >> 1. The dielectric active surface layer is assumed thin so that 
the field is not affected by the presence of the layer.

To calculate the dielectric losses of the active layer we make use of the fact that 
the parallel component of the electric field and the normal component of the dis-
placement are continuous at the interface to the substrate and remain constant in 

the thin active layer. We rewrite the scalar product D&E  under the integral (7.59) 
as
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and thereby admit a tensorial dielectric function s inside the active layer. The 
parallel component of the electric field ||E  is
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where Ebare is the field of the electron charge at the interface z = 0 without the 

image charge. Note that 1
||

1
|| rr  but 11 rr zz  at z = 0. 

The vertical component of the displacement D  is 
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The total energy loss expressed in terms of the Fourier-components thereby be-
comes
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For substrates with | b|>>1, hence in particular for metal surfaces, only the term 
with the perpendicular component of the field survives which constitutes the sur-
face selection rule. The dielectric active surface layer is frequently a monolayer of 
molecules with dipole active vibration modes. In that case 

)( Im4
)(

1
Im ss

s

nd  (7.74) 

where )(s  is the dynamic polarizability of the molecule and ns is the surface 

density. In order to express the integrand of (7.73) (which is P(q||, )) in terms of 
the scattering parameters we need the Fourier-transform of the potential )(/ tre ,
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The gradient of the potential, the electric field, has therefore the expansion 
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in which (ie||,1) is a three dimensional vector with the perpendicular component 1 
and e|| the unit vector in the surface plane.  
 We now study the probability for a phonon excitation for an electron that is 
reflected at the surface at the time t = 0. In that case 

ttvtvt eerr ||||||)( , (7.77) 

where ||v  and v  are the electron velocities parallel and perpendicular to the sur-

face, respectively. The vector r|| has its origin in the point of reflection and points 
to an arbitrary position on the surface. The Fourier-integral of the electric field is  
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The Fourier integral of the kernel with respect to time is 
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The Fourier-components of the electric field are therefore 
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By inserting this equation into (7.73) and comparing with (7.60) we obtain the 
probability for the reflected electron to suffer an energy loss of h  with a wave 
vector q||.
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The probability has a sharp resonance at the surfing condition
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|||| / qv . (7.82) 

The resonance is infinitely sharp (is this approximation) for grazing incidence. 
Because of wave vector conservation, the surfing condition entails that the elec-
trons are scattered into a small angular cone around all the directions of elastic 
scattering, around the specular reflected beam as well as around the diffracted 
beams. In either case, the intensity of the inelastically scattered electrons is pro-
portional to the elastic intensity. In practical applications of (7.81), one is inter-
ested in the inelastically scattered intensity observed in a small angular aperture. 
The aperture angles of spectrometers are small because of angular aberrations in 
the deflectors and in the lens systems. We denote the angular deviations from the 
specular beam in the scattering plane and perpendicular to it as  and , respec-
tively. From momentum conservation one obtains (cf. (7.41)) 
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where EI is the energy of the incident electron. The condition 1E  is consis-

tent with the initial assumption that the trajectory of the electron should remain 
essentially unaffected by the inelastic scattering process. The element in q||-space 
is converted into the angular space by  

ddcosd I
2
I|| kq  (7.84) 

where kI is the wave vector of the incident electron. We introduce furthermore 

reduced angles as E,E /ˆ/ˆ . With these notations, one obtains the 

relative intensity of inelastic events as  
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Here, cˆ  and c
ˆ  are the aperture angles of the spectrometer and aB is the Bohr-

radius. To account for the quantum statistics (not reproduced in the classical deri-
vation) we have added the term [1+n( )] in which n(  is the boson occupation 
number of a harmonic oscillator of frequency . For energy gains, the factor 
[1+n( )] is replaced by n( ).
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The form (7.85) is suitable for numerical calculations of the intensity for a given 
oscillator strength of the vibration, once the angular apertures of the spectrometer 
are known. For an estimate of the intensity it is useful to integrate (7.85) under the 
assumption of a circular aperture. With the transformation into polar coordinates 

sinˆˆcosˆˆ one obtains after some algebra 
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In the limit 1ˆ
c  that is typical for energy losses due to innermolecular vibra-

tions the intensity is 
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The intensity of dipolar excitations, vibrational as well as electronic excitations, 
therefore falls off for higher frequencies. This explains why electronic transitions, 
e.g. interband transitions are very weak features in an energy loss spectrum. The 
frequency dependence of the intensity is in remarkable contrast to infrared absorp-
tion spectroscopy (Sect. 7.5). It is occasionally useful to express )( Im s  in 

terms of an effective charge eeff associated with a mode. The dielectric function of 
a medium with a density n of harmonic oscillators in Gaussian units has the form 
(7.18) 
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in which mred is the reduced mass. For a dilute layer 1 . In the SI-system, the 

factor 4  is to be replaced by 1/ 0. Using the identity 
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one obtains with (7.74) 
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Impact scattering 

The Born approximation (7.44) may again serve as a starting point for a treatment 
of the impact scattering. Inserting initial and final states of the solid expanded into 
phonon creation and annihilation operators yields the momentum conservation law 
for the components parallel to the surface and an expression for the inelastic cross 
section in terms of the scattering potential. The salient features of this so-called 
kinematic scattering theory are more easily derived by considering the scattering 
of a classical wave from an arrangement of point scatterers (see e.g. [7.56], 
Chapt. 4). With reference to the notation introduced in Sect. 7.1.2, one can write 
the scattering amplitude as 
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in which K is the difference between the wave vector of the incident wave kI and 
the scattered wave kS. The time dependent position vectors of the scattering cen-
ters ),( || tlzlr can be expanded for small phonon amplitudes ),( || tlzlu

))()((i
||0||0||

||||0||e)()(),(
tl

zzz
zlltl

qlrqqulrlr . (7.92) 

With this expansion the scattering amplitude becomes 
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in which the second term describes the classical analogue of inelastic scattering 
with energy and momentum conservation. The -functions result from the summa-
tion over ||l . The scalar product of K and u0 vanishes if the displacements are 

perpendicular to the scattering plane, or more generally phrased, if the mode is 
odd with respect to the scattering plane. This selection rule was discussed already 
in Sect. 7.3.2. The energy dependence of the inelastically scattered intensity is 

given by the product I
2

0 )( EuK  and the energy dependence of the atomic 

form factor f0(EI). Neglecting the latter, the intensity of phonon scattering should 
be roughly proportional to the energy of the incident electron beam, i.e. a smooth 
function of the energy. The kinematic model would furthermore predict that the 
intensity of a phonon that is polarized parallel to the surface should be much less 
than the intensity of a perpendicular polarized phonon, since the vertical compo-
nent of K is much larger than the parallel component. 
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Fig. 7.27. Calculated cross section for inelastic scattering from the S4 and S6-phonon at X
on the Ni(100) surface as function of the energy of the incident electron beam (solid and 
dashed lines respectively). The polar angle of detection is fixed to S = 65°. The angle of 
the incident beam is adjusted to keep the momentum transfer at X . The arrows point to 
energies at which the intensity of the S6-phonon exceeds the intensity of the S4-phonon 
(after Xu et al. [7.57]). The dashed lines mark the intensities according to the kinematic 
theory. 

The kinematic scattering theory described above assumes that electrons are scat-
tered only once whereas in reality low energy electrons scatter many times elasti-
cally before they emerge in a diffracted beam. A proper treatment of inelastic 
phonon scattering requires the consideration of these the multiple elastic scattering 
events. The dynamic theory of scattering from phonons has been worked out by 
Tong et al. in 1980 [7.58, 59]. With multiple elastic scattering included, the cross 
sections become a strongly oscillating function of energy (cf. Sect. 1.1.1). This is 
illustrated in Fig. 7.27 for the S4 and S6-phonon on the Ni(100) at the X -point of 
the SBZ (Sect. 7.1.2, Fig. 7.3). The kinematic model predicts that the intensity of 
the S6-phonon should be almost two orders of magnitude lower than the intensity 
of the S4-phonon. This is also the overall trend according to the dynamic scattering 
theory. However, the strong oscillations effect that the intensity of the S6-phonon 
exceeds the intensity of the S4-phonon at certain energies (arrows in Fig. 7.27). 
Experiments have confirmed the predictions of the theory [7.57]. From the stand-
point of an experimentalist, the strong oscillations in the cross section are an ad-
vantage as they enable the observation of modes polarized in the surface plane. 
Furthermore, one can distinguish phonons that have only a very small difference 
in energy, below the resolution of the spectrometer, by their different energy de-
pendence of the cross section. This greatly expands the possibilities of inelastic 
electron scattering for the investigation of surface phonon dispersion. 
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7.5 Optical Techniques 

7.5.1 Reflection Absorption Infrared Spectroscopy 

In 1966 R. G. Greenler laid the theoretical foundations of Reflection Absorption
InfraRed Spectroscopy (RAIRS) [7.60]. He showed that the infrared absorption of 
a thin layer deposited on a metal surface observed in reflection geometry is greatly 
enhanced at grazing incidence. The reflectivity of the metal is near unity and the 
infrared absorption of a particular eigenmode of an adsorbed molecule should 
appear as a dip in the reflectivity, hence the name Reflection Absorption Spectros-
copy. Since the electric field is perpendicular on a metal surface, only modes with 
a perpendicular dipole moment, the totally symmetric modes are visible. For the 
same reason the absorption occurs only in the reflectivity of p-polarized light. 
 The angular dependence of the change in the reflectivity due to surface absorp-
tion can be calculated by applying the Fresnel-boundary conditions of conven-
tional optics to a three-layer system consisting of vacuum, the adsorbate layer and 
the metal substrate [7.60, 61]. The calculation is somewhat cumbersome and does 
not reveal the physical nature of the enhancement. We therefore follow a different 

route that considers the power absorption W&  in the adsorbate layer that has the 
area A and the thickness d (cf. 7.59, 7.73).  
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Here, sE  is the perpendicular component of the amplitude of the electric field at 

the surface, which varies periodically in time. The factor 1/2 results from the inte-
gration over one period. The power in the infrared beam is  
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where E0,p is the electric field amplitude of the p-polarized light and A0 is the cross 
section of the beam. There is no power absorption for s-polarized light since the 
electric field is zero at a metal surface for s-polarized light. The change in reflec-
tivity Rp is the ratio of the absorbed power to the incident power. For an ideal 
metal the field at the surface is  

sin2 p0,s EE  (7.96) 

and the cross section of the beam and the absorbing surface area are related by 

cos/0AA . (7.97) 
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The change in reflectivity is thus 
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p ndR . (7.98) 

The approximation is again for a low surface concentration of adsorbates ns. For 
non-ideal metals with a finite dielectric constant b the electric field eventually 
drops to zero at grazing incidence. The correction factor that accounts for this 
drop-off is 

1
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2
b

cos

sin1
1F . (7.99) 

Because of this factor, the change in the reflectivity passes through a maximum 
that lies at about 85°-88° for metal surfaces. 
 Equation (7.98) is remarkable in several ways. Firstly, we see that the en-
hancement of the reflectivity is mostly due to the increase in the surface area. Sec-
ondly, we realize that RAIRS probes the same optical properties of the surface as 
EELS in the dipole scattering regime (cf. 7.87). An important difference is in the 
spectral sensitivity. EELS is significantly more sensitive in the low frequency 
range because of the factor  2 that appears in the denominator of (7.87).  
 Reflection-absorption infrared spectroscopy was introduced as an experimental 
technique in 1970 by the group of J. Pritchard [7.62, 63] and was quickly adopted 
by several groups thereafter. The signal to noise in the spectra was greatly im-
proved with the advent of Fourier-Transform InfraRed (FTIR) spectroscopy. 
Figure 7.28 shows an experimental set-up as used in our lab in connection with 
other UHV-studies [7.64]. Both the spectrometer and the detector chamber are 
evacuated to avoid absorption from the IR-bands of water vapor. The sample sits 
in a narrow tube on top of the main UHV-chamber, which houses several other 
surface science techniques. The spectrometer is a Michelson-interferometer. The 
intensity at the detector as a function of the position x of the movable mirror is 

d)()(),(d
2

21 EExI  (7.100) 

with 

tRI sin)(01E  and )/2sin()(02 cxtRIE  (7.101) 

where R( ) is the reflectivity of the sample and I0 the intensity of the beam. The 
detector has approximately a white spectral response function; hence, it detects the 
integral over the frequency, which is the Fourier transform of the spectral function 
of interest, 
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0
0 )/2cos()()( dcxRIconstxI . (7.102) 
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Fig. 7.28. An experimental set-up for Fourier-transform reflection-absorption infrared 
spectroscopy at a single crystal surface in UHV. 

Figure 7.29 shows the reflection-absorption spectrum of CO adsorbed on Cu(111) 
at 90 K. The spectrum represents the ratio of the spectral response of the clean 
surface and the CO covered surface. The total measuring time for the small spec-
tral range was only 60 s. The resolution of the FTIR-technique is significantly 
better than the natural line width of adsorbed CO. The line width of adsorbed spe-
cies is broadened because of anharmonic coupling to other low-frequency modes. 
In the case of CO, the large dipole moment associated with the vibration gives rise 
to electron/hole pair excitations, causing an additional broadening. 
 An advantage of infrared spectroscopy is that it can be applied to surfaces in 
contact with a gas phase, as long as the density of the gas phase is not so high that 
it blocks the IR-beam in the spectral ranges of interest. Adsorbed species and gas 
phase species are distinguished by taking the difference of the spectral response 
for s- and p-polarized light. For infrared spectroscopy at the surface/electrolyte 
interface, the Attenuated Total Reflection (ATR) technique in the geometry intro-
duced by Kretschmann [7.65] has proved useful [7.66]. Fig. 7.30 displays sche-
matically the experimental set-up. The IR-beam is internally total reflected at the 
surface of a prism made of Si, Ge, or ZnS. A very thin metal film is evaporated 
onto the prism. The vibration modes of molecules that are adsorbed on the film 
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Fig. 7.29. Infrared absorption spectrum of CO on Cu(111). The spectral resolution is sig-
nificantly better than the line width. 
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Fig. 7.30. Experimental set-up for Attenuated Total Reflection (ATR) spectroscopy at the 
metal/electrolyte interface in the Kretschmann geometry [7.65]. 

from the electrolyte extract energy from the IR-beam because they reside in the 
field of the evanescent wave at the surface of the prism. The infrared signal ob-
tained from adsorbed species in the ATR-geometry may be enhanced when the 
films are rough because of the enhancement of the electric field at the apices of 
the surface.
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7.5.2 Beyond the Surface Selection Rule 

Conventional IR-sources and detectors are not very effective in the far infrared. 
RAIRS is therefore mainly used in the frequency range above 700-1000 cm-1.
Around 1990 researchers began to explore the use of synchrotron radiation as a 
far-infrared light source in order to extend the spectral range of IR-spectroscopy 
into the realm of low frequency vibrations. Hirschmugl et al. were indeed able to 
find a weak absorption line of the metal carbon stretching vibration of CO on 
Cu(100) using synchrotron radiation [7.67]. The great surprise of that study how-
ever was a strong spectral signature of the frustrated rotation of CO, mode that is 
dipole forbidden according to the surface selection rule, since its dipole moment 
lies parallel to the surface. The spectral feature of that mode was an anti-
absorption line with a Fano-type line shape (Fig. 7.31). A similar spectral feature 
was actually observed earlier for hydrogen adsorbed on W(100) [7.68], however 
misinterpreted as an overtone of a parallel vibration.  
 This section considers the essential physics of the effect as first described by 
Persson [7.69, 70]. For a proper quantitative treatment of the change in the reflec-
tivity, one would have to resort to the formalism non-local optics. However, the 
Fresnel-equations of local optics suffice for a parameterized qualitative descrip-
tion. An important clue to the origin of the effect is the experimental observation 
of a continuous frequency dependent reduction in the reflectivity with increasing 
coverage of CO observed by Hirschmugl et al. [7.67]. The reflectivity of a metal 
in the infrared deviates from R = 1 because of the finite conductivity. The reduc-
tion in the reflectivity can therefore be attributed to a reduction of the conductivity 
in the near-surface region by CO adsorption. In fact, the reduction of the conduc-
tivity of thin films upon adsorption is a well-studied phenomenon [7.71] (see also 
Sect. 8.4.1). The anti-absorption line in Fig. 7.31 represents an increase of the 
electronic conductivity in the near-surface region at the resonance frequency of a 
mode that is polarized parallel to the surface. We cast this statement into a 
mathematical form by first considering the equation of motion for an ensemble of 
N adsorbed atoms of mass M parallel to the surface, 

0)(2
0 xuNMuNMuNM &&&& . (7.103) 

Here, u is the amplitude of vibration and x is the coordinate of uniform motion of 
the metal electron gas parallel to the surface. The third term in (7.103) describes a 
friction between the electron gas and the adsorbate that is proportional to the rela-
tive speed of motion xu && . The friction term is the classical analogue to the 
mechanism of electron/hole pair damping of vibrational modes. To see this, one 
solves the Fourier transform of (7.103) for a vanishing motion of the electron gas. 
The term eh = 1/  then plays the role of an energy relaxation time. The corre-
sponding equation of motion of the electron gas must contain the same friction 
term with reverse sign, hence 
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Fig. 7.31. Infrared reflectivity of a CO covered Cu(100) surface at 100 K relative to the 
clean surface after Hirschmugl et al. [7.67]. In addition to the anti-absorption line at 
285 cm-1 the spectrum (solid line) shows a very weak signature of a conventional absorp-
tion line at 345 cm-1 (barely significant in this particular spectrum). The dotted line is the 
same spectrum with high resolution in a narrow range. The dashed line is calculated from a 
friction model in the framework of local optics. 

EeNxuNMxmNxmN eee )(
1

&&&&&  (7.104) 

where m and Ne are the electron mass and the number of electrons in a thin layer 
below the surface. As we are interested in the principal effect, we can leave the 
thickness of that layer, and hence the value of Ne, open for the moment. The re-
laxation time  is related to the dc-conductivity  via  

m

ne2

 (7.105) 

where n is the electron concentration. The additional friction term in (7.104) due 
to the relative motion of adsorbate at electron gas vanishes at the resonance fre-
quency 0  of the adsorbate. The model should therefore produce an increase in 

the reflectivity at 0 . The coupled equations (7.103) and (7.104) are solved by 

introducing the Fourier-transformed amplitudes )(x , )(u , P( ), )(E ,
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where mNNM e/~ . With the definition of the polarization P( )

)()1)(()()( 0 EenxP  (7.107) 

one obtains the complex dielectric function )(  of the electron gas near the sur-

face as 
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in which p  is the plasmon frequency  
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2
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p m
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In the absence of friction (  = 0), equation (7.108) reduces to the dielectric func-
tion of a free electron gas. From standard optics, we take the reflectivity of p-
polarized light,  
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sin)(cos)(
)(R . (7.110) 

The dashed line in Fig. 7.31 shows a numerical solution of (7.110) with 
 0 = 285 cm 1, = 4 cm 1, ~  = 100 cm 1. The plasma frequency p and the re-

laxation time  are calculated from the electron density of copper and the conduc-
tivity at 100 K, respectively. The agreement with the experiment is quite pleasing, 
although one should mention that continuous part of the reduction of the reflectiv-
ity, in particular its dependence on the adsorbate concentration, is not properly 
represented in local optics. In summary, one can state that IR-reflection absorption 
spectroscopy is also sensitive to modes which carry a dipole moment parallel to 
the surface. 
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7.5.3 Special Optical Techniques 

This section briefly addresses two further techniques of surface vibration spectros-
copy that are used in certain niches, Surface Enhanced Raman Spectroscopy 
(SERS) and Sum Frequency Generation (SFG) or Vibration Sum Frequency 
Spectroscopy (VSFS). For details the reader is referred to special monographs 
[7.72-75]. 

Surface enhanced Raman effect 

The surface enhanced Raman Effect was discovered in 1974 by Fleischmann et al. 
on electrolytic roughened silver electrodes covered with pyridine. From their ex-
perimental results, it could be inferred that the cross section for Raman scattering 
was enhanced by factor of the order of 1010-1012 over the cross section of mole-
cules dissolved in a liquid. The huge enhancement factor created a storm of activ-
ity and many a controversy as to the possible origin of the effect. Since the very 
large enhancements were observed only on rough, preferably silver surfaces, it 
was proposed that the enhancement should be due to the enhancement of the elec-
tromagnetic field on rough surfaces. An elementary access to the problem is ob-
tained by considering the enhancement of the field near the surface of a 
homogenously polarized sphere in an external electric field E0. The tangential and 
radial components of the electric field at any point at a distance R from the center 
of the sphere of radius r is 
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The real part of the denominator vanishes at the frequency where 1( ) = 2,
which is the plasma resonance of a sphere with homogeneous polarization of the 
sphere. This plasma resonance occurs at wavelength  = 355 nm and  = 490 nm 
for silver and gold respectively. Its excitation requires that the diameter of the 
sphere is small compared to the wavelength . The radial field rE  is particular 

large. At resonance and at the point R = r,  = 0, the modulus of the field is  

)(/6 p20r EE  (7.112) 

The intensity of the primary light beam at the source of the Raman scattering is 
proportional to the square of the field. Since Raman scattering originates from the 
light emitted from an induced dipole moment, the radiation from the fluctuating 
dipole is also proportional to the square of the field. In total, the intensity of the 
Raman signal is proportional to the fourth power of the electric field. Silver has a 
particular small damping at the plasmon resonance [7.76]. From (7.112) one cal-
culates a Raman enhancement factor of about 106.
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Fig. 7.32. The electric field between two homogeneously polarized spheres (at plasmon 
resonance) is larger than on the surface of a single sphere when the polarization is along the 
axis connecting the centers of the spheres. For 10 nm Ag spheres and a gap of 1 nm the 
field is enhanced by about a factor of 30 compared to the field on the surface of a single 
sphere and about a factor of nearly 1000 compared to the field in vacuum [7.77]. 

Even stronger enhancements are calculated in the gap between two spheres if the 
applied field is along the axis connecting the centers of the spheres [7.77]. The 
effect can be qualitatively understood by considering the surface charges on ho-
mogeneously polarized spheres (Fig .7.32). The field enhancement at midpoint 
between the two Ag-spheres of 10 nm radius can be almost a factor of 1000, when 
the gap between the spheres is 1 nm and the frequency of the light matches the 
plasmon resonance of the spheres. This renders a Raman enhancement factor of 
almost 1012! With a judicious choice of molecules one may profit furthermore 
from resonant electronic excitations of the molecule or charge transfer resonances 
with the silver surface, so that enhancement factors of even 1014 can be achieved, 
permitting Raman spectroscopy on a single molecule. The molecule sending the 
signal is not individually addressed however, contrary to inelastic tunneling spec-
troscopy. 
 The variation of the cross section by many orders of magnitude and the low 
cross section on perfectly flat surfaces makes the Raman Effect less suitable for 
studies of adsorbate phases on single crystal surfaces. After much initial excite-
ment, the field of SERS has therefore become nearly dormant until lately when it 
revived in the emerging field of Nanoscience. The ability to make nanowires and 
nanospheres in a controlled way has offered novel applications for Raman spec-
troscopy [7.78]. In connection with certain standardized nanostructured collectors, 
Raman spectroscopy is one of the most sensitive quantitative methods for trace 
analysis!
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Vibration sum frequency spectroscopy 

Nonlinear optics is concerned with the susceptibility of matter in high electric 
fields at which the susceptibility becomes a function of the electric field. Within 
the framework of local optics we assume that the polarization P(r, t) at the position 
r and at time t depends only on the field E (r, t) at the same position and time. The 
Taylor-expansion of the polarization in terms of the field is then  

...),(),(),(),( )2()1(
0 ttttP rrrr EEE  (7.113) 

where ,  and  denote the components in Cartesian coordinates, )1(  is the con-

ventional susceptibility tensor, and )2(  is the second-order susceptibility tensor. 

By introducing the Fourier-transformed components E ( ) and P ( ) it is easily 
seen that the second order susceptibility creates polarizations at the sum and dif-
ference of the frequencies of the electric fields. For practical applications in spec-
troscopy, only the sum-frequency is of interest as the signal of the difference 
frequency is buried in the fluorescence spectrum. 

)()()()( 2121
)2(

021 EEP  (7.114) 

The intensity of the beam emerging at  = 1 + 2 is proportional to the squared 
modulus of the polarization |P( )|2 and hence proportional to the product of the 
intensity of both beams at 1 and 2. The surface sensitivity stems from the fact 

that )2(  is a third rank tensor that vanishes identically in the bulk of centro-

symmetric media. Only the signal from a surface or an interface between two such 
media survives, as the symmetry is broken there. This makes vibrational sum fre-
quency spectroscopy (VSFS) a potent tool for studies of solid/liquid and 
solid/solid interfaces. For the solid/vapor and solid/liquid interfaces of the same 
material, e.g. for the ice/water vapor and the ice/liquid water interface, VSFS is 
the only available method of vibration spectroscopy. In conventional UHV-surface 
physics, the enormous experimental effort in VSFS does not pay off unless one 
uses the ability of VSFS to perform time resolved experiments with picosecond 
and even femtosecond time resolution, e.g. in the form of pump-probe experi-
ments. Such experiments have opened new opportunities to study state selected 
chemistry at surfaces. 
 In a typical VSFS-experiment, one of the two frequencies is in the range of 
visible light while the other one lies in the infrared regime of the surface vibration 
modes of interested. The susceptibility, and therefore the polarization and the am-
plitude of the sum frequency signal passes through a resonance if either one fre-
quency matches a resonance frequency of the system. If one is interested in 
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resonances in the infrared regime, the frequency of the infrared beam must be 
varied to match the frequencies of vibration modes.  
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Fig. 7.33. Sum frequency spectrum at the Pt(111)/electrolyte interface. The spectrum shows 
two features due to carbon monoxide adsorbed on the surface in an atop site (2067 cm 1)
and in the threefold hollow site (1786 cm 1). The wave numbers quoted in brackets are 
taken from an infrared study [7.79]. The solid curve represents a fit with a frequency inde-
pendent phase shift between the resonant and the non-resonant contribution to the total 
susceptibility (courtesy of W. Daum, see also [7.80]). 

The susceptibility )2(  can be split into a non-resonant contribution )NR,2(  and 

a resonant contribution  

i ii
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)NR,2()2(  (7.115) 

where i are the frequencies of the vibration modes. Both )NR,2(  and )(iA  are 

complex quantities. The intensity of the scattered light is proportional to squared 

modulus of )2( . Because of a possible phase shift between )NR,2(  and )(iA

the shape of the resulting resonance differs from a Lorenzian line. Weak resonant 
signals merely modulate the background with a Fano-type line shape. We illustrate 
the line shape with the example of CO on the Pt(111) surface in 0.5 M H2SO4 at 
80 mV vs. RHE in Fig. 7.33 [7.80]. At this potential CO that is dissolved in the 
aqueous electrolyte adsorbs on Pt(111) in a (2 2) structure [7.79]. The (2 2) unit 
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cell contains three CO-molecules, one in the atop-position and two in the three-
fold site. The line shape depends on the various parameters in the susceptibility 
(7.115) but also on the frequency dependence of Fresnel-coefficients. As these 
parameters are not known a-priori, the precise values of the resonance frequency 
cannot be determined from the VSFS experiment in particular when the signal is 
as weak as for the three-fold site. The frequencies noted in Fig. 7.33 are taken 
from a fit to the experimental data. The numbers in brackets are the resonance 
frequencies in infrared absorption on the same system [7.79]. 

7.6 Tunneling Spectroscopy 

Of all vibration spectroscopies, tunneling spectroscopy on a single molecule indi-
vidually addressed by the STM-tip undoubted has the largest intellectual appeal. 
Tunneling spectroscopy of molecular vibrations as-such existed before the inven-
tion of the scanning tunneling microscope (see e.g. [7.81]). The spectroscopy was 
performed in extended tunnel junctions between two metals that were interfaced 
by an insulating layer and a thin layer of the molecular species of interest. In most 
cases, the tunnel junctions were made from oxidized aluminum films with a spray-
coated layer of molecules covered by a lead top electrode. Although the principle 
feasibility of single molecule vibration spectroscopy with an STM-tip could be 
inferred from these experiments the considerable technical difficulties of single 
molecule vibration spectroscopy could be overcome only 17 years after the inven-
tion of the STM [7.82, 83]. 
 We consider the basics of the tunneling process with the help of the scheme in 
Fig. 7.34a. The number of channels for elastic tunneling from one metal to another 
one increases with the voltage V between the metals. The tunneling current is 
therefore roughly proportional to the applied voltage V. If eV exceeds the quantum 
energy h  of a vibration mode, additional channels for inelastic tunneling open 
up and the current rises more steeply. This is schematically illustrated in 
Fig. 7.35a. The probability of tunneling between two states is proportional to the 
occupation of the initial state and proportional to the probability that the final state 
is not occupied. Assuming that the matrix element is constant, the inelastic current 
is

)()),(1)(,(dd fififiinel hTeVfTfI . (7.116) 

Here ),( Tf  is the Fermi-function. Note, that V < 0 for the case shown in 

Fig. 7.34a. In a real experiment, the onset of inelastic tunneling cannot be dis-
cerned from the energy dependence of the elastic tunneling current caused by the 
energy dependence of the matrix element for tunneling and the energy dependence 
of the density of initial and final states. One therefore identifies the threshold for 
inelastic tunneling at e/h  in the second derivative of the current with respect to 
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Fig. 7.34. (a) Illustration of elastic and inelastic tunneling processes from occupied states of 
the tip to the unoccupied states of the substrate (negative voltage V on tip). The inelastic 
process opens additional channels for tunneling, causing a rise in the tunneling current for a 
voltage beyond a threshold voltage eV /thr h , modulo the Fermi-distribution. (b) The 

matrix element between the symmetric tip-state, the vibrational motion and the electronic 
state of the molecule must be totally symmetric. If the relevant electronic state is antisym-
metric with respect to a symmetry plane then the vibration state must also be antisym-
metric for a non-vanishing matrix element. 

the voltage where the threshold shows as a peak (Fig. 7.35c). Experimentally the 
second derivative is obtained as the second harmonic current-response to a sinu-
soidal modulation of the voltage. The width of the peak is determined by the width 
of the Fermi-distribution. The full width at half maximum is E1/2 = 3.5kBT. Suf-
ficient resolution for vibration spectroscopy requires cooling to liquid-He tem-
peratures ( E1/2(4 K)  1.2meV). The practical achievable resolution is less since 
the temperature of the microscope is typically in the range of 10 K, higher than the 
temperature of the liquid-He cooled shroud surrounding the microscope. Once the 
microscope is cooled down to 4 K by contact with the liquid-He bath, the thermal 
contact is broken. The microscope is then suspended on soft springs inside the 
surrounding shields. The required electric wiring to the microscope and the heat 
dissipated in the operation of the microscope causes the temperature to rise above 
the bath temperature of 4 K. 
Figure 7.36 shows the first published single-molecule tunneling spectra of CO-
vibrations [7.84]. Different CO-isotopes are employed to distinguish vibration 
modes from structure in the background. Two CO-modes are discerned, a strong 
signal from the hindered rotation (around 36 meV) and a weak signal from the 
CO-stretching mode (around 256 meV). The fact that the signal from the stretch-
ing mode is so weak came as a surprise at the time. Before the experiments of 
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Fig. 7.35. The principle of tunneling spectroscopy illustrated with (a) the tunneling current 
I(V), (b) its first derivative and (c) its second derivative. The dashed line in the upper panel 
shows schematically the tunneling current as a function of the tip voltage with reference to 
the Fermi-level of the sample. If the tip voltage exceeds e/h  with h  the eigenfre-
quency of a vibrational mode, a channel for additional inelastic tunneling opens and the 
current increases more steeply than for pure elastic tunneling. Center and lower panel show 
the derivative and the second derivative of the tunneling current, respectively. The intrinsic 
half width of the peak in the second derivative is E1/2 = 3.5kBT.
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Fig. 7.36. Second derivative of the tunneling current vs. the tip voltage for CO on Cu(100) 
at 8 K with the tip place directly over the CO-molecule (after Lauhon and Ho [7.84]). The 
second derivative spectra were obtained by modulating the voltage with 7 mV ac-voltage 
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and by detection of the second harmonic of the tunneling current. Sampling time was 8h. 
The dashed lines are reference spectra on the Cu-surface. 
Lauhon and Ho, inelastic tunneling from adsorbate modes was believed to be me-
diated via the interaction with the dipole field, much the same way as in inelastic 
electron scattering [7.81]. If that were the case, the stretching mode should yield 
the strongest signal and the hindered rotation should be silent as this mode is di-
pole forbidden. The prejudice that the CO-stretching mode should yield a strong
signal may in fact have prevented an earlier success in inelastic tunneling spec-
troscopy of single molecule vibrations. The experiments of Lauhon and Ho dem-
onstrated experimentally that the dipole field of a vibration mode is irrelevant, a 
fact that is corroborated by current theory of the inelastic tunneling process [7.85]. 
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Fig. 7.37. Tunnel spectra of the asymmetric CH-stretch mode of C2H2 and the correspond-
ing partially and totally deuterated molecule at 8 K. Total scan time was about 30 min for 
each spectrum (after Stipe et al. [7.83]).  

The tunneling process involves the overlap of the extended s-states originating in 
the apex of the tip [7.86] and the orbitals of the molecule that contribute to the 
density of states near the Fermi-level. For carbon monoxide, these are the partially 
occupied 2 *-orbitals (Fig. 7.34b). The matrix element for inelastic tunneling is 
constructed from the initial and final electron states and the deformation potential 
induced by the normal mode of the molecule. When the tip is centered on the 
molecule, the s-states of the tip are symmetric with respect to the -plane of the 
molecule in C2v-symmetry. The final state, the 2 *-orbital, is antisymmetric (B1 or 
B2-representation, depending on the definition of the -plane). As the matrix ele-
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ment (because it is an observable entity) must belong to the totally symmetric 
representation, the normal coordinate of the vibration mode must belong to same 
B-representation as the final state. Hence, the selection rule is just opposite to the 
selection rule for inelastic electron scattering. The small interaction with the CO-
stretching mode arises from the less effective tunneling into symmetric states.  
 The peculiar selection rule was first formulated by Lorente et al. [7.85, 87]. The 
selection rule depends on the symmetry of the molecular electronic state that is 
involved in the tunneling process. If that state were symmetric, then the symmetric 
vibration should appear with the highest intensity. However, this would be an 
untypical situation, at least for small molecules. A molecule resides in a high 
symmetry site because the bonding to the substrate atoms involves symmetric 
molecular orbitals. The energy levels of the electrons engaged in that bond are 
necessarily far below the Fermi-level. These electrons do not participate in the 
tunneling process. 
 Tunneling spectroscopy is not confined to CO-molecules. The CH-stretching 
vibrations of hydrocarbons yield even stronger signals because of the larger ampli-
tude of hydrogen atoms. Fig. 7.37 shows a the vibration spectra of single mole-
cules of acetylene on Cu(100) and its deuterated counterparts. The deuterium 
modes appear with smaller intensity since the mean square amplitude is smaller by 
2 1/2. According to the selection rule, the observed frequency should correspond to 
the asymmetric CH-stretch mode of acetylene. Theoretical calculations have 
shown that the intensity of the symmetric stretch should be roughly an order of 
magnitude lower [7.87]. 
 Because of the considerable experimental effort, the required low temperatures, 
the moderate resolution and the long sampling time, tunneling spectroscopy is not 
going to replace the conventional methods of vibration spectroscopy. However, as 
a tool to identify individual molecules and to monitor (tip induced) chemical reac-
tion between molecules it serves a useful purpose.  



8. Electronic Properties

8.1 Surface Plasmons 

8.1.1 Surface Plasmons in the Continuum Limit 

Surface plasmons in the continuum limit are dielectric eigenmodes of a half-space 
of a free electron gas, which exists at the frequency where the real part of the di-
electric function equals minus one. 

1)(1  (8.1) 

As discussed in Sect. 7.1.7, the electrostatic potential describing the plasmon is a 
solution of the Laplace equation and has the form 

)(sine),,( 0 tqxtzx zq  (8.2) 

where x is the coordinate parallel to the surface and z perpendicular to it. The x
and z-components of the electric field vector are 
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Inside the solid, the electric field is accompanied by a polarization wave of the 
same form with ),,(),,( 0 tzxtzx EP . The divergence of the normal compo-

nent of the polarization at the surface is equivalent to a surface charge density 
wave with a charge density P that is a delta-function in z. 

)sin()(P tqxz  (8.4) 

The frequency of the surface plasmon is obtained by inserting the dielectric func-
tion of the free electron gas into (8.1), 
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Here, )(  is the conductivity and p is the plasma frequency which is related to 

the electron density n via 

0
22

p / mne  (8.6) 

with m the electron mass. In the absence of damping ( )( ), p is the fre-

quency of the bulk plasmon. This bulk plasmon is a longitudinal wave that exists 
at 0)( . For the free electron gas the frequency of the surface plasmon is 

2/ps . (8.7) 

Table 8.1 shows that this relation is well fulfilled for free-electron like metals. A 
notable exception is silver. For silver, the plasmon frequency is downshifted by a 
d-band excitation, which makes the slope of )(  very steep, so that bulk and 

surface plasmon come close together. 

Table 8.1. Frequencies of bulk and surface plasmons for metals that have well-defined 
plasmon excitations. 

As discussed for phonons in Sect. 7.1.7 with Fig. 7.13, surface plasmons do not 
interact with light on a flat surface since they exist only to the right of the light 
line. Because of the electric field (8.3), they do interact strongly with electrons 
reflected or diffracted from the surface, giving rise to intense energy losses. The 

shape of the loss function is given by 1)1)(Im( (7.65). The width of the 

surface plasmon peak is given by the imaginary part of the dielectric function 
)(2 . For free electron metals, 2 is small in the relevant frequency range. The 

plasmon loss is therefore a sharp feature that dominates the loss spectrum. Energy 
losses of electrons reflected from a surface due surface plasmon excitations were 
first studied by Powell and Swan on aluminum in 1959 [8.8]. The authors could 
prove their surface character by the sensitivity of the observed frequency to con-

Metal p/eV s/eV Ratio   Metal p/eV s/eV Ratio 

Li 7.12[8.1] 4.28[8.2] 0.60   Cs 2.9[8.3] 1.99[8.4] 0.69 
Na 5.72[8.3] 3.99[8.4] 0.70   Mg 10.4[8.5] 7.38[8.2] 0.71 
K 3.72[8.3] 2.73[8.4] 0.73   Al 15.1[8.1] 10.3[8.4] 0.68 
Rb 3.41[8.3] 2.46[8.3] 0.72   Ag 3.74[8.6] 3.68[8.7] 0.98 
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tamination. The frequency shifts because on a contaminated surface the number 
"1" in (8.1) is to be replaced by an effective dielectric constant of the contaminant. 
Since the dielectric constant is larger than one, the contamination shifts the surface 
plasmon frequency downwards. 
 For insulators, semiconductors and transition metals the loss function displays a 
broad spectral distribution, but the integrated intensity is about the same as for free 
electron metals because of a sum-rule, which is related to the venerable f-sum rule 
in optics. Before high intensity UV-light sources became available with the syn-
chrotrons, inelastic scattering of electrons was used to determine the loss function 
and thereby the optical constants in the UV-range via a Kramers-Kronig analysis 
[8.9]. Plasmon losses and the corresponding features on non free-electron like 
materials are also observed in the spectra of electrons that emerge from the solid 
due to a photoemission process or an Auger-process. 

8.1.2 Surface Plasmon Dispersion and Multipole Excitations  

Inelastic scattering of electrons by surface plasmons is dominated by the contribu-
tions of small wave vectors q|| because of the surfing condition (7.82). As long as 
one focuses on the intense loss spectrum observed near specular reflection and on 
high electron energies, the dispersion of surface plasmons plays no role. On the 
other hand, surface plasmons at q||  0 do not carry information on surface proper-
ties. For example, the surface plasmon frequency at q||  0 is independent of the 
crystallographic structure of the surface. For larger wave vectors q||, the surface 
plasmon is more localized to the surface and its frequency becomes sensitive to 
the charge density distribution at the surface, in other words, the surface plasmon 
shows dispersion. The dispersion of surface plasmons for the alkali metals K, Na 
and Cs was investigated by Tsuei et al. [8.4, 10]. The result for Na is shown in 
Fig. 8.1. The initial reduction of the frequency can be understood qualitatively as 
follows: At the frequency of the surface plasmon, the centroids of the induced 
charge density ),(zn  and the induced potential (q||,z) lie outside the jellium 
edge in the region where the electron density is low (Fig. 8.2). The induced poten-
tial spreads over a smaller z-range for larger q||. The potential sees a lower mean 
electron density with increasing wave vector q|| and the plasmon frequency there-
fore becomes smaller with increasing q||. Within the Random Phase Approxima-
tion (RPA), the frequency shift can be expressed quantitatively in terms of the 
position of the centroid of the induced charge density )(d  [8.10] 

...)2/)(1)(0()( s||s||s dqq  (8.8) 

where )(d  is defined as 

),(/),()( zndzznzdzd . (8.9) 
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The polynomial fit to the dispersion curve in Fig. 8.1 yields 77.0)( sd Å. The 
negative slope of the dispersion curve can also be derived in continuum theory if a 
smooth rather than an abrupt change of the electron density at the surface is in-
voked [8.11]. 
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Fig. 8.1. Dispersion of the surface plasmon of sodium. The surface was prepared by evapo-
ration on an Al(111) surface. The dashed line is the dispersion according to a first order 
perturbation theory. The solid line is a fit to a fourth order polynomial (After Tsuei et al. 
[8.10]). 
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Fig. 8.2. At the frequency of the surface plasmon, the centroid of the induced charge den-
sity ),(zn lies outside the jellium edge. For larger wave vectors, the potential sees a 
smaller electron density. The frequency of the surface plasmon becomes smaller with in-
creasing ||q  (After Tsuei et al. [8.10]).

The centroid of the induced surface charge shifts towards the interior of the jel-
lium edge when the frequency approaches the bulk plasmon frequency, so that 
d < 0. For the special case of silver, the surface plasmon frequency is close to the 
bulk plasmon frequency. The initial dispersion is therefore positive for silver [8.7]. 
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Another experimental manifestation of the dynamic surface response of the free 
electron gas is the multipole surface plasmon. The name multipole plasmon refers 
to the fact that the induced surface charge density has a multipole character rather 
than the monopole character of the normal surface plasmon. The multipole plas-
mon causes a strong feature in the off-specular energy loss spectrum of electrons 
scattered from the surface of alkali metals [8.12] (Fig. 8.3). For further details on 
the dynamic response of free electron metals the reader is referred to the book of 
A. Liebsch [8.13].  
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Fig. 8.3. Electron energy loss spectrum of 15 eV electrons from a polycrystalline sodium 
films (after Tsuei et al [8.12]). The energy loss in specular reflection is the surface plasmon 
excitation. At 16° off-specular the multipole surface plasmon and bulk plasmon contribute 
to the spectrum with about the same intensity. Note that specular reflection at S  60° 
corresponds to a larger q||-value than the off specular spectrum due to the magnitude of the 
energy loss in comparison to the impact energy (cf. 7.37).  

8.2 Electron States at Surfaces 

8.2.1 General Issues 

A historical remark

Electronic surface states were first postulated by Tamm based on a crude one-
dimensional model [8.14]. The solid was represented as a one-dimensional poten-
tial well with a periodic potential in the form of positive delta-functions. The gen-
eral solutions for that potential are plane waves. Shockley considered a more 
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realistic, yet still one-dimensional potential and Bloch-wave solutions [8.15]. 
Shockley showed that the surface states found by Tamm were due to an incom-
pleteness of the potential at the surface, i.e. due to a surface potential that was 
altered compared to the bulk. In the later literature, the distinction between surface 
states caused by a changed potential vs. surface states caused by the finiteness of 
the lattice was frequently made by referring to "Tamm-states" and "Shockley-
states", respectively. Some authors also refer to Tamm-states and Shockley-states 
in the sense that the former should be localized, tight-binding type surface states 
and the latter free-electron type surface states, a distinction that has little founda-
tion in the original work of Tamm and Shockley. 
 Early experimental evidence for the existence of surface states came from the 
electric properties of space charge layers at semiconductor surfaces. As discussed 
in Sect. 3.2.2, a high density of surface states pins the Fermi-level at the surface to 
a fixed position with respect to the valence and conduction band edges. Depending 
on the doping, the pinning gives rise to depletion, accumulation or inversion lay-
ers. The measurement of the surface conductivity and the changes in the surface 
conductivity with an externally applied electric field normal to the surface are 
therefore traditional methods to probe for the existence of surface states and for 
the dependence of their density of states and energy level and on surface structure 
and deposited adlayers. Surface conductivity probes only for surface states inside 
the valence band gap of semiconductors. The investigation of surface states below 
the valence band edge and above the conduction band edge as well as of surface 
states in metals requires spectroscopic techniques. Today we possess a rich arsenal 
of such techniques supplemented by powerful theoretical methods from which a 
complete picture of surface state bands has emerged. Simultaneously the interest 
has expanded into related areas such as quantum size effects on surfaces, the effect 
of the electronic structure on lateral interactions between adatoms and other de-
fects, and the stability of nanostructures on surfaces. In the following, we first 
consider the general theoretical concepts of surface states on 2D-periodic surfaces. 
We proceed with experimental methods to probe for such surface states and dis-
cuss examples of typical surfaces. Issues related to a lateral confinement of sur-
face states are discussed in Sect. 8.3. 

Surface states and bulk states 

The electronic eigenstates of a three-dimensional solid are Bloch-waves classified 
by an index for the electron band i and by the three-dimensional (3D) k-vector.  

rk
k rk i

, e)(, iui  (8.10) 

The function )(, rkiu  has lattice periodicity. For the core levels, the lattice periodic 

functions )(, rkiu  are completely localized atomic orbitals and the energy levels 

become independent of k. In the valence band regime that is of prime interest here, 
the energy levels form continuous bands. In order to count the number of possible 
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wave-vectors one subdivides the infinite solid into subsections of N unit cells, 
where N is a large number. Complete 3D-translational symmetry is preserved by 
requiring that the all properties of the solid repeat after a supercell which contains 
N unit cells. These periodic boundary conditions require that 
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The phase factor in the exponent must be a multiple of 2 Without loss of gener-
ality we can describe the k-vector in cartesian coordinates (rather that in crystal 
base vector coordinates), hence one has 
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where Lx,y,z are the dimensions of the supercell and nx,y,z are integer numbers. The 
maximum and minimum values are such that k remains within the first Brillouin 
zone. Because of the large extension of the solid, the k-vectors form a quasi-
continuum.  
 If the solid has a form of a slab with surface perpendicular to the z-axis, the 
solutions become standing waves with respect to kz. As long as the slab is thick so 
that it contains many atom layers along the z-axis, the modified boundary condi-
tion with respect to kz has no effect on the eigenstates. For very thin layers the 
eigenstates with different kz-vectors have distinctively different energies. This can 
lead to interesting quantum size effects in the electronic structure and physical 
properties of slabs to which we devote a separate section.  
 The introduction of surfaces also gives rise to new eigenstates for which the 
wave function is localized at the surface, the so-called surface states. There are 
two possible categories of surface states: Those that are localized entirely in the 
first layer and those whose localization is owed to an imaginary part of kz. The 
magnitude of the imaginary part depends on the relative position of the energy 
with respect to the bulk states. Typical completely localized surface states are 
those that are associated with the chemical bonds of adsorbates or those with the 
dangling bonds on covalently bonded crystals (cf. Sect. 1.2.3, Fig. 1.24; 
Sect. 3.2.2). These states can exist inside the energy range of bulk states. Strictly 
speaking, theses states are surface resonances, as the wave function does have a 
continuation into extended bulk states. However, the energy of these states would 
be just at the same value if the slab were only a few monolayers thick. The ex-
tended surface states with a complex kz on the other hand, exist only in the forbid-
den gaps of the bulk states (of the same irreducible representation). The intrinsic 
surface states on metal surfaces are typical examples. Surface states of either type 
are completely characterized by a 2D-wave vector k|| and a band index 
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and the energy spectrum is described by E(k||). As for bulk states, core levels can, 
but need not be characterized by a k||-vector, as their energy is independent of k||.
 Before we present tutorial examples of surface states that exist on metals and 
semiconductors, we need to educate ourselves about the experimental methods to 
probe for electronic surface states. Unlike to other surface properties, experimental 
studies on electronic surface and bulk states are dominated by a single technique, 
which is photoemission electron spectroscopy. Our present experimental knowl-
edge of the band structure of bulk solids and their surfaces is almost completely 
based on that technique.  

8.2.2 Probing Occupied States  Photoelectron Spectroscopy 

Basic elements 

Photoelectron spectroscopy is a technique that probes bulk electron states as well 
as surface states. The relative weight of both depends on the kinetic energy Ekin of 
the photoemitted electron. In Sect. 2.2.2, we have considered the mean free path of 
electrons , which is also the information depth of electrons with a characteristic 
energy (Fig. 2.16). The information depth has its minimum of about  5 Å for 
electron energies around 50 eV. Even at this minimum, the photoemitted electrons 
carry information of several atom layers and therefore on bulk as well as on sur-
face states. The relative weight of bulk states in the spectrum of photoemitted 
electrons increases for energies below and above 50 eV. 
 The photocurrent is proportional to the photon absorption within the informa-
tion depth and proportional to the coupling of the wave function of the excited 
electron to the wave functions of electrons emerging from the solid. A full theory 
of the photoemission process requires the consideration of the non-local optics at 
surfaces. However, simplifications can be made in the photon energy range that is 
of interest in practical photoemission spectroscopy. Surface and bulk states in the 
valence band regime are probed with ultraviolet/soft X-ray light for which the 
quantum energy is between 20 eV and 2 keV. The wavelength of that light ranges 
between 620 and 124 Å. All atoms within the information depth are therefore 
subjected to electromagnetic radiation with nearly the same phase. An alternative 
way of expressing this fact is that the light contributes nearly no momentum and 
the transitions between the initial and final electron states are vertical. The photon 
energy is furthermore outside the regime of collective excitations of the electron 
gas and outside the regime of extremely strong absorption. The modifications of 
the electromagnetic field at the surface may then be disregarded. In that case, the 
absorption of electromagnetic radiation and therefore the intensity of the photo-
emission current is proportional to the square of the matrix element of the momen-
tum vector operator p with the initial and final state. The vector operator p has the 
same orientation as the electric field of the UV-light. Here we are interested in the 
current carried by electrons of a particular kinetic energy Ekin into a particular 

direction given by the wave vector )el(
||k .
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Here, i, j denote the initial and final bands, k||, kz are the components of the wave 
vector in the initial and the final state, and E(i), Evac are the energies of the initial 
state and the vacuum level. The matrix element is an integral over the unit surface 
cell and over the information depth along the z-coordinate. The photoemitted elec-
tron therefore carries the information on the energy of the initial state by virtue of 
the energy conservation 

hkEEE z),( ||
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The parallel component of the k-vector is also conserved, as the electron wave 
function inside has to phase-match to the wave function outside for periodic sur-
faces (Fig. 8.4). The k||-vector of surface states is therefore fully determined by the 
k||-vector of the photoemitted electron. The perpendicular component of the k-
vector of bulk states remains unknown, but can be established by special tech-
niques (see e.g. Sect. 4.2 of [8.16]). 

k(ext)

k||
(ext) = k||

(int)

k(int)

Fig. 8.4. Illustration of the wave vector conservation in photoemission spectroscopy. The 
determination of the perpendicular component of the wave vector of bulk states requires 
special techniques that may involve more than a single experiment. 

It is well known that a free electron cannot absorb a photon since energy and mo-
mentum conservation cannot be fulfilled simultaneously. It is therefore essential 
for the photoemission process that the electron be bound by a potential prior to the 
photo-excitation process. This can be shown in a formal way by considering the 
photoemission matrix element in real space. Using the identity  
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with H the unperturbed one-electron Hamilton operator and V(r) the one-electron 
potential one may rewrite the real space photoemission matrix element as 
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Here, the index i denotes a Cartesian component and  and  arbitrary electron 
states. The matrix element (8.17) is proportional to the gradient of the potential. 
For surfaces one may distinguish two contributions to the matrix element: one 
from the ion core potentials and a second one from the perpendicular gradient of 
the potential at the surface. This so-called surface photoemission dominates the 
photoemission process at low photon energies for p-polarized light. As the process 
occurs at the surface potential barrier, the excitation probability is completely 
independent of the electron wave vector perpendicular to the surface. At high pho-
ton energies and for electrons excited from deeper energy levels the steep gradient 
of the ion core potential dominates the photoemission process. 

Light sources 

Depending on the photon energy of the light sources, one distinguishes between 
Ultraviolet Photoemission Spectroscopy (UPS) and X-ray Photoemission Spec-
troscopy (XPS). The distinction between these two regimes is according to the 
traditionally available light sources. Ultraviolet radiation is provided by open, 
differentially pumped gas discharge lamps. Mostly used are the sharp and intense 
spectral lines of helium at photon energies of 21.22 eV (HeI) and 40.82 eV (HeII). 
Less common but occasionally also used are neon and argon at 16.85/16.67 eV 
(NeI), 26.9 eV (NeII), 11.83 eV (ArI) and 13.3/13.48 eV (ArII). Standard labora-
tory sources for X-rays are the Mg-K 1,2 and Al-K 1,2 emission lines at 1253.6 eV 
and 1486.6 eV, respectively. The traditional sources lost some of their importance 
when synchrotron sources for the entire spectral range between 10 eV and several 
keV became available. The advantage of synchrotron sources, in particular of 
undulator beam lines is that they combine high photon fluxes with tunability in a 
wide spectral range. By tuning the wavelength and the energy selector for the 
photoemitted electrons simultaneously, one can e.g. optimize the cross section for 
photoemission from particular electron states. Synchrotron light is polarized, lin-
ear-horizontal in the synchrotron plane, left-circular and right-circular below and 
above the plane of the ring, respectively (for electrons traveling clockwise in the 
ring, as seen from a position above the ring). The polarization offers additional 
possibilities. By using selection rules, the symmetry of electron orbitals can be 
determined with linear polarized light, and with circular polarized light, one can 
distinguish between spin-up and spin-down states via the effect of magnetic circu-
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lar dichroism. Figure 8.5 displays the experimental set-up at one of the undulator 
beam lines (beam line 7) of the Advanced Light Source (ALS) at Berkeley, USA 
[8.17]. This beam line has been used in many surface studies of the last decade. 
With three different gratings, the monochromator covers the photon energy range 
between 60 and 1200 eV. The resolving power of the monochromator E/ E is 
about 8000. The energy resolved photon flux is between 1012 and 1013 s 1.

4°

Floor Floor

1.33m
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monitors

Diffraction grating
R = 70 m

8.5 m 13.5 m
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Entrance slit Exit slit

5°

Fig. 8.5. The set-up of a the undulator beam line 7 at the Advanced Light Source (ALS) at 
Berkeley, USA that is commissioned to extended UV-light and soft X-rays. The synchro-
tron is not drawn to scale. (After Warwick et al. [8.17]) 

As far as UV-light is concerned these figures of merit are not much better than 
those of the HeI-lamp ( 1012 photons per second, E = 3 meV, hence 
E/ E = 7000). Hence, for experiments in which the photon energy need not be 
varied, polarization is not required and where the photon energy of 21.2 eV suf-
fices the HeI discharge lamp is still competitive in performance, and orders of 
magnitude lower in operational cost. For example, for the investigation of the 
band structure of electronic surface states in the valence band regime, discharge 
lamps do well. Most experimental data on the surface state dispersion have been 
obtained that way.  
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Energy analysis 

The typical experimental arrangement for photoelectron spectroscopy of the va-
lence band structure consists of a combination of an energy analyzer and a lens 
system (Fig. 8.6). The sample is mounted on a goniometer that defines the polar 
and azimuthal angle of electron emission with respect to the surface orientation. 
Energy analysis is performed mostly with hemispherical electrostatic deflectors 
(Sect. 7.4.1). When equipped with corrections for the fringe fields at the entrance 
and exit apertures by a suitable grading of the aperture potential (Fig. 8.6), energy 
resolutions down to 1 meV can be realized. To keep the resolution constant during 
energy scans the analyzer operates at constant pass energy while a lens system 
provides the energy retardation or acceleration. The lens system also defines the 
angular aperture. The combination of exit slit and electron multiplier shown in 
Fig. 8.6 is occasionally replaced by a position sensitive detector for the parallel 
detection of electrons of different energy. Different attempts have been made to 
combine energy analysis with a simultaneous display of the emission angles on a 
position sensitive detector. The price for the multiplex gain is usually a lower 
energy resolution and image distortions in the angular pattern. The most advanced 
spectrometers of SCIENTA keep both effects well under control. 

Lens system
rotatable
sample

h Hemispherical
deflector

Electron
multiplier

Fringe field
correction

Fig. 8.6. Typical experimental set-up for photoemission spectroscopy with a hemispherical 
analyzer for energy selection and a simple electrostatic lens system. The angle between 
direction of the incident light and the spectrometer is fixed. The emission angle is varied by 
rotating the sample with respect to the polar and azimuthal axis. 
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Selection rules in UPS

The photoemission process obeys certain selection rules that follow from the ma-
trix element in (8.14). Consider for example a surface with a mirror plane. The 
electron eigenstates belong to either the odd or the even representation. If one 
looks for electrons with trajectories lying within the mirror plane, the final state 
belongs to the even representation. The matrix element is then nonzero for s-
polarized light and even electron states and for p-polarized light and odd electron 
states. Hence, by orienting the sample with respect to the polarization plane of the 
synchrotron light and by observing electrons emitted in the mirror plane one can 
immediately determine the symmetry of the initial state. This symmetry analysis 
does not require synchrotron light. Linear polarized light can also be obtained 
from gas discharge lamps at the price of a loss in intensity by reflecting the light at 
the Brewster angle from a pair of gold mirrors. 
 For atomic orbitals with vector character, the p-states, one can even go a step 
further and determine the orientation of the orbitals in space from the intensity 
profile with reference to the polarization of light. Since the momentum vector 
operator in the matrix elements is oriented as the electric field E  (s) of the UV-light 
at the surface, the photoemission intensity from a pz-orbital is proportional to 
|Ez

(s)|2, from a px-orbital proportional to |Ex
(s)|2 and from a py-orbital proportional to 

|Ey
(s)|2. A calculation of the electric field components as a function of the polariza-

tion and the angle of incidence requires the complex reflection coefficients for the 
UV-light. However, the orientation of the p-orbitals is easily determined just from 
the angular orientation of the polarization with respect to the surface coordinate 
system for which certain components of the field vanish. 
 The flux of electrons that are photoemitted from localized orbitals also shows 
an interesting dependence on the energy of the final state, which follows directly 
from the matrix element. If, for example, the initial state is an s-orbital the inten-
sity goes through a minimum when the wavelength of the electron in the final state 
matches approximately the spatial extension of the initial state since positive and 
negative contributions to the matrix element cancel. Such minima have been dis-
cussed first by J. W. Cooper [8.18] and are therefore named Cooper minima.

8.2.3 Probing Unoccupied States 

Constant initial state photoemission 

Several techniques have been developed to probe unoccupied electron states. In-
formation on the states above the vacuum level can be obtained from photoemis-
sion experiments that are carried out in a specific form, namely by a simultaneous 
variation of the photon energy and the kinetic energy window of the analyzer. 
Thereby the initial state remains constant and the intensity of the photocurrent 
reflects the transition probability and thus the density of the final states. The prin-
ciple of this constant initial state spectroscopy is illustrated in Fig. 8.7a.  
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Fig. 8.7. Probing unoccupied (surface) states: (a) In constant initial state photoemission the 
kinetic energy and the photon energy are varied simultaneously. The photocurrent I(q||)
increases when the density of final states for a particular q|| is high. (b) In isochromat spec-
troscopy (inverse photoemission), the photon yield for a particular h  is observed as a func-
tion of the kinetic energy of incoming electrons. The yield Yph(q||) increases when the 
density of final states for a particular q|| is high. (c) In two-photon photoemission, the elec-
tron yield is observed as a function of the kinetic energy of the electron while the energies 
of the two photons are kept constant. The electron yield peaks at a kinetic energy that corre-
sponds to an emission from the pumped, but thermally unoccupied state. 

UV-isochromat spectroscopy  inverse photoemission

In 1977, V. Dose introduced UV-isochromat spectroscopy as a technique for prob-
ing unoccupied surface states [8.19]. The technique became popular later under 
the name inverse photoemission. The surface of a solid is subjected to an (intense) 
beam of electrons of defined energy at a defined angle of incidence (mostly verti-
cal). The electrons enter the solid in one of the higher energy bands above the 
vacuum level and drop into one of the lower bands under emission of a photon 
(Fig. 8.7b). Since the quantum efficiency of that process is low, very sensitive 
photon detectors covering a wide solid angle are required. Dose employed a Gei-
ger-counter for that purpose (Fig. 8.8). The Geiger counter is filled with iodine 
and equipped with a SrF2 window [8.20]. The combination of the photoionization 
threshold of iodine and the transmission cut-off endows the counter with an en-
ergy window of 0.4 eV. The sample is mounted on a two-axis goniometer to de-
fine the k||-vector of the incident beam and thereby the k||-vector of the final state. 
The energy resolution can be improved when UV-monochromators are used in-
stead of the Geiger-counter. Because of the low photon count rates parallel proc-
essing of the different photon energies is required. 
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Fig. 8.8. (a) Experimental set-up for inverse photoemission spectroscopy. To define the k||-
vector of the incident beam the sample is placed on a two-axis goniometer. Photons are 
collected in a wide solid angle and focused on a Geiger-counter. (b) The Geiger-counter is 
filled with iodine, which has an ionization threshold of 9.23 eV (solid line). Together with 
the spectral cut-off of the SrF2-window at 9.75 eV (dashed line), the photon energy window 
(shaded area) has a spectral range of 0.4 eV (after Goldmann et al. [8.20]).  

Two-Photon PhotoEmission

Two-Photon PhotoEmission (2PPE) is a pump-probe technique for thermally un-
occupied states (Fig. 8.7c). A first high-power laser pulse fills the state temporar-
ily and a second pulse brings the electron from the intermediate state into the 
vacuum as a photoemitted electron. The method requires short laser pulses in the 
femtosecond regime and sufficiently long life times of the intermediate state. The 
technique has been employed to probe the so-called image potential states
(Sect. 8.2.5) as these states couple very little to the substrate electronic state and 
therefore enjoy a long lifetime. The experiment probes these states by looking for 
the intensity of the photoemitted electrons as a function of their kinetic energy 
while the photon energies are kept fixed (for convenience). The electron intensity 
peaks at the kinetic energy that corresponds to the photoemission of the intermedi-
ate state with the probe photon h 2. An experimental arrangement after Shumay et 
al. [8.21] is shown in Fig. 8.9a. An argon ion laser feeds a Ti-sapphire laser, which 
produces 70 fs pulses of IR-light at 790 nm wavelength. The pulse is tripled in 
frequency and brought to the sample after proper shaping with the help of two 
quartz prisms to pump electrons into empty states. The split-off 790 nm pulse runs 
through a variable delay line and probes the population in states between the vac-
uum level and 1.57 eV below the vacuum level (790 nm corresponds to 
h 2 = 1.57 eV). Figure 8.9b shows the 2PPE intensity as a function of the kinetic 
energy of photoemitted electrons and the delay time between the pump and probe 
pulses. The maxima correspond to image potential states on the Cu(100) surface. 
The states labeled n = 1, 2, 3 have different lifetimes (for details see Sect. 8.2.5). 
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Fig. 8.9. (a) Experimental arrangement for Two Photon PhotoEmission (2PPE). The sample 
is subjected to a 263 nm, 95 fs pump laser pulse followed by a delayed 790 nm, 70 fs probe 
pulse. The prisms compensate the group velocity dispersion arising from the UHV-window. 
(b) 2PPE intensity as a function of the kinetic energy of photoemitted electrons and the 
delay time between the pump and probe pulses. The maxima correspond to image potential 
states on the Cu(100) surface (after Shumay et al. [8.21], see Sect. 8.2.5). 

8.2.4 Surface States on Semiconductors 

Silicon and germanium surfaces 

This section considers surface state bands on clean semiconductor surfaces that 
arise from the dangling bonds at surfaces (Sect. 1.2.3) and from the back-bonds of 
the surface atoms. In their seminal paper of 1996, Allen and Gobeli [8.22] meas-
ured the band bending at the surface of silicon as a function of bulk doping. The 
authors found that the Fermi-level remains pinned up to very high n- and p-type 
doping levels and showed thereby that on cleaved Si(111) surfaces the dangling 
bonds contribute about one occupied and one unoccupied surface state per atom to 
the density of states in the band gap. Spectroscopic evidence for a large density of 
surface states and for a gap of about 0.3 eV between the occupied and unoccupied 
band of surface states came from optical experiments (1971 [8.23]) and electron 
energy loss spectroscopy (1975 [8.24]). The E(k)-dependence of these dangling 
bond states and those on other surfaces was mapped out later with the help of 
photoemission spectroscopy and with band structure calculations. Research in this 
area was largely driven by technological developments, both with respect to issues 
and materials, since surface states on semiconductors have a significant effect on 
the electronic properties of surfaces/interfaces (Sect. 3.2.2). Presently, the band 
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structure of surface states is known for a large number of materials and surface 
orientations. Here, we focus on a few pedagogical examples and begin with 
Si(100) and Ge(100).  
 The surface structure, the surface Brillouin zone (SBZ), the structure of the 
symmetric and asymmetric dimers and the electronic states for Si and 
Ge(100)(2 1) surfaces are displayed in Fig. 8.10. The calculation of the band 
structures by Krüger and Pollmann [8.25] shows that the symmetric dimer model 
leads to a metallic character of the surface state band, as the Fermi-level cuts 
across the two bands. This metallic character is in accordance with the qualitative 
reasoning that the dangling bond orbitals on the two atoms forming the symmetric 
dimer should be degenerate when the overlap between neighboring dimers is ne-
glected. The formation of asymmetric dimers can be understood as a Jahn-Teller 
distortion, which leads to a state of lower electronic energy as the degeneracy is 
lifted by the distortion and the occupied band shifts down below the Fermi-energy. 
This lifting of the degeneracy is reflected in the larger gap between the surface 
state bands (lower panels of Fig. 8.10). The lower occupied bands correspond to 
the electronic states of the upper atoms in the dimers.  
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Fig. 8.10. Dangling bond surface states on Si(100) (2 1) and Ge(100) (2 1) surfaces: (a)
the surface unit cell; (b) the surface Brillouin zone; (c) models for the symmetric and asym-
metric dimer; (d) and (e) the surface state bands for the symmetric and asymmetric dimer 
models for Si and Ge, respectively (after Krüger and Pollmann [8.25]). The dash-dotted 
lines represent the Fermi-levels. The surface state bands are metallic and insulating for the 
symmetric and asymmetric dimer respectively, as expected for a Jahn-Teller distortion 
(Sect. 1.2.3). Experimental data from [8.26-28] are plotted as squares and circles for Si and 
as circles for Ge, respectively. 
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The experimental data displayed in Fig. 8.10 were obtained from angle resolved 
photoemission. As shown in Sect. 1.3.1 (Fig. 1.34) (100) surfaces of Si and Ge in 
general consist of two domains with mutual orthogonal orientations of the dimers. 
The domains are separated by monolayer high steps. Angle resolved photoemis-
sion spectroscopy on such a surface would produce a mixture of electronic states 
of the two domains except for the [010] direction which is common to both do-
mains. Fortunately, single domain (100) surfaces can be prepared from vicinal 
surfaces that form an angle of about 4° with the (100) plane. On such surfaces the 
step height doubles after annealing so that only a single reconstruction domain 
exists with the dimer rows perpendicular to the step orientation [8.29]. Experi-
ments agree well only with the asymmetric dimer model, supporting the existence 
of a Jahn-Teller distortion of the dimers on Si and Ge surfaces. In that sense, 
photoemission spectroscopy provides information on an element of the surface 
structure. This reasoning became important insofar as room temperature tunneling 
microscopy images display the dimers as symmetric (Fig. 1.35) while low tem-
perature STM images show the dimers as asymmetric [8.30]. STM observations 
alone would therefore indicate, rather suggestively, a phase transition from asym-
metric to symmetric dimers. In the light of the photoemission results, the STM 
observations have to be interpreted differently: at room temperature, the dimers 
flip back and forth between the two asymmetric configurations so that the slow 
STM sees only the mean dimer structure.  
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Fig. 8.11. The phases of the dangling bond orbitals at  and J . At  the orbitals of 
equivalent atoms are in phase, which leads to a high charge density between the dimers for 
the occupied state, which is symbolizes as a nominally bonding orbital by the solid ellipse. 
The equivalent orbital arising from the sp2 bonded, lower dimer atom is unoccupied 
(dashed ellipse). At the J point, the maximum charge density sits on the upper surface 
atom in the region of lower potential. The energy of the electron is therefore lower at J .



  8.2  Electron States at Surfaces  __________________________________________________________________________ 397

We note from Fig. 8.10 that the dispersion of the surface states along the J - and 
the J -direction is rather different. Along the J -direction, the band is almost 
flat because the overlap of the surface states concerns fourth nearest neighbor 
atoms and is therefore marginal. The overlap between surface states of adjacent 
dimers concerns second neighbor atoms along J . The dispersion is therefore 
larger. One can even understand the sign of the dispersion. At the -point, the 
orbitals of two adjacent dimers along the [010] direction overlap in phase, i.e. 
constructively, causing the charge density to have its maximum between the 
dimers (Fig. 8.11). This is a region of high potential. At J , the orbitals have a 
node between the dimers. The maximum charge density is therefore on the dimer 
and therefore in the region of low potential. The electron energy must therefore be 
lower at J . Overall, the dispersion is weak because of the small overlap. 

(110) surfaces of zincblende structures  

The surface states arising from the dangling bonds on the (110) surfaces of 
zincblende (ZnS) structures (the III-V compounds, some II-VI compounds and 
cubic SiC) are similar to those of the (100) surfaces of diamond structure ele-
ments. At first this may be surprising as there is no dimer reconstruction on the 
(110) surfaces of ZnS structures. Rather, "anions" (group VI, V-atoms) and 
"cations" (group II, III-atoms) form a zigzag chain along the [001] direction. Nev-
ertheless, each surface atom contributes one surface state. Figure 8.12 shows the 
unit cell in real space (a) and in reciprocal space (b) together with side view of the 
ideally terminated and the relaxed surface ((c) and (d)) for GaAs(110). On the 
relaxed surface, the zigzag-chains between Ga and As-atoms are tilted, so that the 
surface As-atoms reside about 0.7 Å above the surface Ga-atoms. This is in accor-
dance with the reasoning that the orbital character at the surface reflects the num-
ber of electrons on the atoms more closely than in the bulk since there is no need 
to form sp3-hybrides in order to build a 3D-structure. The three electrons on the 
Ga-atoms form planar sp2-bonds; the five electrons on the As-atom (electron con-
figuration 4s24p3) do not hybridize and the half-filled p-orbitals, ideally at angles 
of 90° with each other, make p-bonds with the neighboring atoms. The relaxation 
of the surface in the form of a tilt is thus a natural consequence of the number of 
electrons on the atoms. The local electronic configuration is very similar to the 
case of the dimers on the (100) surface of Si and Ge (Fig. 8.10). The sp2-
configuration of the occupied orbitals on the Ga-atoms leaves the surface state, the 
pz-state of the Ga-atom empty. The surface state on the As-atom arises from the 
unused "backs" of the p-orbitals. Because of the bonding of the As-atoms to the 
substrate, all p-orbitals are filled with two electrons. Thus, the surface state is also 
filled. This qualitative reasoning is nicely confirmed by calculations of the surface 
band structure. Figure 8.12e and 8.12f show the surface band structure for the 
truncated bulk surface and the relaxed surface. The two bands associated with the 
dangling bond states are well separated in both cases, however more so for the 
relaxed case. The band arising (mostly) from the gallium dangling bond states is 
unoccupied (dashed line) while the band arising from the As-states is occupied. 
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Again we have the similarity to the dimers on Si(100) and Ge(100) (Fig. 8.10) 
with a notable difference of practical importance: The separation between the 
empty and full surface state bands is larger for GaAs. Clean and defect-free GaAs 
surfaces possess no surface states in the conduction band gap that would pin the 
Fermi-level. Surfaces prepared by cleaving may contain steps however. These 
steps contribute gap states of a concentration, which may be large enough to pin 
the Fermi-level up to moderate doping levels.  
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Fig. 8.12. Surface state bands on the ideally terminated and the relaxed GaAs(110) surface: 
(a) the surface unit cell; (b) the surface Brillouin zone; (c) and (d) models for the ideal 
surface (truncated bulk) and the relaxed surface; (e) and (f) calculated band structures. 
Bands arising from the Ga and As surface atoms are shown as dashed and solid lines re-
spectively. The shaded areas are the bulk bands projected onto the SBZ (after Sabisch et al. 
[8.31]).
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The absence of surface states with a concentration that would correspond to the 
concentration of surface atoms was demonstrated by electron energy loss spec-
troscopy (EELS) [8.32]. The spectrum displayed in Fig. 8.13 merely shows the 
onset of the interband transitions at 1.4 eV, while equivalent spectra of Si-surfaces 
show strong absorption due to surface states [8.24]. The absence of surface states 
in the band gap is also very nicely demonstrated in scanning tunneling spectros-
copy (STS). The solid line in Fig. 8.13 is the normalized derivative of the tunnel-
ing current with respect to the tunnel voltage )//()d/d( VIVI  versus the tunnel 

voltage [8.33]. This quantity is roughly proportional to the density of states of the 
sample. If the sample is at negative potential with respect to the tip then electron 
from the occupied states, i.e. the conduction band and possibly occupied surface 
states tunnel into the tip. For reversed bias, electrons tunnel from the tip into the 
conduction band and into empty surface states. The fact that the tunnel spectrum 
shows defined onsets of the current, separated by 1.4 eV proves that there are no 
surface states of significant concentration in the gap. The small hump in the STS 
spectrum is due to tunneling into depleted bulk dopant states, as was demonstrated 
by STS on differently doped samples [8.33]. 
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Fig. 8.13. Scanning tunneling spectrum (STS) and electron energy loss spectrum (EELS) of 
the cleaved GaAs(110) surface (solid and dotted lines, respectively, after Feenstra [8.33] 
and Froitzheim et al. [8.32]). The elastic peak of scattered electrons is placed at the zero of 
the STS to make the techniques comparable. Both spectra show the absence of surface 
states in the 1.4 eV direct gap between the valence band and the conduction band edges.  

From the orbital picture of the surface states, one would assume that electron tun-
neling is mostly into (out of) the occupied (unoccupied) surface states since their 
orbitals represent the outmost electronic states. That this is indeed so was nicely 
demonstrated by STM images obtained at negative and positive bias by Feenstra et 
al. [8.34]. Figure 8.14 shows STM images of the cleaved (110) surface of p-doped 
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GaAs obtained at +1.9 V and 1.9 V. At a sample voltage of +1.9 V with respect 
to the Fermi-level of the tunneling tip, electrons tunnel into the empty surface 
states that are localized on the Ga-atoms. Only these atoms are visible at this bias 
as bright spots. When the bias is reversed the electrons tunnel out of the surface 
states localized on the As-atoms so that now these atoms appear as bright spots. 
The localization of surface states on atoms thus opens the door to chemically spe-
cific STM imaging. As seen from the band structure in Fig. 8.12 the surface state 
bands merge with the bulk states in parts of the Brillouin zone. The localized den-
sity of states on the surface atoms has therefore contributions from electron states, 
which are true surface states and from states that decay into bulk electronic states, 
i.e. from surface resonances (see also [8.35]). 

[110]

[001]

As-atoms

Ga-atoms

+1.9 V -1.9 V

Fig. 8.14. STM images of the cleaved GaAs(110) surface at two different voltages (after 
Feenstra et al. [8.34]). The sample was p-doped. At a sample voltage of +1.9 V with re-
spect to the Fermi-level of the tip electrons tunnel into the empty surface states that are 
localized on the Ga-atoms. These atoms appear as bright spots. With reversed bias the 
electrons tunnel out of the surface states localized on the As-atoms so that these atoms 
appear as bright spots. 

Of considerable technical importance are the interface states in semiconductor 
heterojunctions and semiconductor/metal junctions as they have a decisive influ-
ence on the electrical properties of the semiconductor space charge layers at the 
interface (Sect. 3.2.2). Naively one might expect that the dangling bond states on a 
semiconductor surface should disappear when a metal is deposited on the surface. 
In that case, the band bending of the semiconductor should solely depend on the 
work function of the metal and the electron affinity (Sect. 3.2.2). However, ex-
periment as well as theory shows that the metal can induce particular interface 
states, which have energies inside the conduction band gap of the semiconductor. 
These states are called Metal Induced Gap States (MIGS) (see e.g. [8.36]).  
 Further electronic surface states exist in band gaps that are deeply immersed 
either in the conduction or in valence bands. Fig. 8.12 shows several surface bands 
that have split off from the lower energy valence bands. These surface states are 
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associated with the bonds of the Ga and As surface atoms to the next layer below. 
They have therefore been named back-bond surface states. As their energy levels 
are far away from the Fermi-level, they play no role in electric properties of sur-
faces. First experimental evidence of back-bond surface states came from inelastic 
electron scattering on Si(111) (7 7) and Si(100) surfaces [8.37]. The position of 
these states within the valence bands was obtained a little later by photoemission 
spectroscopy [8.38].  

8.2.5 Surface States on Metals 

For a long time surface states on metals have been studied entirely because of their 
intellectual appeal rather than for any importance for other surface phenomena, 
not to speak of practical relevance. This picture has changed quite dramatically in 
recent years. We now understand that surfaces states, in particular those around 
the Fermi-level, have a decisive influence on nucleation as well on the formation 
and the stability of nanostructures via quantum size effects. The investigation of 
surface states on metals has therefore experienced a considerable revival. Quan-
tum size effects associated with surface states will be considered in Sect. 8.3. This 
section is devoted to the electronic properties of surface states on metals as such. 
We begin with a particular kind of surface states that was already briefly ad-
dressed in Sect. 8.2.3 in the context of experimental probes for unoccupied states.  

Image potential states 

Image potential states are special unoccupied electronic surface states that exist 
between the vacuum level and the Fermi-level. As their name says, they result 
from the image potential (Sect. 3.2.1). Sufficiently far away from the surface, the 
image potential has the form (3.21) 
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where z0 is the position of the image plane. The image plane is approximately one 
Bohr radius outside the jellium edge. The image potential also exists on semicon-
ductor and insulator surfaces. The potential is then (cf. 7.65) 
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where  is the static dielectric constant. A prerequisite for the existence of an elec-
tronic state in the image potential as a localized surface state, however, is that 
there are no bulk states at the same energy and wave vector k||. The material must 
have an energy gap around and below the vacuum level. The (100) surfaces of fcc 



 8  Electronic Properties __________________________________________________________________________ 402

metals have an energy gap in the required energy range and for a large k||-range. 
They are therefore prototype surfaces for image potential states. The eigenstates of 
the z 1-potential (8.18) are the same as for the hydrogen atom with the quantum 
number for the orbital momentum l = 0. Parallel to the surface the eigenstates are 
free-electron solutions. The energy levels are therefore 
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Fig. 8.15. Image potential states between the vacuum level and the Fermi-level. Their exis-
tence e.g. at k|| = 0 requires an energy gap in the bulk states at k|| = 0, so that the wave func-
tion is totally reflected from the surface. The energy levels of image potential states are 
fixed to the vacuum level. 

Note that the energy scale always refers to the vacuum level for image potential 
states, not to the Fermi-level. If the work function of a surface is modified by ad-
sorption, the difference between the Fermi-energy and the energy levels of the 
image potential states shifts according to the work function change. On a real sur-
face, the energy levels for a pure z 1-potential are modified since the wave func-
tion penetrates into the bulk region as an evanescent wave. Echenique and Pendry 
[8.39] have shown that the eigenstates are well described by adding a constant 
term a = 0.21 to the quantum number n so that 
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Table 8.2 lists the eigenvalues for k|| = 0 according to (8.20) and (8.21) together 
with experimental values from two-photon photoemission spectroscopy [8.21] 
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(Fig. 8.9). Two-photon photoemission spectroscopy probes the states at k|| = 0 
since the photoemitted electrons are observed at normal emission and photons 
carry nearly zero momentum. 

Table 8.2. Energy of image potential states in eV below the vacuum level according to the 
hydrogen-model (8.20), the modified hydrogen model (8.21) [8.39] and experimental data 
obtained for Cu(100) [8.21].

n En= 0.85n 2 En= 0.85(n+0.21) 2 En(exp)

3 -0.09 -0.08 -0.06 
2 -0.21 -0.17 -0.17 
1 -0.85 -0.58 -0.58 

Nearly free electron surface states

The sp-metals have surface states associated with the gaps in the bulk bands. Sur-
face states also derive from the localized d-electrons. For the coinage metals Cu, 
Ag and Au, the bands of d-surface states are well below the Fermi-level while the 
surface state bands arising from the sp-states have their energy levels around the 
Fermi-energy. The latter surface states are of particular interest for several rea-
sons. Firstly, the occupation of these surface states depends significantly on pa-
rameters such as temperature and strain, and furthermore on the presence or 
absence of adsorbed species. As the wave functions are partially localized outside 
the surface (defined by the jellium edge or the boundary of the valence d-
electrons) the surface states are sensitive to the structure and morphology of the 
surface (for a review see [8.40]). Defects such as steps, islands or adatoms act as 
potential barriers for the wave functions. These defects can be of the same or a 
different material. Because of the confinement by defect barriers, the eigenstates 
are standing waves. Their energy levels shift upwards, the more, the smaller the 
area of confinement is, as known from the particle-in-a-box-model (Sect. 3.1.1). 
As the energy of the surface state bands are around the Fermi-energy, the energy 
levels are partially filled, partially empty. The Fermi-vector of these surface states 
is rather small on the (111) surfaces (kfs = 0.08 Å 1 for Ag(111) and kfs = 0.22 Å 1

for Cu(111)). The Fermi-vector cut-off gives rise to pronounced and long-range 
Friedel-oscillations (Sect. 3.2.1, Fig. 3.5), and to periodic oscillations of the total 
electronic energy with the distance between the potential barriers (quantum size 
effect).
 The wave functions of the surface states being localized outside the surface can 
be probed by tunneling microscopy and tunneling spectroscopy and the potential 
barriers can be constructed by manipulating atoms with the STM-tip. Thus, indi-
vidual adatoms and small clusters together with the STM-tip make a neat con-
struction kit to build two-dimensional quantum systems with the surfaces of 
coinage metals as the playground. 
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Partially occupied surface state bands exist on all three low-index surfaces of the 
coinage metals. On the (100) surface they are localized in k-space around the X -
point of the SBZ (Fig. 7.2). On the (110) surface they exist around Y  (the zone 
boundary in [100] direction. On the (111) surfaces the surface state band centers at 

. These surface states are therefore of particular interest for quantum size effects 
in the nm-range and we focus on these surfaces in the following.  
 Early photoemission work on metal surface states was performed by the group 
of Neddermeyer (see e.g. [8.41]). Figure 8.16 shows a set of photoemission data 
by Kevan [8.42] with improved resolution permitting the measurement of the dis-
persion curve. The lowest energy of the surface state band is at the -point, cor-
responding to electron emission in normal direction. The dispersion of the band is 
directly seen in the set of spectra displayed in Fig. 8.16a as a function of the polar 
emission angle in the M  (or ) direction. The doublet structure of the photo-

emission peak arises from the doublet character of the ArI line. The resulting dis-
persion curve is shown in Fig. 8.16b together with the bulk bands depicted as 
shaded areas. The same dispersion curve is found for NeI light (16.8 eV) assuring 
the surface character of the photoemission peaks. The dispersion curve is well 
described by a parabola underlining the free-electron character of the surface state 
band.
 Figure 8.16b shows that the (111) surface has a gap around the -point in the 
energy range of the surface state band. Consequently, the electron hole left behind 
after the photoemission process has a very long lifetime, in particular at the -
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Fig. 8.16. (a) Ultraviolet photoemission spectra from a surface state on Cu(111) obtained 
with ArI-light. The second peak is because of the Ar-doublet. (b) Dispersion of the surface 
state: data points obtained with h  = 11.8 eV (ArI) and h  = 16.8 eV (NeI) are shown as 
open and solid circles, respectively (after Kevan [8.42]). The dashed line is the dispersion 
curve at 30 K as obtained more recently in high-resolution experiments by Reinert et al. 
[8.43]. The insert shows the SBZ.
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point and at low temperatures. Hence, the intrinsic line width of the photoemission 
peak is quite small on well-ordered surfaces. The surface state is therefore an ex-
cellent benchmark for the quality of the experimental equipment. Figure 8.17a 
shows the improvements over the years as assembled by Reinert et al. [8.43] for 
the example of the particular narrow photoemission line of the -state on 
Ag(111). 
 Figure 8.17b shows the photoemission peaks of the -states for all coinage 
metals. Table 8.3 finally summarizes the energies of the -states with respect to 
the Fermi-level, the effective masses and the Fermi-vectors. On the Au(111) sur-
face, the surface state band shows a noticeable spin-orbit splitting so that there are 
two Fermi-vectors corresponding to the two bands [8.43]. The lifetime of the elec-
tron hole as well as the energy of the surface state depends critically on the struc-
tural order. Earlier results on lifetime and energy differ from the values quoted in 
Fig. 8.17b and in Table 8.3. The differences between various authors are particu-
larly large for Ag(111). There, the energy of the surface state band depends sig-
nificantly on the surface lattice constant and therefore on the temperature. The 
surface state band shifts upwards with increasing interatomic distances and hence 
with rising temperature. For temperatures larger than about 450 K the -point is 
pushed above the Fermi-level [8.44]. The surface state is also shifted upwards in 
laterally strained Ag(111) films. A strain of merely  = +0.5% suffices to push the 

-point above the Fermi-level [8.45]. 
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Fig. 8.17. (a) Photoemission spectra from the Ag(111) surface state for normal electron 
emission demonstrate the progress in resolution (after Reinert et al. [8.43] with data from 
[8.41, 44, 46]. (b) High resolution photoemission spectra of Au(111), Ag(111) and Cu(111) 
at 30 K for normal electron emission (after Reinert et al. [8.43]). The instrumental resolu-
tion is 3.5 meV so that the measured Full Width at Half Maximum (FWHM) for the most 
part represents the intrinsic line width due to finite lifetime broadening. 
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Table 8.3. Parameters of the nearly free electron surface state band on the (111) surfaces of 
noble metals at 30 K [8.43]. The parameters differ not insignificantly from earlier results. 
The difference is partly due to the temperature dependence of the energy levels, partly due 
to an incorrect positioning of the Fermi-level in earlier work and partly due to the improved 
resolution in the work of Reinert et al..  

Property Cu(111) Ag(111) Au(111) 

EF Emin / eV 0.435 0.063 0.484 
meff / m0 0.412 0.397 0.255 
kF / Å 1 0.215 0.080 0.167/0.192 

Free-electron surface states are also seen in scanning tunneling spectroscopy 
(STS). The differential tunnel conductance dI/dV is roughly proportional to the 
combined local density of states of the tip and the surface under the tip. Assuming 
that the density of state of the tip is about constant near the Fermi-level then dI/dV
curves should reflect the density of surface states. The density of states of a para-
bolic band of two-dimensional surface states is  

)(
2

)( min2
eff EE

h

m
ED  (8.22) 

in which E Emin) is the step-function with the onset at the minimum of the band 
Emin. The tunnel conductance should therefore be a step function. Figure 8.18 
shows  
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Fig. 8.18. Differential tunneling conductance dI/dV on Au(111) surfaces (after Chen et al. 
[8.47]). The conductivity shows a sharp onset at the minimum of the surface state band. 
The dotted line represents the density of surface states. The dI/dV-curves are slightly differ-
ent for the hcp and fcc areas of the reconstructed surface (Sect. 1.2.1, Fig. 1.12). 
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that this is approximately the case [8.47]. Unlike photoemission spectroscopy, 
STS probes the occupied as well as the unoccupied states with the same conduc-
tance. Only the current reverses from sample-to-tip at negative sample voltages to 
tip-to-sample at positive voltages. Interestingly, STS shows a small difference in 
the conductance on the hcp and the fcc areas of the reconstructed Au(111) surface 
(Fig. 1.12). 

8.2.6 Band Structure of Adsorbates 

A special type of surface states arises from the valence electrons of adsorbed spe-
cies on surfaces. The dispersion of these surface state bands reflects the lateral 
coupling of the valence orbitals. As for the surface states on clean surfaces, the 
adsorbate valence states may couple to the bulk bands of the substrate if the sub-
strate has electronic energy levels in the same E(k||)-space. Strictly speaking, the 
states are then resonances. The adsorbate valence electrons nevertheless retain a 
localized character even when they are situated within a bulk band. The surface 
band structure of adsorbates has been investigated for many common adsorbate 
systems. Most of the work has been performed in the early days of angle resolved 
photoemission spectroscopy with modest resolution and less advanced equipment 
than available nowadays. Since qualitative as well as quantitative aspects of the 
valence band structure of adsorbates are well understood by now research in this 
area has become less fashionable. Within the framework of a textbook, it is never-
theless useful to discuss the matter briefly, as it proves to be tutorial. We choose a 
particular model case for this purpose, the c(2 2) overlayers of chalcogenides on 
fcc(100) and focus on the c(2 2) oxygen layer on Ni(100). The qualitative picture 
is similar for other chalcogenides and other transition metal substrates.  
 The valence band arises from the oxygen 2p-electrons. Following A. Liebsch, 
we consider first the band structure of the bare c(2 2) oxygen layer without a 
substrate, which is shown in Fig. 8.19a. The band structure is easily understood in 
terms of symmetry properties and the lateral bonding between the atoms in the 
spirit of the tight binding model. We begin the discussion with the -point. The 
valence bands of the px- and py-states are degenerate there. Their energy is nearly 
the same as for the pz-band since the overlap between the orbitals of the nearest 
neighbor atoms is small in both cases (Fig. 8.20). The overlap is antibonding for 
the px- and py-states and bonding for the pz-state. Hence, the energy of the latter 
band is a little lower. As one moves towards M , all (weak) nearest neighbor 
bonds become antibonding for the pz-orbitals. The energy of the pz-band therefore 
rises along the M  direction (Fig. 8.19a). The same happens with the pz-band 
along the X  direction, however, the increase is only half of the increase along 

M  (Fig. 8.19a) since one half of the nearest neighbor bonds are antibonding 
and one half is bonding at M  (Fig. 8.20). The pz-bands belong to the even repre-
sentation along M  and X . The px- and py-bands are also degenerate at M . 
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Fig. 8.19. Electronic band structure of the c(2 2) oxygen layer on Ni(100); (a) the band 
structure of a bare oxygen layer; (b) with the Ni-substrate (after Liebsch [8.48]). The lines 
are the oxygen 2p-bands. The odd states along high symmetry directions are designated by 
dashed lines. The Ni sp-bulk states lie above the dash-dotted line in (b). Oxygen valence 
band states in that region couple to bulk states and may lose their character as surface 
states. The perpendicular shading indicates the broadening of the oxygen states due to cou-
pling to bulk states. Experimental data of Kilcoyne et al. are plotted as circles and squares 
for the even and odd modes, respectively [8.49]. The absolute energy scale is fitted to the 
theory. The arrow in the lower right panel marks the experimental 5 eV level below the 
Fermi-energy. 

Between  and M  the bands separate into odd and even bands of slightly differ-
ent energy. At the M -point the nearest neighbor orbitals are bonding with a 
stronger overlap than for the pz-states (Fig. 8.20). The energy of the px and py-
bands therefore disperses downwards towards M  and the dispersion is larger than 
for the pz-band (Fig. 8.19a). The even and odd px, py-bands split significantly 
along the X -direction. Note that the px- and py-orbitals at the  are drawn such 
as to meet the symmetry required along the M  and X -directions. The odd 
px-py band disperses mildly in upwards direction as half of the bonds assume a 
small antibonding character at X (Fig. 8.20). The even px+py orbitals form strong 
bonds between two nearest neighbors at X . The bands therefore disperses down-
wards and the energy at X is the lowest in the entire 2D-band structure 
(Fig. 8.19a). 
 The simple valence band structure of the oxygen layer remains essentially unal-
tered by the presence of the Ni-substrate if the valence bands are outside the bulk 
electronic states of nickel. That is the case between M  and X . The dash-dotted 
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Fig. 8.20. Orbital character of the 2p-states of oxygen in a c(2 2) layer at the various points 
in the Brillouin zone (see insert at the bottom). At  the px- and py-states are degenerate. 
The same holds at M . There the px- and py-orbitals overlap constructively. The formation 
of bonds lowers the energy of the px- and py-bands at M . Strong lateral bonding also oc-
curs for the even px+py band at X  (see text for further discussion). 

line in Fig. 8.19b marks the lower boundary of Ni-bulk states. The Ni-bands are of 
sp-type in that energy range, as is apparent from the large dispersion of the bound-
ary. The d-states lie above the oxygen valence-band region. Along the M  and 

X -directions the oxygen bands overlap and partially hybridize with the Ni-sp-
bands. Starting from the M  and X  points, the even px, py-bands make an avoided 
crossing with the Ni-states and therefore disperse downwards instead of upwards. 
The odd py-band does not couple with the even Ni-bulk states in that region and 
remains unaffected therefore. The oxygen valence bands loose their localized 
character inside the Ni-bulk bands. They become broad resonances (indicated by 
the vertical lining in Fig. 8.19) or disappear completely. Figure 8.19 includes ex-
perimental data of Kilcoyne et al. [8.49]. The absolute energies are shifted to 
match the theory. For reference: the experimental energy of the highest oxygen 
band at M  is 5 eV below the Fermi-level. The experiment distinguishes between 
even and odd bands. Circles and squares, respectively mark the corresponding 
data points. The experimental data roughly trace the theoretical bands, although 
there is some scattering in the data which may be partly due to the intrinsic width 
of the energy levels, partly due to the, by present standards low resolution. 
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8.2.7 Core Level Spectroscopy 

Core level spectroscopies are frequently employed to determine the concentration 
of impurities on surfaces. This aspect was already discussed in Sect. 2.2.2. In this 
application, angular resolution is neither required nor appropriate. On the contrary, 
analyzers with large acceptance angles such as the cylindrical mirror analyzer are 
preferred to achieve high sensitivity (Fig. 2.17). Although the core levels are not 
engaged in the chemical bond, the kinetic energy of electrons photoemitted from a 
core level depends on the local environment of the atom. For a reference scale, 
which reflects solely the properties of the solid one defines the binding energy of 
an electron Eb as the difference between the photon energy and the kinetic energy 
of the electron. 

)()1(kinb NENEEhE  (8.23) 

Energy conservation requires that the so-defined binding energy equals the differ-
ence between the total energy of the solid with N electrons minus the energy for 
the system with N-1 electrons. Shifts of the binding energy due to changes in the 
local environment of an atom that originate in E(N) are called initial state effects,
shifts originating in E(N-1) are denoted as final state effects. Initial state effects 
are caused by a change in the local potential. If e.g. the atom in question engages 
in polar bonds that remove part of the valence charge from the atom then the elec-
trostatic potential at the atom is more positive, hence, the total energy of the elec-
tron system of that atom is lower and the binding energy Eb increases. The binding 
energies of core electrons therefore reflect the charge transfer from atoms to their 
bonding partners. This charge transfer is often expressed in terms of the electro-
negativity difference between the bonding partners. The correlation between the 
shift in Eb and the charge transfer is well established and unambiguous for mole-
cules. Since the binding energies of core electrons reflect the nature of a chemical 
bond of the atom, the shifts are called chemical shifts. The relation between the 
shifts in Eb and the electronegativity difference to the bonding partners is unique 
only if the coordination number does not change. Surface atoms have a lower 
coordination than bulk atoms. The electrostatic potential resulting from neighbor-
ing ion cores as seen by a core electron of a surface atom is less attractive than for 
bulk atoms. Core electrons of surface atoms have therefore a smaller binding en-
ergy than core electrons of bulk atoms. The effect is even more pronounced for 
surface atoms in sites of particular low coordination, e.g. at steps. The shifts in the 
binding energy for surface atoms are referred to as surface core-level shifts. Sur-
face core-level shifts and chemical shifts are of comparable magnitude.  
 The energy of the final state of the solid after the photoemission process de-
pends on the screening of the core hole by the electron system. The more effective 
the screening process, the lower the energy of the final (N 1)-state and thus the 
lower the binding energy Eb. For the transition metals a simple argument can be 
brought forward as to how the screening should be affected by the lower coordina-
tion at the surface. Screening involves a relocation of electronic charge from the 
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surrounding atoms to the atom with the core hole. This relocation requires the 
filling of empty states. Filling the states right above the Fermi-level requires the 
least energy. Because of the lower orbital overlap at the surface, the width of the 
valence d-electron bands of transition metals is smaller at the surface, the density 
of states around the Fermi-level therefore higher. Thus, core holes in surface at-
oms are more effectively screened and the binding energy of electrons is reduced 
by this effect. Depending on the type of surface and the material, the screening 
contribution to the total surface core-level shift is of the order of 25%. For free-
electron metals and the coinage metals screening is provided by the sp-electrons. 
According to the jellium model the density of sp-electrons is lower at the surface 
leading to less effective screening (Fig. 3.5) and thus to a reduction of the shift 
caused by initial state effects. The overall surface core-level shift remains nega-
tive, however, i.e. towards smaller binding energy.  

282 281 280 279
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Fig. 8.21 Core level spectra on the clean and oxygen covered Ru(0001) surfaces. Dotted 
lines are the experimental spectra. Experimental data are fitted to various contributions. 
Dash-dotted lines and thin solid lines are contributions from bulk atoms (B), first layer (S1)
and second layer (S2) atoms of the clean surface, respectively. The fat solid lines mark the 
contributions from surface atoms with bonding to one, two or three oxygen atoms (After 
Lizzit et al. [8.50]). 
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Core-level shifts on clean as well as on adsorbate-covered surfaces have been 
observed since the early days of X-ray photoemission spectroscopy. The use of 
high-resolution monochromators on synchrotron beam lines in combination with 
high-resolution electron spectrometers has enabled very detailed studies of the 
core level shifts as a function of the local environment of a surface atom. Fig-
ure 8.21 shows a nice example concerning the photoelectron spectrum of 3d5/2-
electrons on Ru(0001) [8.50]. Ruthenium is a 4d-transition metal, hence the 3d-
electrons are core electrons. The clean surface shows two surface peaks. One 
originating from the first layer surface atom (S1) is shifted by about 

ESCLS 0.37 eV towards lower binding energies, hence in the expected direc-
tion. The binding energy of the second layer atom is shifted upwards by 

ESCLS = +0.125 eV. Upon oxygen adsorption, the binding energy of the surface 
core electron increases and the amount of that increase depends on the number of 
oxygen atoms bonding to the particular surface atom. On the p(2 2) surface three 
out of four surface atoms bond to an oxygen atom. Electrons from these surface 
atoms have a binding energy close to the bulk value. The intensity of the S1-peak 
is reduced. In the p(2 1) structure the surface atoms bond to either one or two 
oxygen atoms. The S1-peak of the clean surface has disappeared. The spectrum 
displays two surface peaks S1(1O) and S1(2O) with core-level shifts ECLS  0 and 

ECLS = +0.4 eV. At even higher coverages the peak S3(3O) appears at 
ECLS = 0.96 eV which corresponds to surface atoms bonding to three oxygen 

atoms. 
 The intensities of the various contributions to the experimental spectra are not 
proportional to the number of atoms from which the peaks originate. This has to 
do with diffraction of the photoelectron. The photoemitted electron undergoes a 
multiple scattering process in much the same way as an external electron is scat-
tered from the substrate in the LEED process (Sect. 1.1.1), only that the source of 
the electron is now a particular atom. The multiple diffraction process carries the 
information about the local environment of the source atom. The local structure 
can therefore be analyzed by comparing experimental energy and angle distribu-
tions of the intensities to a multiple scattering calculation. Contrary to LEED, no 
ordered structures are required. Photo Electron Diffraction (PED) is therefore a 
powerful tool for the analysis of the structure of adsorbed species and their ad-
sorption sites on surfaces (For a review see e.g. [8.51]). Some structure elements 
can even be ascertained without invoking multiple scattering calculations. The 
scattering of electrons with a kinetic energy above about 400 eV is strongly 
peaked into the forward direction. For example, the angular distribution of the C1s 
photoelectrons of carbon monoxide peaks along the axis of the CO-molecule. The 
orientation of the molecular axis with respect to the surface is therefore obtained 
directly from the angular distribution (search light effect). This analysis even 
works when the CO is embedded into an adsorbate layer of hydrocarbons, as the 
carbon atoms in hydrocarbons possess a different binding energy. 
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8.3 Quantum Size Effects 

8.3.1 Thin Films 

The confinement of the electron wave function within the two surfaces of a thin 
film can cause oscillations in the density of states at a particular energy, e.g. the 
Fermi energy. The oscillations in the density of states affect the total energy of the 
film and quite generally all properties of the film that depend on the density of 
electrons at the Fermi-level: electrical and thermal conductivity, the magnetic 
susceptibility and most importantly the magnetic coupling across non-magnetic 
thin films (Sect. 9.8.3). The latter effect has gained considerable technical and 
economical importance in the Giant Magneto Resistance (GMR) effect, which is 
discussed in Chapt. 9.  
 Quantum size effects in thin films were first observed as oscillations in the 
current in tunneling spectra of Al/Al2O3/Pb and Mg/MgO/Pb sandwiches, in 
which the Pb-films were about 250 Å thick [8.52, 53]. Later Jonker and Park re-
ported on quantum oscillations in the sample current of Ag and Cu covered 
W(110) substrates subjected to a normal incidence low energy electron beam 
[8.54]. Investigations on other thin-film systems followed, including Cu(100) 
films deposited on Ni(100) surfaces [8.55]. Quantum size effects in photoelectron 
spectroscopy were first predicted by Loly and Pendry for Ag-films on Pd(100) 
[8.56] and soon thereafter discovered in experiments on Ag-films on Si(111) by 
Wachs et al. [8.57]. Using elastic scattering of He-atoms Hinch et al. reported in 
1989 that certain film thicknesses are avoided in the epitaxial growth of lead on 
Cu(111) by double layers growth. The effect was (more convincingly) confirmed 
in STM-studies of Ortero et al. [8.58]. The stabilization of at times rather sophisti-
cated nanostructures by quantum size effects has also been reported (see e.g. 
[8.59]). All these various effects are specific manifestations or consequences of 
the confinement of the electron wave function.  
 This section considers the one-dimensional confinement of bulk electron states 
in thin films deposited on a substrate. On one side, the electron wave function is 
confined by potential barrier to the vacuum. There is also a barrier on the substrate 
side if the substrate has a band gap. The band gap may be an absolute one as in 
semiconductors or a partial gap for electron states with a particular wave vector 
parallel to the film orientation. The simplest model for electron confinement is the 
one-dimensional quantum well with infinite walls. The electron wave functions 
are then standing waves that obey the condition (Sect. 3.1.1) 

nDk 22  (8.24) 

in which k  is the wave vector perpendicular to the film of thickness D and n is 

an integer. The condition (8.24) can be interpreted as a phase matching condition 
stating that the total phase shift for a wave traveling back and forth between the 
boundaries must be an integer multiple of 2 . Walls of a finite height have a com-
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plex amplitude-reflection coefficient r, which introduces an additional phase shift 
so that the phase matching condition becomes 

nDk 22 BA  (8.25) 

where A and B are the phase shifts at the two boundaries. We consider first the 
total number of states N(Em) up to a certain energy level Em for a one-dimensional 
quantum well with infinite barriers. When the width of the quantum well D is 
expanded, the energy of a particular state denoted by the quantum number n drops 
below the energy Em and the number of electron states increases by 2 (2, because 
of spin degeneracy). Upon further expansion, the number of states stays constant 
until the next state fall below the energy Em, and so forth. The density N(Em) is 
therefore a staircase function with the period Dk2  (Fig. 8.22). The analytical 

equation that describes the staircase function is 
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The first term in (8.26) is a sawtooth function with sudden jumps from 1 to +1 at 
nDk 22  and a smooth decay from +1 to 1 when the argument Dk2  varies 

by 1. The second term, linear in Dk2 , converts the sawtooth into a staircase. The 

analytical function (8.26), valid for infinite walls with reflection coefficients 
rA = rB = 1, can be extended analytically to the case rA, rB < 1. We can guess how 
this extension must look since we know that the steps must vanish when the re-
flection coefficients of the walls approach zero. A function that has this analytical 
property and has also the correct limit for rA = rB = 1 is  
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This is indeed the correct functional form for arbitrary rA, rB [8.60]. Figure 8.22 
displays the function for several values of 

BA rrR . (8.28) 

The total phase shift AB = A + B after one round of reflections at the two inter-
faces is taken as zero. Otherwise, the x-axis would be shifted by AB. For small 
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values of R, N(Em) approaches the linear increase with Dk2 . The oscillating part 

of N(Em) assumes a sinusoidal shape in that case. 
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Fig. 8.22. (a) The total number of states N(Em) up to a particular energy )(m kE in a one-

dimensional quantum well. The combined phase shift at the interfaces AB is set to zero. 
(b) One-dimensional density of states D1D(E) without the factor from the dispersion 

Ek / .  

The intensity of photoelectrons in normal emission is proportional to the one-
dimensional density of states D1D(E) where E is the binding energy of the electron. 
Taking the derivative of (8.27) one obtains for the one-dimensional density of 
states
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The function represents a series of peaks with a periodicity Dk2  and an ampli-
tude factor Ek / . The density of states D1D(E) without the factor Ek /  is 
plotted in Fig. 8.22b. The function is a series of peaks located at nDk 22 .
The peaks are -functions for R = 1, and become the broader the smaller R is. The 
peak structure is due to the denominator in (8.29) which is the same as for the 
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transmitted light intensity in a Fabry-Perot interferometer. It should be pointed out 
however that the density of states concerns the stationary solutions of the wave 
function, not the intensity of a transmitted beam.  

Binding energy / eV

0'
2L-1-2-3

k(
L)

1.0
0.8
0.6

In
te

ns
ity

 / 
ar

b.
 u

ni
ts

Ag(111)/HPOG

Ag(111)/Si(111)-7x7

1

gap

Surface state

N 21
h = 47 eV

Binding energy / eV

In
te

ns
ity

 / 
ar

b.
 u

ni
ts

01

12

14

27.5

28

42

71

Ag/Fe(100)

N

h = 16 eV

(b)(a) Ag(111)

Fig. 8.23. Spectra of photoemitted electrons normal to the surface for (a) N = 21 monolay-
ers of Ag(111) on Highly Ordered Pyrolytic Graphite (HPOG) and the Si(111)-7 7 surface 
[8.61] and (b) for various layer thicknesses of Ag(100) on Fe(100) [8.62]. Sample tempera-
tures were T = 130 K and T = 100 K in (a) and (b), respectively. 

The oscillations in the one-dimensional density of states are seen in photoemission 
spectra with normal electron emission. Figure 8.23 shows examples of such spec-
tra. Figure 8.23a displays photoemission spectra of (111) oriented silver films 
deposited on Highly Ordered Pyrolytic Graphite (HOPG) and Si(111)-7 7 as 
reported by Neuhold and Horn [8.61]. The )(kE  relation of silver along the 

[111] direction is shown at the bottom. In the energy range shown the electrons 
have sp-character. The d-bands of silver are 4.5 eV below the Fermi-level. For 
both substrates, the photoemission spectrum shows a series of oscillations whose 
intensities reflect the derivative Ek /  for higher energies (8.29) and the lower 

reflectivity of the interface barrier in the lower energy range. Figure 8.23a is an 
interesting comment on the surface states discussed in Sect. 8.2.5. On the HOPG 
substrate, the surface state is visible as a strong peak right below the Fermi level. 
On Si(111)-7 7 the silver film is strained by 0.95%. This strain is enough to push 
the surface state above the Fermi level so that it becomes invisible. Figure 8.23b 
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shows the oscillations in the photoemission spectrum for various thicknesses of 
Ag(100) films deposited on Fe(100) whiskers [8.62]. The perfect layer-by-layer 
growth and the low defects concentration permits observation of quantum oscilla-
tions beyond film thicknesses of 100 monolayers. The effect of not perfectly flat 
surfaces becomes apparent in the spectrum for nominally N = 27.5 monolayers 
where the peaks are split into doublet corresponding to N = 26 and N = 28 layers. 
These doublets are seen only because the surface consists of large areas covered 
with 26 and 28 layers. Less perfectly grown films show much broader and weaker 
oscillations up the point where oscillations disappear completely. Quantum oscil-
lations in photoemission were therefore discovered relatively late when scientists 
had learned how to grow well-ordered films. In the original work of Wachs et al. 
[8.57] which likewise concerned Ag on Si(111) the oscillations were much weaker 
than in the later work of Neuhold and Horn (Fig. 8.23a). The widths of quantum 
well peaks depend also on the temperature. With increasing temperature, the peaks 
broaden due to electron-phonon coupling. The spectra in Fig. 8.23 were recorded 
at low temperatures.

8.3.2 Oscillations in the Total Energy of Thin Films 

According to Fig. 8.22, the total number of electrons in the quantum well up to the 
Fermi energy is an oscillating function of the film thickness. This causes charac-
teristic oscillations in the energetics of thin films. To calculate the thermodynamic 
relevant energy one has to observe that electrons that are squeezed out of the 
quantum well end up in bulk states of the substrate at the Fermi-level. The ther-
modynamic energy to consider is therefore the Gibbs free energy of electrons  

F

0
F d)()(

E

EEDEEG . (8.30) 

The lower integration limit is the bottom of the quantum well. Integrating (8.30) 
by parts yields 
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0
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E
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in which N(E) is the total number of electrons up the energy E (8.27). We are in-
terested in the oscillations only. The oscillating part of the energy is  
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In three dimensions, the oscillations are obtained by integrating over the parallel 
wave vectors. 
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Because of the upper limit, this function oscillates with the period DkF2  where 

Fk  is the Fermi-vector perpendicular to the film plane. The actual position of the 

minima and maxima and the precise oscillation period depends on the band struc-
ture E(k), and the energy dependence of the modulus of the total reflection coeffi-
cient R and of the total phase shift AB. If AB is zero, then the minima and 
maxima occur at  
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Figure 8.24 displays the oscillations in G for a quantum well system in one-
dimension (8.32). 
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Fig. 8.24. Oscillations in the Gibbs free energy of a one-dimensional quantum well for 
reflection coefficients R = 0.1, 0.5, 1 and zero phase total shift AB.

In three dimensions, the oscillations are less pronounced. Nevertheless, they 
amount to several tens of meV per surface atom. The energy is large enough to 
make films unstable that have thicknesses corresponding to maxima in G. Such 
films decompose into films that have thicknesses above and below the critical 
thickness. A particular nice example is the bifurcation that occurs with the well-
ordered Ag(100) layers on Fe(100) [8.63]. The pronounced quantum oscillations 
in the density of states were already shown in Fig. 8.23. Figure 8.25 shows normal 
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emission angle photoemission spectra of six monolayer (6 ML) films and 3 ML 
films deposited at low temperatures. In both cases, the spectrum is dominated by a 
single sharp peak in the density of states. The peak position is a clear indication of 
the particular thicknesses. Upon annealing the 6 ML film decomposes into areas 
with 5 ML and 7 ML thickness (Fig. 8.25a). The spectrum at the bottom was ob-
tained after cooling again to low temperatures. The 3 ML film decomposes into a 
2 ML and 4 ML film during annealing (Fig. 8.25b). One of the nice features of 
photoemission spectroscopy is that in combination with the band structure the 
energy dependence of reflectivity and phase shift can be obtained from the ex-
periment by fitting the calculated 1D-density of states to the spectrum. Using this 
method, Luh et al. were able to calculate the energy gain in the bifurcation process 
to 20 meV and 40 meV per atom area for the 6 ML and 3 ML films, respectively 
[8.63]. One might wonder whether these relatively small energies comparable with 
kBT can shift the balance completely to the bifurcated state. However, for the equi-
librium structure it is not the energy per atom area which counts but the total en-
ergy of an extended films. The kinetics of the process is driven by the energy gain 
for individual atoms. There, even a tiny energy gradient causes a net mass trans-
port towards equilibrium (see Chaps. 10 and 11). 
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Fig. 8.25. Normal emission angle photoemission spectra of Ag(100) films on Fe(100) 
whiskers showing the bifurcation of 6 ML (a) and 3 ML (b) films into 5/7 ML and 2/4 ML 
films, respectively, upon annealing (after Luh et al. [8.63]).  

Magic thicknesses of thin films or magic heights of islands caused by quantum 
interferences have been reported also for other system. A well-studied example 
concerns Pb-islands on Cu(111) surfaces [8.58]. Figure 8.26a shows the height 
distribution of islands after room temperature growth and a brief annealing to 
400 K. Clearly, certain heights like 5, 9, 12, 13, 14, and 18-19 are "forbidden", 
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while heights of 6, 8, 11, 17, and 20 are strongly preferred. The preferred island 
heights fulfill the condition (8.34) for a minimum in the energy while the totally 
excluded island height of 9 ML corresponds to a maximum (Fig. 8.26b). The 
phase is calculated with a mean nesting vector of the Fermi surface (Sect. 7.1.6, 
Fig. 7.9) of 0.625 Å 1 and a zero phase shift AB for each round trip in the multiple 
reflection. 
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Fig. 8.26. (a) Histograms of the areas occupied by Pb(111) islands vs. their height in 
monolayers (ML) for mean coverages 2.5ML, 5ML, 7.5ML and 16ML (from bottom to 
top). (b) Relative phase with respect to the condition of a maximum or minimum in the 
energy (8.34).  

8.3.3 Confinement of Surface States by Defects 

Defects on surfaces represent potential barriers for surface states that are localized 
in the outmost surface layer (Sect. 8.2.5). The scattering of the electron wave 
function results in a standing wave pattern around the defects. As described in the 
previous section, this causes oscillations in the local density of states that in turn 
can be probed by scanning tunneling spectroscopy. Images of the tunneling con-
ductivity dI/dV or the normalized tunneling conductivity (dI/dV)/(I/V) represent 
approximately the local density of states at a particular energy. Occupied (unoccu-
pied) states are probed for negative (positive) sample bias with respect to the tip. 
Particular instructive are the standing wave patterns inside closed boundaries. 
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Figure 8.27 shows the standing wave pattern inside a quantum corral of Fe-atoms 
on a Cu(111) surface as published by M. F. Crommie, C. P. Lutz, and D. M. Eigler 
in 1993 [8.64, 65]. In the same year Y. Hasegawa and P. Avouris reported on the 
corresponding pattern near monatomic steps on the Au(111) surface [8.64, 65]. 
The dispersion of the surface state can be obtained from the standing wave pattern 
between two parallel steps [8.66]. 

Fig. 8.27. Perspective view on the standing wave pattern of surface states on Cu(111) inside 
a quantum corral that is formed by iron atoms. The Fe-atoms are placed into their position 
using the STM-tip as a manipulator (after Crommie et al. [8.64, 65]). 

The confinement of the wave function between the potential barriers represented 
by parallel steps has interesting consequences on the energetics of steps. We con-
sider these consequences for a vicinal surface with regularly spaced steps sepa-
rated by a distance denoted as L . For simplicity we assume that the steps are 

non-penetrating, i.e. lines of infinitely high potential. Then, the surface state wave 
function has nodes at the steps and the wave vector perpendicular to the step direc-
tion is quantized. 
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The total density of states is a sum over one-dimensional density of states Dn(E)
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where L|| is the length of the steps. The factor of two in the nominator takes care 
of the assumed spin degeneracy of the bands.
 To calculate the consequences of the confinement for the projected surface 
tension p (Sect. 4.3.1, eq. 4.45) we rewrite (8.30) for the present case.  
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After integration one obtains  

max

1

2/32
2
F

2

2
FF

elp, )1(
3

8 n

n
n

kLL

Ek
 (8.39) 

where nmax is the maximum n that still leads to a positive value of the expression 
in brackets. The summation can be carried out numerically. However, it is instruc-
tive to consider also the continuum approximation of the sum. 
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A continuum approximation to p,el is therefore 
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We have replaced L  in the denominator by Lh /tan  with h the step height 
to bring the electronic contribution into the form of an expansion of the projected 
surface tension in powers of Lhp /tan  (Sect. 4.3.1, eq. (4.46)). For fur-
ther discussion we consider the surface tension multiplied by the area of one atom 
on the surface s and subtract the value at p = 0. Figure 8.28 shows the numerical 
solution of (8.39) and the continuum approximation for surface states on Cu(111) 
(Table 8.3). The exact solution (dashed line) oscillates around the continuum solu-
tion (solid line). The oscillations become larger for large p.
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Fig. 8.28. Contribution of the electron confinement energy to the surface tension of vicinal 
surfaces vs. Lhp /tan . Plotted is the surface tension is multiplied by the area of one 
atom on the surface s with the value for p = 0 subtracted. For large tan , the exact solu-
tion (dashed line) oscillates around the approximate continuum solution (solid line). 

According to Fig. 8.28 the surface tension of a stepped surface should be up to 
17 meV per atom higher than for a flat surface. An interesting question is whether 
this extra energy is to be attributed to the step energy or a step/step interaction. 
Intuitively one might be inclined to consider the confinement energy as a step/step 
interaction14 Intuition leads astray however. As shown in Sect. 4.3.1, the first term 
in the expansion of p with respect to Lh /tan  is the step line tension  di-

vided by the step height h.

...tan0p h
 (8.42) 

14 This was erroneuosly claimed by N. Garcia and P. A. Serena [8.67]. The authors consid-
ered merely the upshift of the ground state not the integral over the 1D-dispersion.
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Hence, the second term in (8.41) is an electronic contribution to the step line ten-
sion and not to the step/step interaction. The magnitude of this contribution is 

FF||||el 3

4
Ekaa  (8.43) 

where a|| is the diameter of an atom so that ela|| is the step line tension for the 
length of one atom. For the Cu(111) surface (Table 8.3), the electronic contribu-
tion to the step line tension would amount to 100 meV for perfectly reflecting 
steps on vicinal surfaces. The experimental value obtained from the fluctuations of 
large islands, which has no contribution from the electron confinement, is 
270 meV [8.68]. The step energy on vicinal surfaces should therefore be higher by 
a considerable amount. The calculation overestimates the effect as in reality the 
steps are not perfectly reflecting. Sanchez et al. estimated intensity reflection coef-
ficients on Cu(111) vicinals to R = 0.3-0.4 [8.69]. Bürgi et al. made very careful 
measurements of the reflection coefficient as a function of energy on individual 
terraces on Ag(111) and found reflection coefficients of R = 0.25 and 0.6 at EF for 
ascending and descending steps, respectively. The energy dependence of the re-
flectivity followed the expected trend to smaller reflection coefficients for higher 
energies. Reflection coefficients smaller than R = 1 reduce the confinement en-
ergy and thereby the electronic contribution to the step line tension (cf. Fig. 8.24). 
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Fig. 8.29. Difference in the step line tension of vicinal surfaces to the step line tension at 
large step distances vs. the step distance. Perfectly reflecting steps are assumed. The oscil-
lations correspond to alternating attractive and repulsive step/step interactions and represent 
another manifestation of quantum size effects on the energetics of surface structures.  



  8.3  Quantum Size Effects  __________________________________________________________________________ 425

The oscillations of the exact solution (dashed line in Fig. 8.28) can be viewed as 
oscillations of step line tension with the step distance, or as an oscillating step/step 
interaction. Figure 8.29 shows the oscillations in the step energy as a function of 
the distance. The distance L  is denoted in units of atom rows aLN /  with 

a  the length unit of one atom row. The oscillation period is determined by the 

condition (8.34).  

6.6/ FakN  (8.44) 

As the oscillations in the energy are larger than the elastic repulsive energies be-
tween steps, preferred orientations should exist for surfaces vicinal to Cu(111). 
For example, a vicinal surface with 07.0tan  should phase-separate into vici-
nals with 05.0tan  and 09.0tan .

8.3.4 Oscillatory Interactions between Adatoms 

Oscillatory step/step interactions result from the boundary condition that the sur-
face state wave function be zero at the steps. For the same reason the interaction 
between other defects should be repulsive and oscillating if the defects represent 
areas of a high potential for the surface state electrons. The oscillation period is 
2kF D with D now the distance between the defects or the distances between shells 
of high potential around the defect sites. For one-dimensional defects, one expects 
the oscillatory decay to be faster than for line defects. Long-range oscillatory in-
teractions between surface defects mediated by substrate electrons were predicted 
by Grimley [8.70] and Einstein and Schrieffer [8.71] many years before any ex-
perimental evidence existed. Lau and Kohn showed in 1978 that the interactions 
caused by a partly filled band of surface states decay as D 2 and that the interac-
tions oscillate with a period 2kF D [8.72]. Hyldgaard and Persson [8.73] proposed 
that the interaction should obey the simple analytical form 
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Experimental evidence for the oscillatory interactions between adatoms was first 
reported in 2000. Repp et al. studied the pair distribution of Cu atoms on Cu(111) 
surfaces at low temperatures using STM [8.74]. Figure 8.30 shows the Cu-atoms 
as white 0.4 Å high protrusions and a monolayer high step to an upper terrace. The 
atoms were deposited at a sample temperature of 15 K. At this temperature, the 
Cu-atoms are mobile. The STM image was obtained at 9 K where the Cu atoms 
are immobile enough to produce defined images. Contrary to what one would 
expect for metals, the Cu-atoms do not coalesce into densely packed islands but 
rather form local hexagonal arrangements with a closest distance of about 12.5 Å. 
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Upper terrace 

2 nm

Fig. 8.30. STM image of Cu adatoms (white circles) on Cu(111) surfaces at 9 K. The pat-
tern between the adatoms evolves from surface state standing waves. The adatoms do not 
coalesce but rather form an approximately hexagonal lattice with a lattice constant of 
12.5 Å. The adatoms also keep a distance to the ascending step that forms the boundary to 
the next higher terrace. Both results have considerable consequences for nucleation and 
growth (Courtesy of Jascha Repp, [8.74]).  

This indicates the existence of an attractive interaction with a potential minimum 
at 12.5 Å and a barrier for nucleation into islands. The interaction potential is de-
termined from the probability to find a Cu atom at a distance D divided by the 
probability to find an empty surface site at that distance within a given frame size. 
The result is plotted in Fig. 8.31. The potential has minima at distances 
Dmin = 12.5 Å, 27 Å, 41.5 Å and 71 Å. The solid line is a fit of (8.45) to the data 
with an arbitrary pre-factor, a phase shift F of 0.38  and the Fermi wave vector of 
0.215 Å-1. The long-range part of the interaction potential is well reproduced. The 
model does not include contributions from elastic and electrostatic dipolar repul-
sions (Sect. 3.4.2) and attractive chemical interactions at short distances.  
 The surface state mediated oscillatory interaction and in particular, the repul-
sive interaction at short distances has considerable consequences for nucleation 
and growth. Without the repulsive interaction, a critical nucleus for layer growth is 
formed on metal surfaces whenever two atoms meet. The concentration of critical 
nuclei for growth is then given by the ratio of the flux and the diffusion coefficient 
(Sect. 11.1). A surface state mediated repulsive interaction and the activation bar-
rier for nuclei formation that goes along with it, reduces the concentration of nu-
clei, mimicking a surface possessing a smaller diffusion coefficient. 
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Fig. 8.31. Pair interaction energy between Cu-adatoms on Cu(111) surfaces obtained from 
the pair distance frequency in STM images [8.74]. The solid line is a fit to (8.44) with an 
arbitrary pre-factor and a phase shift of 0.38

8.4 Electronic Transport  

As one of the traditional topics of thin film physics, electron transport in systems 
with restricted dimensions has become an issue of fundamental and technological 
importance in the nanosciences. The following section concentrates on those ef-
fects that are quantitatively important and/or concern the transition between clas-
sical conduction and ballistic quantum conduction. For the quantitatively small 
(although theoretically very interesting) effects that go under the name weak local-
ization the reader is referred to the tutorial review of G. Bergmann [8.75].  

8.4.1 Conduction in Thin Films  the Effect of Adsorption 

We first reconsider the simple model that was discussed in Sect. 7.5.2 in the con-
text of infrared reflection-absorption spectroscopy. The model concerns the fric-
tion between adsorbed particles moving parallel to the surface and a Drude 
electron gas and yields a simple equation for the change in the resistivity of thin 
films due to absorption. The magnitude of the effect on the resistivity is related to 
the infrared absorption properties of modes vibrating parallel to the surface. In 
equation (7.106) the Fourier component of the displacement of the electrons in x-
direction was expressed in terms of the electric field along the x-axis xE . In the 
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present context, we are interested in the small frequency limit of that equation. 
With the current density being 

xx xenj E& , (8.45) 

with n the electron concentration and  the conductivity, one obtains for the con-
ductivity 
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The result differs from the conventional Drude conductivity by the friction term 
mNNM e/~ , with M and m the adsorbate and the electron mass, respectively. 

The ratio of the number of adsorbed particles N and the number of electrons Ne in 
the film of thickness D can be replaced by  
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in which ns is the area density of the adsorbate atoms. The resistivity of the film 
 = 1 therefore becomes 
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where 0 is the bulk resistivity. The additional term in (8.48) scales inversely pro-
portional to the film thickness D and proportional to the density of adsorbates ns.
The crucial quantity that determines the dependence of the film resistivity on the 
density is the friction coefficient . Its value depends strongly on the type of 
bonding of the adsorbate with the surface and so do various approaches to calcu-
late  from theory [8.76]. The simple model considered above (likewise intro-
duced by Bo Persson) links experimental data in infrared spectroscopy with dc-
resistance on thin films. For example for CO on Cu(100), the infrared spectrum in 
Fig. 7.31 could be fitted with a friction coefficient  = 1.2 1011 s 1. With that 
number, the relaxation time  = 2.5 10 14 s 1, and the electron density 
n = 8.47 1022 cm 3 one would calculate the change in the resistivity for CO on 
Cu(100) at 100 K to 

2300
sn

D cm Å3 . (8.49) 
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Experimental measurements of the film resistivity are not available for that par-
ticular system, but similar systems show adsorbate induced resistivities of about 
the same magnitude (Table 8.4).  

Table 8.4. Initial slope of the product of the resistivity  and the film thickness D with 
respect to the concentration of adsorbates. The values were originally assembled by Persson 
[8.77] from experimental results published by (a) [8.78] and (b) [8.79]. The values shown 
in this table are revised. With the exception of (b) the data refer to polycrystalline films.  

System H/Ni(a) CO/Ni(a) CO/Cu(a) Ag/Ag(b) 

s/ nD /  cm Å3 850 2000 600 1800 

Measurements of the resistivity are performed on films deposited on glassy sub-
strates. Depending on the annealing temperature such films have a texture to show 
preferentially (111) surfaces or even quite well ordered (111) surfaces. However, 
most of the experiments were performed at a time when methods of thin film 
characterization were less well developed. Preferential adsorption at surfaces with 
a particular orientation and at defects may therefore obscure the result. An excep-
tion is the deposition of silver atoms on an a well ordered Ag(111) film at 10 K 
(Fig. 8.32). At this low temperature, the Ag atoms are immobile on the time scale 
of the measurement. The atoms therefore stay where they have hit the surface at 
random positions. These randomly arranged Ag atoms cause a relatively large 
change in the resistivity. The solid line in Fig. 8.32 is a fit to 
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The value in the last column of Table 8.4 was obtained from that fit. The effect on 
the resistivity disappears for deposition at 350 K because at that temperature silver 
atoms agglomerate on the surface in large islands of monolayer height. 
 Changes in the resistivity of thin films can also be observed upon adsorption of 
ions from an electrolyte. Figure 8.33 shows an example [8.80]. A 20 nm silver 
film was deposited on a clean MgO surface on which silver grows pseudomorphic 
with (100) orientation. The resistive stripes had a length of 6 mm and a width of 
1.8 mm. The base resistance without adsorption was 12  The observed increase 
in the resistance as function of the electrode potential is caused by the isothermal 
adsorption of I , Br , and Cl . The small hysteresis results from the limited diffu-
sion in the electrolyte in combination with the speed of the potential variation. 
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Fig. 8.32. Change in the resistance multiplied by the thickness D = 20 nm for a silver film 
vs. coverage with Ag adatoms for two temperatures (after D. Schumacher [8.79]). The 
resistance does not change if silver is deposited at 350 K since the atoms coalesce into large 
islands. At low temperatures, the Ag atoms stay as single atoms in random positions as 
deposited. The friction with the electron gas causes an increase in the film resistivity. 
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Fig. 8.33. Relative change in the resistance of a thin film Ag(100) electrode as function of 
the electrode potential in 0.01 M KI, KBr, and KCl, respectively (after Winkes et al. 
[8.80]). Iodine, bromine and chlorine adsorb "specifically" on silver. The change in the 
resistivity follows the isothermal absorption curve (cf. Sect. 6.2.5). The hysteresis results 
from the limited diffusion in the dilute electrolyte.  
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The maximum coverage corresponds to a c(2 2) layer at 50% coverage [8.81]. 
From the dimensions of the sample and the base resistance one calculates values 
for s/ nD  of 720  cm Å3, 550  cm Å3, and 430  cm Å3 for I , Br ,
and Cl , respectively. These numbers are of the same order as for chemisorbed 
species in vacuum. 

8.4.2 Conduction in Thin Films - Solution of the Boltzmann Equation 

Already in 1938, Fuchs calculated the resistivity of thin metal films based on the 
solution of the Boltzmann transport equation in two-dimensions [8.82]. The mate-
rial was reviewed (with some corrections made) by Sondheimer in 1952 [8.83]. 
The theory is therefore referred to as the Fuchs-Sondheimer theory. The corre-
sponding solution for the resistivity of a thin circular wire was reported by Dingle 
in 1950 [8.84].  
 The microscopic reason for the increase in the resistivity of thin films is the 
reduction of the average mean free path of electrons. Electrons, which are acceler-
ated by the external field, may loose their increased momentum in scattering proc-
esses when the electron trajectories hit the surface. The effect on the mean free 
path vanishes if the momentum parallel to the field direction is conserved (mirror 
reflection). The effect of the scattering is the largest if the scattering is completely 
random. It is useful to consider primarily these extreme cases and describe the 
scattering process by a parameter p, the probability for mirror reflection with mo-
mentum conservation. Since even on a clean and perfectly flat surface there is a 
finite probability for non momentum-conserving scattering events, the scattering 
from a perfect surface corresponds to a parameter p that is slightly smaller than 
one. A rough surface corresponds to p << 1 and causes a higher resistivity of the 
film. There is in fact plenty of experimental evidence for an increased resistivity 
of films when their surfaces are rough [8.78]. The effect of adsorbates on the resis-
tivity may also be considered in terms of a "roughness" since adsorbates represent 
surface centers for non momentum-conserving scattering.  
 In order to describe the resistivity of thin films as a function of the mirror re-
flection coefficient p and the film thickness Fuchs and Sondheimer solved the 
Boltzmann transport equation for the thin film case. The stationary linearized 
Boltzmann equation in the relaxation time approximation is (see e.g. [8.85]) 
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Here, f(k, r, T) is the probability for electrons to possess (under the influence of an 
electric field E ) a vector k at the macroscopic position r and at temperature T and 

kE /)()( 1 kkv h  is the group velocity. It is important to realize that the 

Boltzmann equation describes the transport in a semi-continuum approximation 
which is valid only if the mean free path is large compared to the lattice constant. 
In other words, the spatial variation of the distribution function must be negligibly 
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small on the atomic length scale and r must be understood as a macroscopic posi-
tion vector. For a bulk system, the distribution function does not depend on r. The 
solution of the Boltzmann equation is then straightforward if one assumes a k-
independent relaxation time . The distribution function f(k, T) deviates from the 
Fermi equilibrium distribution f0(k, T) by a small amount f1(k, T) because of the 
electric field E. We assume that the field is in x-direction and obtain  
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fe
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The electric current density j is 
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The integral over the k-space converts into an integral over the Fermi-surface, 
which is easily calculated for a free electron gas metal with a spherical Fermi sur-
face to yield the Drude conductivity 
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j , (8.55) 

in which m* is the effective mass and n is the carrier concentration. We note that 
the electron concentration n here appears incidentally and not as a result of an 
ansatz as in (8.45) (see [8.85]). 
 If one admits surfaces that scatter the conduction electrons randomly, the devia-
tion of the distribution function from equilibrium due to the electric field is 
smaller at the surface than in the bulk; hence, the distribution function depends on 
the position with respect to the surface. The non-vanishing gradient of f with re-
spect to r in (8.52) complicates the solution of the Boltzmann equation considera-
bly. We introduce surfaces in the xy-plane at z = 0 and at z = D and assume perfect 
random scattering at the surfaces for the moment. At the surface z = 0 the devia-
tion of the distribution function from equilibrium f1(k, z=0) must vanish for kz > 0. 
Vice versa, f1(k, z=D) must vanish for kz < 0. The distribution function therefore 
splits into two functions, one for kz > 0 and another one for kz < 0. To be able to 
calculate an analytical expression for the current density one must introduce the 
simplification of spherical Fermi-surface so that the k-vector can be replaced by 
the group velocity vk mh  and )d/d()/(d/d xx vfmkf h . The Boltzmann 

equation (8.52) is then 
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The solutions that fulfill the boundary conditions are 
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The distribution function ),(1 zf v  is plotted in Fig. 8.34. 
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Fig. 8.34. Boltzmann distribution function f1
+ for vz > 0 in a thin film of thickness D vs. the 

distance z. See text for discussion.  

If the electron moves parallel to the film plane (vz << vF) the distribution function 
is at its maximum in almost the entire film save for a small range near z = 0, which 
shrinks to zero width as vz approaches zero (solid line). For electrons traveling 
perpendicular to the film (vz = vF) the limiting distribution function depends on the 

ratio of the mean free path Fv  to the thickness. For D , ),(1 zf v  still 

approaches its maximum value within the film. If D , then ),(1 zf v  stays 

small in the entire film. For the calculation of the current density and the conduc-
tivity one introduces polar coordinates (v, ) in the v-space such that 

cosvvz . The current density then becomes 
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The current density depends now on the position z because the distribution func-
tion does. The total current density is obtained by integration over the film thick-
ness. Relatively simple analytical solutions of the rather beastly integral (8.58) 
exist in the limit of small and large thicknesses [8.83]. These solutions are  
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Fig. 8.35. Ratio of thin film resistivity to bulk resistivity vs. the ratio of the mean free path 
 to the thickness D for p = 0 according to (8.59) and (8.60) (solid and dashed line, respec-

tively).  

We have admitted the possibility of partial randomness of the surface scattering 
(1 p) in (8.59) and (8.60). The case D/  >> 1 has the same functional dependence 
on the film thickness D as derived for the adsorbate-induced resistivity (8.48) 
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although the physical picture is different here. In applications of current interest, 
the other limit D/  << 1 is more important. Given experimental uncertainties, the 
function valid for the alternative limit D/  >> 1 (8.59) describes experimental data 
quite well also for D/  << 1 (Fig. 8.35).

8.4.3 Conduction in Space Charge Layers 

Electrical conduction in the space charge layers at surfaces of semiconductors or 
at the interfaces of semiconductor-heterostructures differs from metallic conduc-
tion insofar as the carrier density varies as a function of the position z from the 
interface (Sect. 3.2.2). Because of the strong variation of the carrier concentration, 
it is not meaningful to define a conductivity in the space charge layer but rather a 
conductance with reference to the bulk. 

)( psns PNe  (8.61) 

Here, ns and ps are the mobilities of electrons and holes in the space charge 
layer, respectively and N and P are the excess concentrations of electrons and 
holes defined as 

0
b

0
b d)(d)( zpzpPznznN  (8.62) 

with nb and pb the bulk concentrations of electrons and holes, respectively. Be-
cause of the integration over the z-axis, the surface conductance has the dimension 

1. Figure 8.36 shows the surface conductance of a slightly p-doped silicon sam-
ple versus the surface voltage s. For negative s (corresponding to upwards bend-
ing of the bands, see panel (a)), one has a positive excess concentration of holes 

P. By definition, the surface conductance is zero for a flat band situation (panel 
(b)) and can even become negative when the Fermi-level at the surface is farther 
apart from either the conduction or the valence band than in the bulk (panel (c)). 
For positive s, the excess concentration of electrons rises exponentially with s,
and so does the surface conductance. For very positive or negative surface volt-
ages, in particular for higher doping levels the space charge layer becomes very 
thin (Sect. 3.2.2). The confinement of the charge carriers into the thin layer causes 
additional scattering processes with the surface, leading to a reduced mobility 
compared to the bulk. For a full theoretical treatment of that reduction, one would 
have to consider the solution of the Boltzmann transport equation in the space 
charge layer with the additional complication of a strong electric field Ez perpen-
dicular to the direction of carrier transport. A remarkably simple argument how 
this reduction should depend on the electric field Ez was brought forward by 
Schrieffer [8.86]. 
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Fig. 8.36. Surface conductance of a slightly p-doped silicon sample as a function of the 
surface voltage (after W. Mönch [8.87]). The corresponding band bending is sketched in 
the panels (a-d) at the top of the graph. 

Here, Schrieffer's reasoning is presented in a slightly modified form. We consider 
the mobility in non-degenerate accumulation layers (panel (a) in Fig. 8.36) and in 
non-degenerate inversion layers (panel (d) in Fig. 8.36). A fraction (1-p) of the 
charge carriers is assumed to scatter randomly at the surface. The mean velocity of 
those carriers leaving the surface after a scattering event equals the mean velocity 
in one direction in a Boltzmann gas  

*
B 2/|| mTkvx  (8.63) 

where m* is the effective mass of the charge carrier. The electric field in the space 
charge layer drives the charge carrier back to the surface. The mean time after that 
process is completed is 
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The mean time for a random surface scattering is therefore )1/(0 ps .
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According to the Matthiesen rule, the scattering from phonons and the surface 
scattering are independent. Noting that b = e b /m* the ratio of surface to bulk 
mobility becomes 
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 (8.65) 

where we have replaced the electric field at the surface by the area density of the 
total charge in the space charge layer sc = 0Ez.
 The reduction of the mobility in space charge layers and the general trend to 
lower mobility for increasing charge density has been observed many times (For a 
review on the earlier literature see e.g. [8.88]). Figure 8.37 shows examples of 
experimental data on non-degenerate inversion layers in mildly p-doped silicon. 
The solid line is a fit to the Schrieffer model for 05.0)1( p . For further details 
on the conduction in space charge layers, the reader might consult the tutorial 
volumes of W. Mönch and H. Lüth [8.87, 89]. 
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Fig. 8.37. Mobility in non-degenerate n-inversion channels of p-doped silicon (100), (111) 
and (110) surfaces (after Sah et al. [8.90]). The doping level was NA = 2.2 1014 cm 2. The 
solid line is a fit with the Schrieffer model for 05.0)1( p .

8.4.4 From Nanowires to Quantum Conduction 

The problem of electronic conduction in long and thin wires can also be treated 
within the framework of the Boltzmann transport equation. As in the case of thin 
films, analytic expressions are available in the limits that the diameter D of the 
wire is much larger or much smaller than the mean free path  [8.83, 84].  



 8  Electronic Properties __________________________________________________________________________ 438

1/)1(
4

3
1

0

Dp
D

 (8.66) 

1/
1

1
1

0

D
Dp

p
 (8.67) 

To bring these equations into perspective of the dimensions of technical electric 
wiring we recall that the mean free path for copper is about 40 nm at room tem-
perature and increases, to the order of millimeters at 4 K, depending on the quality 
of the sample. These dimensions are in the range of present device technology. 
Electron transport in systems with restricted dimensions is therefore of fundamen-
tal as well as of technological interest, and has become a field of intense activity. 
By using special preparation techniques, wires with diameters in the nm range can 
be prepared as single crystals. For example, on 4° vicinal surfaces of Si(100) the 
steps form doublets and these doublets bunch together upon Ag-deposition. Along
these bunches, crystalline silver nanowires grow with a width of 200-1000 nm, 
heights of about 150 nm and lengths up to 100 m [8.91].

Fig. 8.38. Scanning electron microscopy image of a single crystal silver nanowire with 
contact leads for a four-probe resistance measurement (courtesy of M. Hartmann and G. 
Dumpich). 

Figure 8.38 shows an example of such a nanowire with contact leads for a four-
probe resistance measurement. These nanowires are ideal objects to study the 
effect of surfaces on electric conduction while remaining in the limits of classic 
transport. The dotted line in Fig. 8.39 shows the measured resistance of a 
nanowire like the one displayed in Fig. 8.38. Its length was determined to 
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L = 16.5 m. The temperature dependence of the resistance follows closely the 
temperature dependence of pure bulk silver material (dashed line). The effective 
cross section of the nanowires Aeff can therefore be calculated from the tempera-
ture dependent part of the resistance and the resistivity of pure bulk silver. To 
calculate the contribution from surface scattering we replace the temperature de-
pendent mean free path  in (8.67) by the resistivity 0(T)
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where vF is the Fermi velocity, m* the effective mass and n the electron concentra-
tion. If one further replaces the diameter D by the square root of the effective area 
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Fig. 8.39. Experimental resistance of a nanowire as function of temperature (dotted line) 
[8.92]. The dashed line represents the resistance of a thick wire made from pure silver 
whose cross section is matched to scale with the temperature dependent part of the resis-
tance of the nanowires. The solid line is calculated from (8.69). 

The solid line in Fig. 8.39 is calculated from (8.69) under the assumption of per-
fect random scattering from the surfaces (p = 0) and agrees quite well with the 
experiment. The assumption of random surface scattering is meaningful as the 
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silver wires have a rough surface and as they are covered by a carbonaceous layer 
of residues from the manufacturing and contacting process.  
 If the length of the nanowire between the two contact plates (Fig. 8.38) be-
comes smaller, the diffusive transport (Fig. 8.40a) blends into the ballistic electron 
transport from one reservoir into another. Electrons moving along the direction of 
the wire (z-direction) pass the nanowire without a scattering event (Fig. 8.40b). 
Electrons, which enter the wire at some larger angle with respect to the axis of the 
wire, may still lose their momentum in the forward direction by scattering from 
the surfaces. The possibility of such electron trajectories however diminishes if the 
energy levels become discrete with respect to kx and ky because of the lateral con-
finement of the wave function. Only kz remains as a continuous variable and elec-
trons can acquire momentum continuously only along the z-direction. This is the 
regime of ballistic quantum transport. The number of conductance channels in the 
z-direction depends on the cross section of the wire. For simplicity, we discuss the 
case of a rectangular shaped wire with dimensions Dx and Dy. As the surface 
boundary condition, we assume the electron wave function is zero at the surface 
(infinitely high potential wall). We assume further a spherical Fermi surface. 

y

(a)

(b)

(c)

kF
kx

ky

/Dx

/Dyz

Fig. 8.40. Illustration of (a) diffusive and (b) ballistic transport from one reservoir on the 
left side to another reservoir on the right. (c) The dots indicate the allowed k-vectors. The 
solid line is the circular cross section through the Fermi-surface, which is assumed to be 
spherical. The number of 1D channels participating in ballistic quantum transport is given 
by the number of dots inside the circle. 

The allowed k-vectors are marked in Fig. 8.40c as dots in the kx, ky plane. Note 
that the kx = 0 and ky = 0 axes are excluded, as the wave function would be identi-
cal to zero for either kx = 0 or ky = 0. With the help of Fig. 8.40c, the number of 
allowed states N in the continuum limit is easily calculated as the ratio of the area 
of the Fermi quarter circle to the area occupied by the allowed states.  
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The product Dx Dy in the leading first term of (8.70) is the cross section area. In 
the limit of very thick wires, the number of conduction channels depends therefore 
only on the cross section area, not on the shape. The remaining two terms are first 
order corrections to the asymptotic result and do depend on the shape. For small 
dimensions, N becomes a discrete function of Dx and Dy. The minimum cross sec-
tion is given by the condition that a single channel must fit into the wire. From 
Fig. 8.40c we see that for a rectangular wire both dimensions Dx and Dy must ex-
ceed
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Since for metals the minimum dimension Dx,y approximately amounts to the di-
ameter of an atom, ballistic quantum transport through a single metal atom or a 
chain of metal atoms should be possible and was indeed observed. Before we turn 
to the experimental side, we derive the conductance of a single channel. The cur-
rent in one channel is (cf. 8.54) 
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where )()1( ED  is the one-dimension density of states of the spin-degenerate free 

electron states 
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and v(E) is the group velocity in the one-dimensional band 
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(L)
FE  and (R)

FE  are the Fermi levels in the bulk reservoirs at the left and right side 

of the channel so that 
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is the applied voltage. The current is therefore simply 
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Hence, the conductance of each channel is 
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The total conductance is the product of G0 and the number of channels N. Experi-
mental manifestations of the conduction quantum came first from the quantum 
Hall effect, there as quantum steps of e2/h (instead of 2e2/h) since the spin degen-
eracy is lifted in high magnetic fields. The high precision by which these quantum 
jumps can be measured permitted the definition of the resistance unit  in terms 
of universal constants. Quantized conduction in the sense considered here is read-
ily observed in so-called break-junctions where a mechanical contact between two 
electrodes is broken. The conductivity immediately before the contact breaks is 
quantized in units of G0. While quantum conduction through atom size wires is a 
very active field of research with a sophisticated methodology of its own (for a 
review see [8.93]) quantum jumps in the conductance can even be observed in 
conventional mechanical relays. Figure 8.41 shows the quantum jumps during 
contact breaking in a relay with AuCo electrodes [8.94]. 
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Fig. 8.41. Conductance jumps in a conventional mechanical relay with AuCo electrodes 
(after Hansen et al. [8.94]) 
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These quantum jumps could have been discovered with the technology that was 
available around 1930 or so. It is amusing to speculate how quantum physics 
might have developed if the discovery were made at the time!  

CuAg
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Fig. 8.42. Probability distribution for finding a conductivity G0 during repeated attempts to 
contact a single silver or copper atom on a Ag(111) or Cu(111) surface with a tunneling tip 
(after Limot et al. [8.95]).  

We have argued that a metal wire, which has the conductance of G0, should have 
the diameter of about one atom. From observations like in Fig. 8.41 and in other 
specially designed break-junctions one would therefore conclude that the last con-
tact before fracture is made by a single atom or a short chain of single atoms. That 
the conductance of a single atom is indeed G0 can be proven with the help of an 
STM. Limot et al. have placed the STM tip directly over Ag and Cu adatoms on 
the Ag(111) and Cu(111) surfaces and have measured the tunneling current as a 
function of distance until contact was made. The conductance was nearly always 
equal to G0 or at least very close to this value as shown in Fig. 8.42.  



9. Magnetism 

9.1 Magnetism of Bulk Solids 

Magnetic phenomena have fascinated humanity for millennia. Scientific research 
on magnetic properties of materials began with the development of electrification 
in the late 19th century. Ever since then, research on magnetism has been an im-
portant part of Material Science. The understanding of magnetism as a collective 
quantum property is one of the finest achievements of Solid State Physics. The 
diversity and complexity of magnetic phenomena as well as the range of applica-
tions was further enlarged with the development of Surface and Thin Film Phys-
ics, and more recently with the Nanosciences. Currently, research is spurred by 
technological demands for larger and faster data storage devices. Present day 
computer performance were not feasible without the specific use of magnetic 
properties of interfaces, thin films and nanostructures, be it in sensors employing 
the Giant Magneto Resistance (GMR) effect or in high-density magnetic storage 
media. The finite dimensions, the crystallography, the specific composition and 
the presence of interfaces in thin film systems and in nanostructures have a pro-
nounced and occasionally unexpected effect on the magnetic properties. This 
chapter is devoted to these aspects. As a preparation, however we need to familiar-
ize ourselves with some basic properties of bulk magnetism. 

9.1.1 General Issues 

The possibility to store information in the orientation of magnetic moments in 
small structures is based on the existence of a magnetic anisotropy, which keeps 
the magnetization parallel or antiparallel to a particular orientation, thereby pro-
viding the physical realization of binary digital information. For bulk materials, 
the source of anisotropy is the magneto crystalline anisotropy. The spin orientation 
is coupled to the orientation of the orbitals in the solid, and thereby to the crystal 
orientation by the spin-orbit coupling. Because of the spin-orbit coupling, the 
energy stored in the magnetization of a ferromagnetic crystal depends on the ori-
entation of the magnetization relative to the crystal axes. The energies associated 
with the magneto crystalline anisotropy are relatively small. Nevertheless, without 
the magnetic anisotropy even the simplest macroscopic manifestation of magnet-
ism, the permanent magnet, would not exist!  
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The orientation with the lowest energy is called the easy axis or easy orientation. 
A ferromagnetic crystal in thermal equilibrium has its magnetization along the 
easy axis. For hcp cobalt, e.g. this is the hexagonal c-axis. The magnetization will 
therefore be either parallel to the c-axis. In order to minimize the energy of the 
external field, the magnetization breaks up into domains of parallel and antiparal-
lel orientations. If the crystal is annealed to above the Curie temperature and 
cooled down again, the number and size of parallel and antiparallel domains will 
be about equal, so that little magnetization is noticed from the outside. In an exter-
nal magnetic field oriented along the direction of the c-axis, the magnetization 
rises quickly with an applied field by moving the boundaries between the domains 
and the magnetization saturates at comparably small fields, since the external field 
need not work against the magnetocrystalline anisotropy (Fig. 9.1). Merely the 
domain walls have to move to let one type of domain grow at the expense of the 
other (insert in Fig. 9.1). 
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Fig. 9.1. Schematic plot of the magnetization M of a ferromagnet with a single easy axis 
versus the magnetic field H. Dashed line: initial magnetization starting from zero magneti-
zation, H parallel to easy axis. Solid lines: magnetization hysteresis, H parallel to easy axis. 
Dash-dotted line: H perpendicular to easy axis.  

Once a single domain or nearly a single domain crystal is obtained, the domain 
structure may remain with a preponderance of the once achieved orientation even 
when the external field is removed. The remaining magnetization is called the 
remanence Mr. To bring the magnetization of the sample back to zero one needs to 
reverse the external field up to a value -Hc that is called the coercive field. With 
increasing magnetic field in the reverse direction, the magnetization eventually 
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saturates again, now in the reverse direction. In total one runs through a hysteresis 
loop. The loop is symmetric if the system is symmetric with respect to the H||-axis. 
 A magnetization perpendicular to the c-axis in response to an external field 
requires the energy to turn the magnetization out of the easy direction (insert 
Fig. 9.1) The magnetization therefore rises much less with increasing external 
field in that case, and there is no remanent magnetization of the sample as a 
whole. As soon as the external field is removed the magnetization in the internal 
domains snaps back to be parallel or antiparallel to the c-axis.  
 The magnitude of the remanence Mr depends on how easy domain walls can 
move. Perfect crystals and certain alloys ( -metal, permalloy, ferrites) have a 
small remanence. Defects tend to pin domain walls and make the crystal magneti-
cally harder. In some technical applications, e.g. in transformer cores, one wants 
no remanence to keep the energy loss low. For data storage on the other hand, one 
likes a remanence near saturation.  

9.1.2 Magnetic Anisotropy of Various Crystal Structures 

The crystalline magnetic anisotropy is specific to the crystal structure. To express 
the change of the energy per volume with the orientation of the magnetization 
quantitatively one expands the energy in terms of the directional cosines with the 
crystal axes and keeps the lowest and second lowest non-vanishing terms. It is 
customary to write the directional cosines with the axes i as i. Only even orders 
have nonzero coefficients because of time reversal symmetry; Inversion of time 
reverses the orientation of the spin and the energy is invariant with respect to time 
reversal. The expansion is furthermore written in such a way that the identity  
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i
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is obeyed. For a cubic crystal the expansion up to fourth order would formally be 
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The first term is constant and can therefore be omitted; using (9.1) the second term 
can be rearranged to 
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One sees from this result that there was no need to include mixed terms of the type 
1 2 into the formal expansion (9.2), as they are automatically included. With the 

fourth order expansion (9.3) the ratio of the energies along the space diagonal and 
the area diagonal are fixed to 4/3. To allow for a deviation from that ratio one 
needs to include a sixth order term. The formally simplest way to do that is by 
writing the anisotropy as 
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in which K1 and K2 are the anisotropy constants. For iron 4
1 102.4K Jm-3 and 

K2 = 1.5 104 Jm-3 at room temperature15. The easy directions are therefore 100 ,
the hard directions 111 . The difference in energy between an easy and a hard 
direction is 1.5 104 Jm 3. For nickel the constant K1 is negative 
(K1 = 5.7 103 Jm 3, K2 = 2.3 103 Jm-3), which makes 111  the easy direction.  
 For hexagonal crystals, the second order term in the expansion does not vanish. 
When the hexagonal axis is denoted by the index 3, the expansion up to forth or-
der is formally  
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2
3||2hex )( uuuu . (9.5) 

There is no fourth order term in 1 and 2 because of the hexagonal symmetry. 

The second term is equal to )1( 2
32u  and can be integrated into the first term. 

The anisotropy can therefore be expressed in terms of a single angle, the angle 
with the c-axis 
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in which K2 and K4 are the anisotropy constants. The negative signs are chosen to 
be in keeping with the standard notation. For cobalt, the constants are 
K2 = 4.1 105 Jm 3 and K4 = 1.0 105 Jm 3. The c-axis is therefore the easy axis. 
Changing the orientation of the magnetization from the easy to the hard direction 
costs an energy of 5 105 Jm-3, which is 30 times more than for iron. As cobalt has 
a smaller saturation magnetization than iron (1400 G vs. 1700 G at room tempera-
ture, for magnetization M: 1 G = 1000 A/m), the large energy difference is entirely 
due to fact that the second order effects do not vanish as for cubic symmetry.  
 Thin films frequently grow pseudomorphic with the substrate up to a critical 
thickness tc (Sect. 4.2.5). Pseudomorphic films of cubic materials grown on a 
(100) and (111) surfaces become tetragonal and hexagonal, respectively. Further-
more, the alloys MnAl, CoPt and FePt that have a large magnetocrystalline anisot-
ropy belong to the tetragonal class. It is therefore useful to consider also tetragonal 

15 As elsewhere in this volume we use SI units and write equations accordingly. It is unfor-
tunate that the SI-system introduces the magnetization M differently than the electric po-
larization P: It is D = 0E + P, but B = 0(H+M). The awkward consequence is that in the 
SI system H and M have the same dimensions, but the conversion factors from Gaussian 
units are different: For HGaussian into HSI it is 1 Oe = 1 G  1000/4 Am-1; for MGaussian into 
MSI it is 1 emu cm-3= 1 G  1000 A m-1. For the conversion between SI units and Gaussian 
units an article of Arrot is quite useful [9.1].
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crystals. The expansion of the magnetic energy density in terms of the directional 
cosines for a tetragonal material can be written as  
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The angular dependence of the second order term is again described already by the 

first term, since i i
2 . It is customary to introduce the angles with the tetragonal 

axis and with one of the basal axes as  and , so that cos3 ,

cossin1 , and sinsin2 . After some algebra (9.7) acquires the form
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We have again introduced the anisotropy constants such as to be in keeping with 
the conventional notation in the literature. 

44||4||4||222 2,2, uKuKuuK . (9.9) 

Since the tetragonal distortions in pseudomorphic films of cubic materials may be 
rather small, it is useful to be able to relate the anisotropy constants for the 
tetragonal system to those of the cubic system in the limit of vanishing tetragonal 
distortion. It is not at all obvious from (9.8) how to do that. However, the task is 
easily performed by using the generic expansions (9.2) and (9.7). If the tetragonal 
distortion vanishes one has 2||22 uuu  and 4||44 uuu . Using the trans-

formation from (9.2) to (9.3) one obtains  

)cubic(14||4 KKK . (9.10) 

An access to the in general larger second order term K2 for a slightly tetragonally 
distorted cubic crystal is obtained by considering the effect of magnetostriction.
Magnetostriction in the classical understanding describes the change in the dimen-
sions of the sample upon reorientation of the magnetization. In the context here, it 
is useful to consider energy density as a function of the elastic strain tensor ij

(Sect. 3.3.1) and the orientation of the magnetization. For a cubic material the 
magnetoelastic energy density ume is [9.2] 
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In the most general case, the magnetoelastic coupling coefficients B are a fourth 
rank tensor Bijkl. A fourth rank tensor has three independent components for cubic 
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systems, which reduce to two in this case because of the normalization condition 
(9.1). In terms of the tensor components the coefficients B1 and B2 in (9.11) are  

23232112211111 2, BBBBB . (9.12) 

The magnetoelastic energy for the hexagonal system is [9.2] 
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with  
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The values of B1 and B2 for Fe, Ni, fcc-Co and hcp-Co are tabulated in Table 9.1. 
As an example, we consider the energy density of a (100) oriented film of a cubic 
material, which experiences an isotropic strain in the basal x1, x2-plane and is free 
to expand in the x3-direction. The condition that the film is stress free in the x3-
direction relates the strain 33 to 11 = 22

02 1112331133 cc . (9.15) 

Table 9.1. Magneto elastic coupling constants in MJm-3 for Fe, Ni and fcc-Co (after Sander 
[9.3]). 

Material B1 B2 B3 B4

bcc Fe 3.43 7.83   

fcc Ni 9.38 10
fcc Co 9.2 9.38   

hcp Co 9.1 29 29.2 29.4 

The energy density (9.11) becomes thereby 
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The second order anisotropy constant K2 for the tetragonal distorted cubic lattice is 
therefore

)/21( 33121112 ccBK . (9.17) 

An intensively studied system is Ni(100) epitaxially grown on Cu(100). Up to 
about 10 monolayers of nickel grow pseudomorphic. The strain 11 is therefore 
+2.5%. The nickel film expands in the basal plane and therefore contracts along 
the surface normal. With B1 taken from Table 9.1 one obtains  

35
2 Jm1035.5K . (9.18) 

Note that because of the definition of K2 (9.10) this means that the easy axis is 
along the surface normal. The calculated value for K2 is in good agreement with
the experimental value determined for thin epitaxial nickel films on Cu(100) 
(K2 = 4.4 105 Jm-3 [9.4]). It is quite remarkable that the relatively small tetragonal 
distortion of 2.5% causes an anisotropy that is two orders of magnitude larger than 
the anisotropy of bulk nickel. The easy axis is therefore entirely determined by the 
strain. Because of the positive sign of K2 the energy is minimal for  = 0, that is 
for a perpendicular orientation of the magnetization. As a warning, it should be 
mentioned that the real system Ni/Cu(100) is more complicated because other 
sources of anisotropy to which we attend later.

9.2 Magnetism of Surfaces and Thin Film Systems 

The finite dimensions, the crystallography, the specific composition and the pres-
ence of interfaces in thin film systems and in nanostructures have pronounced and 
occasionally unexpected effects on the magnetic properties. To study these effects 
a large variety of experimental tools have been developed which we describe in 
the following on an elementary level.  

9.2.1 Experimental Methods 

The simplest question one might ask concerning surface and thin film magnetism 
is that of the magnitude of the magnetization. As simple as the question is, it is not 
so easily addressed experimentally as genuinely surface sensitive methods are 
difficult to calibrate for quantitative measurements. Vice versa, the classical meth-
ods to determine the magnitude of magnetic moments in a bulk material such as 
Ferro Magnetic Resonance (FMR), and the Torsion Oscillation Magnetometry 
(TOM) are not particularly sensitive and not surface specific. However, with con-
siderable experimental effort these methods have been made sensitive enough to 
probe the magnetization in thin and ultra-thin films [9.5, 6]. Both FMR and TOM 
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integrate over the entire volume of the material. The magnetization of a thin film 
can be measured only when grown on a non-magnetic material.  
 A relatively straightforward access to hysteresis loops and therefore to the ori-
entation of the easy axis is provided by the Magneto-Optic Kerr Effect (MOKE). 
This experiment measures the change of the polarization state of a light beam 
upon reflection from a magnetic material. One distinguishes three types of Kerr-
effects: the longitudinal, the polar and the transverse Kerr-effect. The longitudinal 
effect turns s-polarized into elliptic polarized light upon reflection when the mag-
netization is parallel to the surface and in the scattering plane of the light. The 
polar effect turns likewise linear polarized light in elliptically polarized light, but 
for a magnetization perpendicular to the surface. The transverse effect changes the 
orientation of the ellipse for elliptically polarized light when the magnetization is 
in the surface plane and perpendicular to the scattering plane. In all cases, the 
change in the ellipticity is proportional to the magnetization. MOKE is easily inte-
grated into a UHV-system for thin film and surface analysis. All it takes are two 
windows in the UHV-system at appropriate positions and means to subject the 
sample to a magnetic field. Conventional optical elements can be used as the en-
tire optical setup remains outside the vacuum chamber. Because of the easy inte-
gration and because of its high sensitivity, MOKE has become a workhorse for 
experiments in thin film magnetism. Just as FMR and TOM, MOKE measures 
integral magnetic properties. As the magneto-optical constants of thin films are 
not known, only relative values of magnetizations are obtained. In current research 
on periodic magnetic nanostructures the magneto-optic Kerr effect in diffracted 
beams has become a valuable tool [9.7] 
 Experimental techniques that use electrons have genuine surface sensitivity. 
The probing depth depends on the energy of the electrons that are employed (Sect. 
2.2.2). Several techniques that use electrons have been developed. One is the 
measurement of the asymmetry in the diffraction of spin-polarized electrons. The 
technique has been named Spin Polarized Low Energy Electron Diffraction
(SPLEED). In this experiment, electrons from a source of spin-polarized electrons 
are diffracted from a surface of a magnetic material. Measured is the asymmetry 
of the exchange scattering  
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Here P0 is the polarization of the incident beam and I  and I  are the intensi-

ties of the non spin-flip and spin-flip events. Measuring Aex requires sources for 
spin polarized electrons and the spin analysis of the diffracted electrons. The latter 
is performed either with the Mott detector or with a LEED-detector. Both detec-
tors work with the asymmetry of the cross section for scattering parallel or anti-
parallel to the vector S k, with S the spin orientation and k the k-vector of the 
electron. Responsible for this asymmetry is the spin-orbit coupling. The LEED 
detector determines the asymmetry with the backwards diffracted beams for an 
incident beam at normal incidence. The asymmetry of the intensity 
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for a given electron energy is proportional to the spin polarization of the incident 
beam.
The standard source for spin-polarized electrons is the GaAs photocathode [9.8] or 
lately the strained layer GaAs0.95P.05 photocathode [9.9]. Due to spin-orbit splitting 
of the valence band states, electrons photo-excited into the conduction band by 
circular polarized light are spin polarized. By treating the (110) surface of the 
GaAs-crystal with cesium and oxygen a negative electron affinity can be achieved 
so that electrons in the conduction band have an energy above the vacuum level 
and are therefore photo-emitted. The polarization of the photo-emitted electrons 
varies between 40% for the standard GaAs cathode and 75% for the strained layer 
GaAs0.95P.05 cathode. The polarization direction is along the surface normal. 
 GaAs sources are also used in other types of experiments with spin-polarized 
electrons such as Spin Polarized Low Energy Electron Microscopy (SPLEEM) 
and Spin Polarized Electron Energy Loss Spectroscopy (SPEELS). SPLEEM 
images the surface in the light of a particular diffracted electron beam. Magnetiza-
tion contrast can be obtained for all orientations if the spin of the primary elec-
trons are appropriately rotated with respect to the beam direction by 
electromagnetic fields. The lateral spatial resolution of LEEM is a few nm and the 
vertical resolution suffices to see monatomic steps. The very complicated, expen-
sive equipment and the difficulty to operate a LEEM system have prevented its 
widespread use so far. The same can be said about SPEELS. For the investigation 
of the magnetic excitation spectrum of thin films, no alternative to SPEELS exist. 
Special applications to spin waves are discussed in Sect. 9.9. 
 A technique that combines high spatial resolution of about 5-10 nm presently 
with the complete determination of the polarization vector is Scanning Electron 
Microscopy with Polarization Analysis (SEMPA) [9.10]. This instrument is based 
on conventional Scanning Electron Microscopy (SEM) equipped with the stan-
dard non-polarizing electron cathode. The information on the magnetization of the 
sample lies in the polarization of the secondary electrons. A LEED diffraction 
detector with a pair of channel electron multipliers detect the scattering asymme-
try (9.20) in the plane set up by the incident electron beam and the surface normal. 
A second pair of multipliers measures the asymmetry orthogonal to this plane and 
therefore in the surface plane. By rotating the surface around the incident electron 
beam, contrast is achieved for all orientations of the magnetization. With proper 
calibration specific to the system investigated, the method is quantitative in terms 
of the orientation and magnitude of the magnetization. 
 The availability of synchrotron sources for high-intensity tunable wavelength 
X-rays has enabled a new type of magnetic spectromicroscopy based on the Mag-
netic Circular X-ray Dichroism (MCXD) [9.11]. Magnetic circular dichroism is 
the dependence of the absorption cross section on the helicity of the light. For the 
3d-transition metals e.g. the L2,3 edge absorption involves transitions from the 
2p3/2 and 2p1/2 state into the empty 3d-states above the Fermi level (Fig. 2.15). For 
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the ferromagnets Fe, Co and Ni, the densities of empty spin up and spin down 
states are different, and so are the absorption cross sections for left- and right-
handed circular polarized light. The sign of the difference depends on the orienta-
tion of the magnetization. The difference in the X-ray absorption leads to a locally 
different emission of secondary electrons. Hence, the intensity of these secondary 
electrons reflects the orientation of the magnetization in the sample. An image of 
the secondary electron emission therefore bears magnetic domain contrast. The 
image is element specific as the X-ray absorption has a sharp threshold at the L-
edge and decays thereafter and the photon energy for L-edge absorption is element 
specific. Imaging of the secondary electrons is performed with the Photo Emission 
Electron Microscope (PEEM). In this instrument, the secondary electrons are 
accelerated in a cathode lens to 10-20 KeV, pass one or two projective lenses, and 
form a magnified image of the surface on a channel plate electron multiplier. The 
optics is identical to the viewing optics in LEEM. The ultimate lateral resolution 
of PEEM is 5nm and 20 nm for instruments featuring magnetic and electrostatic 
lenses, respectively. In combination with X-ray absorption dichroism the working 
resolution is of the order of 100 nm. Attempts are underway to improve the resolu-
tion by adding elements that filter the energy to reduce chromatic aberrations and 
to correct for angular aberrations. By employing the Magnetic Linear X-ray Di-
chroism (MLXD) domain contrast is obtained also for antiferromagnets [9.12].  
 The ultimate lateral resolution is provided by the Spin Polarized Scanning 
Tunneling Microscope (SP-STM) [9.13, 14]. The instrument is based on the sensi-
tivity of the tunnel current to the relative orientation of the majority spins in tip 
and substrate. The effect is known as Tunnel Magneto Resistance (TMR). One 
way to achieve magnetic contrast is to coat a conventional tungsten tip with a few 
monolayers of a ferromagnetic material such as Fe, Gd, GdFe [9.13]. The cover-
age should be limited to a few layers to avoid high magnetic field that might 
switch the domain orientation in the substrate. Using this technique domain walls 
with a width of 1.1 nm have been resolved on samples from hexagonal cobalt. An 
approach alternative to coating is the use of magnetically soft materials for the tip 
such as the metallic glass CoFeSiB [9.14]. By ac-modulation of the magnetization 
with the help of a coil wrapped around the tip, magnetic and topological contrast 
is separated.  
 Lateral resolutions of about 30 nm are achieved in Magnetic Force Microscopy
(MFM) [9.15]. As the image contrast is caused by magnetic forces, the contrast 
does not reflect the polarization of the spin state in the solid. MFM is therefore 
less suitable for fundamental studies. Nevertheless, the instrument has its place in 
imaging magnetic contrast on a routine basis because it is a low effort instrument, 
robust and easy to handle. 
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9.2.2 Magnetic Anisotropy in Thin Film Systems 

For thin film systems and nanostructures, further sources of anisotropy exist. 
Firstly, there is an anisotropy associated with the shape of the film or the shape of 
the nanostructure that results from the depolarization field. Secondly, the surface 
and the interface to the substrate is a source of anisotropy. If the interface is be-
tween a ferromagnetic film and an antiferromagnetic substrate, the magnetization 
of the ferromagnetic film may be fixed by the exchange coupling across the mate-
rial boundary, which leads to an exchange bias for the magnetization of the film.  
 Magnetic nanostructures are frequently single domain magnets. For thin films, 
the domain size is large compared to the thickness. In those cases, a shape asym-
metry arises from the asymmetry of the depolarization field16. Consider for exam-
ple a homogenously magnetized thin film. If the film is magnetized perpendicular 
to the film plane then the boundaries give rise to a depolarizing field Hd = -M (in 
S.I. units). If the film is polarized parallel to the plane then there is no depolarizing 
field. If the direction of the magnetization is turned from parallel to perpendicular, 
the perpendicular component builds up gradually. To calculate the energy associ-
ated with the depolarization effect one has to integrate the differential form of the 
magnetostatic energy density u

HMu dd 0 . (9.21) 

With  the angle between the orientation of the magnetization and the axis per-
pendicular to the film one obtains after integration 

22
0 cos

2

1
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Here, 0 is the vacuum permeability (=4 10 7 Vs/Am). In most papers on thin 
film magnetism, cgs units are used. In these units, (9.22) assumes the form 

22 cos2 Mu . For cobalt the depolarization energy is 1.23 106 Jm 3 at room 

temperature, about a factor of two larger than the crystalline anisotropy energy of 
5.1 105 Jm 3. A Ni(100) film would have a magnetocrystalline anisotropy energy 
of 103 Jm 3 in favor of the [111] direction. The depolarization energy is 
1.5 105 Jm 3. The easy axis should therefore be always in the surface plane, if it 
were not for the two other sources of anisotropy, the strain as discussed above and 
the surface and interface anisotropy.  
 The source of surface and interface anisotropy is the modified spin orbit cou-
pling or the exchange coupling at the surface or the interface [9.16]. The energy 
associated with that asymmetry is proportional to the film area, not the volume. If 

16 The magnetic depolarization field is the analog of the electrostatic depolarization field. In 
the electrostatic case, the field is caused by the charge density of the surface arising from 
the termination of the polarization.
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one still considers the energy per volume, as is conventionally done, then the sur-
face and interface contributions to the anisotropy are proportional to the inverse of 
the thickness. We consider the technical simple case of a strained cubic film with 
(100) surfaces and the rotation of the magnetization from the perpendicular orien-
tation to the parallel orientation in the [100] zone. The anisotropy energy is then 
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Here, Ks and Kint are constants describing the surface and interface anisotropy and 
t is the thickness of the film. A positive (negative) value means that the interface 
and surface anisotropy favor the perpendicular (parallel) orientation. Equation 
(9.23) offers a wealth of different scenarios, in particular since the anisotropy 
constants as well as the magnetization are temperature dependent. We consider a 
few simple cases. 

Case I: Ks+Kint > 0, K1 > 0, 11 = 0; the thickness t is varied.

For very small thickness, u is minimal for  = 0°, the perpendicular orientation of 
the magnetization. Above a critical thickness tc

2
0intsc /)(2 MKKt  (9.24) 

the magnetization flips into the parallel direction. This is the frequently occurring, 
classical situation.  

Case II: Ks+Kint < 0, K1 > 0, B1 11 > 0; the thickness t is varied. 

For very small thickness, u is minimal for  = 90, the parallel orientation. Beyond 
a critical thickness tc

))/21(2/()(2 1112111
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the magnetization flips into the perpendicular direction. This is basically the 
mechanism that causes a reorientation of the magnetization between one and two 
monolayer thick iron films on W(110) from parallel to perpendicular [9.17]. For a 
quantitative analysis, the (110) orientation of the iron film as well as higher order 
contributions of the strain to the magnetic anisotropy have to be taken into account 
[9.3]. The sharp reorientation transition between one and two monolayers can be 
exploited to make an interesting structure of nanowires. On stepped W(110) sur-
faces the iron film grows nucleationless from the steps. For a coverage slightly 
above one monolayer, the surface organizes in wires of double layers with  
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W

Fe

Fig. 9.2. Monolayer and by-layer stripes of Fe(110) on W(110) prepared via epitaxial 
growth [9.17]. The magnetic orientation changes between perpendicular and parallel.  

perpendicular magnetization, separated by areas with parallel magnetization 
(Fig. 9.2). To minimize the field energy the perpendicular magnetized double 
layerwires are alternatively polarized up and down. If one has a domain boundary 
in the wire so that the magnetization changes from up to down, then the entire 
staircase follows. The magnetic stripes have been observed directly by spin de-
pendent scanning tunneling microscopy [9.13].  

Case III: Ks+Kint < 0, K1 < 0, 11 > 0; the temperature is varied.  

For a particular range of constants (9.23) has a minimum for a finite angle min is 
given by 
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For tutorial purposes, we neglect the temperature dependence of the interfacial 
anisotropy constants and of the magnetoelastic constant B1 and merely consider 
the temperature dependence of the magnetization. The magnetization is large for 
low temperatures. We assume that the term in the bracket is negative so that the 
complete second term in (9.26) is positive (Note K1 < 0!). The angle min is larger 
than 45° and may be close to or exactly 90° depending on the magnitude of the 
second term. As the magnetization decreases with temperature, the second term 
can pass through zero. Now the K1-term makes the  = 45°-orientation the pre-
ferred one. At high temperature finally, the second term may become negative and 
the magnetization is parallel to the film. In total, one can have a continuous 
change in the orientation of the magnetization from  = 90° to 0°. 
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Fig. 9.3. Kerr ellipticity of a 8 ML Ni(100) film on Cu(100) measured by the polar Kerr 
effect. The magnetic field is oriented perpendicular to the plane (after Farle et al.[9.5]). At 
low temperatures, the magnetization is in-plane. At higher temperatures, the magnetization 
rotates out of the film plane causing the characteristic hysteresis (Fig. 9.1). 

Such a continuous variation occurs for Ni(100) films on Cu(100). Figure 9.3 
shows the results of an experiment on an 8.2 monolayer thick Ni(100) film pseu-
domorphic with the Cu(100) substrate [9.5] using the Magneto-Optic Kerr Effect
(MOKE). The results shown in Fig. 9.3 were obtained with the magnetic field 
applied perpendicular to the film-plane. As discussed in Sect. 9.1 and illustrated 
with Fig. 9.1, the absence of a hysteresis implies that the magnetic field is perpen-
dicular to the easy axis. For the Ni(100) film, this is case at low temperatures 
(Fig. 9.3); the magnetization lies therefore in the film plane at this temperature. 
With increasing temperature, the magnetization rotates out of plane. For the 8 ML 
film, perpendicular orientation of the magnetization is reached at 185 K.  
 Another case of practical importance is that of hexagonal cobalt layers growing 
with the c-axis perpendicular to the surface. The energy density up to second order 
in cos2  is 
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An experimental example is the growth of hexagonal cobalt on an Au(111) film 
on top of a W(110) substrate. Up to four monolayers of cobalt, the interface ani-
sotropy in combination with the uniaxial anisotropy keeps the easy axis perpen-
dicular to the film. Between four and five monolayers the influence of the 
interface anisotropy becomes small enough so that the easy axis flips into the film 
plane [9.18, 19]. 

9.2.3 Curie Temperature of Low Dimensional Systems 

The anisotropy has also has a strong influence on the Curie temperature Tc of thin 
films, in particular for ultra-thin films of a few monolayers thickness. The reason 
is that according to the Mermin-Wagner theorem [9.20] a single magnetic 
monolayer has no long-range order at finite temperature, unless there is some 
magnetic anisotropy. The effect of the anisotropy on the Curie temperature of 
ultra-thin films has been studied theoretically for the Heisenberg model. The Ham-
iltonian for this model is 
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The innocent looking Hamiltonian is in fact rather complex as it is non-linear in 
the spin operators S. The indices i and  in the first sum run over all spins in the 
system and their nearest neighbors. J is the isotropic exchange coupling constant. 
The second term introduces anisotropy in the first layer with the anisotropy con-
stant K and a summation over all spins j in that first layer. The anisotropy is of the 
same type as the bulk crystalline anisotropy, i.e. proportional to S2, although here 
also a polar anisotropy is conceivable, if the substrate is a magnetized ferromagnet 
or an antiferromagnet (exchange bias).
 Solutions of (9.28) were studied by Erickson and Mills using the Monte Carlo 
method [9.21]. The result for a monolayer is shown in Fig. 9.4 as squares. For this 
particular case an analytical solution exists from renormalization group theory, 
which reads [9.21, 22]  
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cc KJDTDT  (9.29) 

This equation is plotted as the solid line in Fig. 9.4. The fact that very small ani-
sotropies K/J = 0.01 suffice to bring the Curie temperature of the monolayer up to 
30% of the bulk value makes the much celebrated Mermin-Wagner Theorem a 
somewhat artificial one. 
 Erickson and Mills investigated solutions to (9.28) for film thicknesses up to 
six monolayers assuming K/J = 0.1. The result is shown in Fig. 9.5 as circles. The 
bulk value of the Curie temperature is approached rather quickly with increasing 
thickness. It is instructive to compare the exact result of Erickson and Mills to the 



 9  Magnetism __________________________________________________________________________ 460

0.00 0.05 0.10 0.15 0.20 0.25

0.3

0.4

0.5
T

c(
2D

) 
/ T

c(
3D

)

K/J

Fig. 9.4. Ratio of the Curie temperature of a square monolayer to the Curie temperature of a 
simple cubic lattice in the Heisenberg model. Even an extremely small anisotropy of 
K/J = 0.01 pushes the Curie temperature of the 2D-system from zero to 30% of the bulk 
value. 

mean-field model. In the mean-field model, the exchange interaction with the 
neighboring spins in (9.28) is replaced by a coupling to the mean spin orientation. 
For a bulk system the temperature dependence of the magnetization is then easily 
calculated as (see e.g. [9.23]) 

s

c

s

)(
tanh

)(

M

TM

T

T

M

TM
. (9.30) 

M(T) is the temperature dependent magnetization, Ms is the saturation magnetiza-
tion and Tc is the Curie temperature given by 

Bc 4/ kJT  (9.31) 

with the number of nearest neighbors and kB the Boltzmann constant. The same 
two equations hold for a monolayer, so that the Curie temperature of a monolayer 
is reduced merely according to the reduced number of nearest neighbors. A (100) 
layer of an fcc crystal has four instead of twelve nearest neighbors; a (111) layer 
six instead of twelve, so that Tc reduces to one third and one half of the bulk Curie 
temperature, respectively. This is in gross disagreement with the Mermin-Wagner 
theorem and due to the total neglect of fluctuations by the mean field model. 
However, for real systems which have always some anisotropy the mean field 
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model is useful as it serves as an interpolation scheme and provides an easy access 
to those physical properties that are less affected by fluctuations. 

0 5 10

0.4

0.6

0.8

1.0

 (100) mean field
 (111) mean field
 Monte Carlo K/J=0.1

T
c(

N
)/

T
c(

)

Number of layers N

Fig. 9.5. Ratio of the Curie temperature for an N-layer film to the bulk Curie temperature as 
a function of the number of monolayers N. Circles are Monte Carlo solutions of the 
Heisenberg model with a surface anisotropy of K/J = 0.1 [9.21]. The triangles and squares 
are mean-field solutions of the Ising-model with nearest neighbor coupling for (111) and 
(100) oriented films of fcc- crystals, respectively. 

Within the mean field model, the Curie temperature as well as the temperature 
dependence of the magnetization is easily calculated by a self-consistent solution 
of the mean field coupling in and between layers. With the reduced magnetization 
and temperature  

cs /,/)()( TTtMTMTm  (9.32) 

one has a set of equations for the N-layer system. 
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Here, ||  and  are the number of nearest neighbors within a layer and between 

two layers, respectively. The set of equation is solved by starting from an arbitrary 
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initial magnetization, e.g. mi  1 on the right hand side, solve for the resulting new 
mi(t), insert this set into the tanh-function, and repeat the process until conver-
gence is achieved. Figure 9.5 shows the Curie-temperatures as a function of the 
number of layers for the (100) and (111) orientation of an fcc film. The mean field 
model can easily be adapted to have an arbitrary Curie temperature of the 
monolayer film, by introducing an effective number of nearest neighbors or a dif-
ferent exchange coupling constant J in the surface layer. The model then serves as 
an interpolation scheme.  
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Fig. 9.6. Compilation of experimental data on the Curie temperatures for Ni(111) and 
Ni(100) films in relation to the bulk Curie temperature (after Baberschke [9.4]). The solid 
lines are to guide the eye. The dotted and dash-dotted lines are the mean fileld results from 
Fig. 9.5. The large deviation shows that the itinerant ferromagnet is not well described by 
models with localized spins.  

Experimental studies on the Curie temperature of thin films concern mostly 3d-
transition metals. A compilation of data for nickel films is shown in Fig. 9.6 [9.4]. 
The data on the Ni(100) surface were obtained by different groups and by using 
different techniques. Whereas the experimental results for Tc agree quite well 
among each other, they fall far below the prediction of the Heisenberg model, 
regardless of the special approach to solve the Hamiltonian (9.28). In particular, 
the difference for thicker layers is quite striking. It constitutes a qualitative failure 
of the Heisenberg model for a proper description of nickel films. Nickel, along 
with the two other 3d-transition metals Co and Fe, is a so-called itinerant ferro-
magnet. The ferromagnetism is associated with delocalized spin-up and spin-down 
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electrons that occupy different electron bands. As for the Heisenberg model, one 
can devise a simple mean field model which relates the Curie-temperature to the 
average magnetic moment and the exchange splitting between the spin-up and 
spin-down band at zero temperature (see e.g. [9.23]). The mean field model fails 
on the quantitative side as it overestimates the Curie temperature by far. This is 
again because of the neglect of fluctuations, in particular of nonlinear spin wave 
excitations. The mean field model predicts furthermore that the exchange splitting 
should vanish at Tc. Experiment as well as theory has shown that the exchange 
splitting persists above Tc within a correlation length of about 25 Å [9.24-26]. One 
might therefore speculate that the Curie temperature is affected when the system 
dimensions are of the order of the spin correlation length. Quantum size effects 
(Sect. 9.4.3) may also play a role.  

9.2.4 Temperature Dependence of the Magnetization 

The temperature dependence of the magnetization in thin film systems has been 
studied quite extensively. Aside from the Curie temperature itself, the critical be-
havior near the Curie temperature has attracted a substantial interest. Close to the 
Curie-temperature Tc the temperature dependence of the magnetization is de-
scribed by 

1
c/1)( TTTM , (9.35) 

in which 1 is the critical exponent. Many attempts have been made to determine 
critical exponents for particular thin film systems and surfaces and to compare 
them to theory. A considerable number of experimental techniques were devel-
oped for this purpose. Despite this entire effort very little can be said in terms of 
definitive and general statements. This section discusses some of the reasons for 
this failure.  
 One reason is that various experimental techniques measure the magnetism 
with a different spatial resolution and probing depth (Sect. 9.2). Some techniques 
integrate over the entire film area and depth. Techniques that employ spin polar-
ized electrons measure the magnetism in the near-surface region weighted by the 
not too well known electron escape depth (Sect. 2.2.2) or by some completely 
unknown spin persistence length. For surface and thin films systems, the magneti-
zation is different in each layer, as we shall see, and each layer appears to posses a 
different critical exponent near the Curie temperature. Experiments that probe the 
magnetization with different depth resolution are therefore bound to give different 
results.  
 A second reason is that the magnetic properties depend very critically on the 
number of layers, on the surface anisotropy, on the strain, on the surface structure 
and on the concentration of defects. It is nearly impossible to have a full charac-
terization of the systems investigated and establish consistency among different 
groups. To aggravate the situation the true critical exponent is revealed only very 
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close to the Curie temperature where the magnetization is low and even minute 
inhomogeneities of the system have a dramatic effect on the magnetic moment. 
Not infrequently, the effect of inhomogeneities is all too obvious from experimen-
tal data when the magnetization as a function of temperature displays a tail above 
Tc rather than dropping to zero with a critical exponent. Extracting critical expo-
nents further away from the Curie-temperature from such data is a fruitless exer-
cise as the critical exponent is only defined in the limit cTT .

 The simple mean field model introduced in the previous chapter is very suitable 
to illustrate the problems mentioned above. We consider first the magnetization of 
a thick film of 50 (100) fcc layers in Fig. 9.7. The results of the simulation are 
plotted versus a reduced temperature  

cred /1 TTT . (9.34) 

A critical behavior therefore corresponds to a straight line in the double-
logarithmic plot of Fig. 9.7 and the slope is the critical exponent 1. The bulk layer 
in the center of the film (solid line) has the critical exponent of (about) 0.5, as 
follows analytically from an expansion of (9.30) around Tc. A single layer has the 
same critical exponent, yet a lower Tc because of the lower number of nearest 
neighbors (9.31). Thus the surface layer by itself would posses a Curie tempera-
ture 3/bulkc,surfc, TT . However, because of the coupling to the bulk, the Curie 

temperature of the surface layer is dragged up to the Curie temperature of the en-
tire slab, which for a 50 layer slab is practically equal to the Curie temperature of 
the 3D crystal. The temperature dependence of the magnetization in the surface 
layer and the layers beneath is a consequence of this dragging. It is not possible to 
determine meaningful critical exponents from experimental data between 
Tred = 0.1 and 0.01 because the deeper layers first follow the magnetization of the 
bulk and then gradually approach the slope of the surface layer. This change in 
slope occurs closer to Tc the deeper the layer is. Three sets of experimental data 
prove the point. The open and crossed squares represent the spin asymmetry of 
electrons diffracted from Ni(100) and Ni(110) surfaces, respectively [9.27]. The 
asymmetry is assumed proportional to the magnetization. The circles represent the 
spin polarization of 10 eV secondary electrons as measured by Abraham and Hop-
ster [9.28] for a Ni(110) surface. Again, the spin polarization is believed to be 
proportional to the magnetization. All three data sets are matched to each other at 
high Tred to eliminate the unknown proportionality factors. While the data obtained 
from spin polarized electron diffraction agree for the two surface orientations, they 
fall below the data obtained from the spin polarization of secondary electrons, at 
least in an intermediate range of Tred. The difference must be attributed to the lar-
ger mean information depth of 10 eV secondary electrons. This interpretation is 
corroborated by the fact that Alvarado et al. found a systematic trend to lower 
apparent critical exponents for lower electron energies. Both experiments for the 
most part cover a temperature range where the true critical behavior is not 
reached.
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 Figure 9.8 shows the results for the magnetization in the surface layer for film 
thicknesses varying between N = 3 and N = 50 monolayers. The apparent critical 
exponents vary between nearly 1.0 for the three-layer slab and 0.5 for a thick slab. 
Experimental data obtained with an experimental technique sensitive to the mag-
netization of the surface layer will therefore show a strong layer dependence of the 
apparent critical exponents. 
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Fig. 9.7. Reduced magnetization of a 50 layer fcc (100) slab as a function of the reduced 
temperature Tred = 1 T/Tc according to the mean field model. The apparent critical expo-
nent varies between 0.5 for the bulk layer (solid line) to 1 for the surface layer (dashed 
line). Squares and circles represent experimental data of Alvarado et al. [9.27] and Abra-
ham and Hopster [9.28], respectively. 

Figure 9.9 represents the same simulation, but now the mean magnetization of the 
layer is shown. All curves stay close to the bulk curve. The apparent critical expo-
nents vary between 0.5 and 0.56. The largest deviation is for the 11-layer slab. It is 
therefore obvious that experiments probing the magnetization with a different 
depth resolution and differently close to the Curie temperature must come to com-
pletely different answers with regard to critical exponents. 
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Fig. 9.8. Magnetization in the surface layer of slabs comprising of N (100) layers of an fcc 
crystal as a function of the reduced temperature Tred. The reduced temperature Tred refers to 
the specific Curie-temperature Tc(N) of each N-layer slab. 
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9.3 Domain Walls 

9.3.1 Bloch and Néel Walls 

In the absence of an external field, a ferromagnet has domains in which the mag-
netization is polarized along one of the easy axes. To go from one orientation to 
the next the spins need to rotate. The energy associated with the magnetic anisot-
ropy would be minimal if that transition would occur abruptly, hence if the do-
main wall thickness were one lattice constant. The exchange energy, on the other 
hand is minimal if the spins rotate as little as possible from one site to the next. 
The total exchange energy is therefore minimal, in fact zero if the wall were infi-
nitely thick. The minimum of the sum of exchange and anisotropy energy deter-
mines the actual thickness of the wall. This is the classical concept to explain the 
finite thickness of domain walls and to describe quantitatively the spin orientation 
along the path from one domain into the other. Let us assume a perfectly straight 
domain wall in the yz-plane. There are two limiting cases as to how the reorienta-
tion of the spin may proceed along the x-axis. The spin may rotate around the x-
axis or may rotate within a plane containing the x-axis. The first type of wall is 
called a Bloch wall, the second a Néel wall. In a Néel wall, one has a non-
vanishing divergence of the longitudinal component of the magnetization, xM ,

while 0xM  for the Bloch wall. A non-vanishing gradient xM  causes a mag-

netic field and the interaction of that field with the magnetization adds magnetic 
self-energy to the energy of the wall. For bulk crystals, with dimensions large 
compared to the domain size, the energy associated with the xM -term makes the 

Néel wall the less favorable choice. This is why the domain walls in the bulk  

(a) (b)

x

y
z

Fig. 9.10. To minimize depolarization energy magnetic domains are polarized parallel to 
the surface. This entails that the magnetization inside a Bloch wall has a magnetization 
component perpendicular to the surface, which adds depolarization energy to the energy of 
the wall (a). The surface energy is minimized by turning the Bloch wall into a Néel wall at 
the surface (b).
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of a crystal are Bloch walls. The situation changes when the Bloch wall meets the 
surface of the crystal. At the surface, the domains are in general polarized parallel 
to the surface in order to minimize the depolarization energy. Thus, the magnetiza-
tion would have a component normal the surface inside a Bloch wall. The Bloch 
wall would therefore have a higher surface energy than a Néel wall. The configu-
ration of lowest energy is Bloch wall in the bulk turning into a Néel wall at the 
surface (Fig. 9.10).  

9.3.2 Domain Walls in Thin Films 

For thin film systems, the thickness of the film is typically small compared to the 
width of the domain walls. A wall between two domains with the magnetization 
parallel to the surface is then completely of the Néel type. If the film has tetrago-
nal symmetry, 90° and 180° Néel walls exist, depending on the orientation of the 
magnetization in the adjacent domains (Fig. 9.11). If the magnetization 

x

y
z

(a) (b)

Fig. 9.11. Illustration of (a) a 90° Néel wall and (b) a 180° Néel wall between two domains 
with in-plane magnetization. 

(a) (b)
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z

Fig. 9.12. Bloch (a) and Néel (b) walls between two perpendicularly magnetized domains. 
In both types of walls, the magnetization has an in-plane component. The depolarization 
energy is smaller inside the wall than in the domains.
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inside the domains is perpendicular to the surface both, Bloch and Néel walls have 
a parallel component of the magnetization (Fig. 9.12). Correspondingly, one gains 
the depolarization energy in both cases and the wall energies are a little less than 
in the bulk. The xM -contribution to the magnetic energy is larger for the Néel 

wall.

(a) (b)

x

y
z

Fig. 9.13. (a) Domain walls in bulk crystals and in thick films run parallel to the magnetiza-
tion to avoid the depolarization energy associated with charged walls. The depolarization 
energy per wall area decreases linear with the thickness when the film thickness is smaller 
than the wall thickness. The free energy is reduced by introducing kinks in the wall (b).

Domain walls that intersect the magnetization direction at some angle lead a mag-
netic H-field because of a non-vanishing M -term, causing a contribution to the 
magnetic self-energy. The analog case in electrostatics is an interface at which the 
perpendicular component of the electrostatic polarization P changes. This change 
leads to polarization charges at the interface. In analogy, magnetic domain walls 
that intersect the magnetization direction at an angle are called charged walls. In 
bulk crystals, charged walls are avoided as much as possible and the domain walls 
run parallel to the magnetization (Fig. 9.13a). In thin film systems, the situation is 
different. The wall is perfectly planar with respect to the z-axis as long as the film 
is thinner than the width of a domain wall. However, the wall may meander in the 
xy-plane. The domain wall thereby becomes a one-dimensional object. We have 
learned in Sect. 4.3.3 that such objects are thermodynamically always rough, as 
the position correlation function diverges. Furthermore, the depolarization energy 
associated with charged walls is very small. It does not cost much energy to make 
a kink in the wall even though the kink may involve more than just a monolayer 
(Fig. 9.13b). The free energy of a wall is therefore considerably reduced by the 
introduction of kinks. Thus, domain walls in thin films meander in space just as 
steps do, and domains in thin films assume rather irregular shapes (Fig. 9.13b). 
 As an example, we consider the domains in thin Co films on copper surfaces. 
Figure 9.14 shows SEMPA-images of (a) 5ML and (b) 9ML Co films on 
Cu(1 1 13) surfaces [9.29]. The magnetization was analyzed with the detector sen-
sitive to the polarization in the horizontal direction. Black and white patches cor-
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respond to magnetization parallel and antiparallel to a horizontal axis, respectively 
(black and white arrows in Fig. 9.14). The entire image is made up of black and 
white patches. This indicates an uniaxial anisotropy with a horizontal easy axis. 
The steps (not visible in Fig. 9.14) also run along the horizontal direction. Steps 
therefore convert the tetragonal anisotropy into an uniaxial anisotropy, and the 
easy axis is parallel to the step direction. While the magnetization is oriented 
strictly along the easy axis, the domains are completely irregularly shaped and 
charged walls are abundant. 

(a) (b)

Fig. 9.14. SEMPA-images of (a) 5ML and (b) 9ML Co films on )1311(Cu  (after Berger et 
al. [9.29]). Image size is 500 m 500 m. The black and white arrows indicate the magneti-
zation. The magnetization is parallel to the step orientation. The domains are irregularly 
shaped. Charged walls are everywhere.  

9.3.3 The Internal Structure of Domain Walls in Thin Films 

We now consider the rotation of the magnetization inside the domain walls. We 
begin with the Bloch wall between two perpendicularly magnetized domains 
(Fig. 9.10a) and take an fcc (100) film as an example. For this purpose, we inter-
pret the Heisenberg operator (9.28) as a classical equation. The spin operators S(i)

then become conventional vectors, and the product between the spin operators is a 
scalar product. All spins in the yz-plane are equal, they merely change their orien-
tation as one progresses along the x-axis. We place the origin of the x-axis in the 
center of the wall and denote the orientation angle with respect to the positive z-
axis as . The angle  varies from zero to  as one moves across the wall from 

negative to positive x. In this notation the classical discrete Heisenberg equation 
becomes 
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n n
nnn KSJSH 22

1
2 cos2)cos(2 . (9.36)

The index n denotes the individual lattice plane perpendicular to the x-axis. Each 
term in (9.36) is the energy per half a cubic cell. The anisotropy constant K is 
therefore related to the uniaxial anisotropy constant K2 of the hexagonal system 
(9.8) and the tetragonal system (9.10) by 

2/2 3
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2 aKKS . (9.37) 

We expand the cosine function  
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1
2 . (9.38) 

The wall is in equilibrium if the derivatives nH /  vanish identically 

02sin22/ 2
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2
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As the wall thickness is large compared to a unit cell one may consider n as a 
continuous variable (n), the term in the bracket thereby become the negative of 
the second derivative of  with respect to n,
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. (9.40) 

This is the sine-Gordon equation previously discussed in the context of structural 
domain walls (1.23). The solution is (cf. 1.28) 

))/(exp(tan2 1 rn  (9.41) 

with  
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The width of the wall is about w = 4r.
 Experiments typically measure the components of the magnetization parallel 
and perpendicular to the domain wall. These components are 
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 (9.43) 
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We now consider the case of a Néel wall between two domains of in plane mag-
netization (Fig. 9.11). We assume that the exchange and anisotropy terms in the 
Hamiltonian prevail so that the dipole term can be neglected. A film of a cubic 
material with the (100) surface parallel to the film plane has tetragonal symmetry, 
i.e. fourfold rotation symmetry around the z-axis. The classical Hamiltonian is 
therefore

n n
nnn KSJSH 4cos)cos(2 2

1
2 . (9.44) 

The conversion of the anisotropy constant K into the anisotropy constant 4K

introduced in (9.10) for the tetragonal system is  

28

1 3
0

4
2 a

KKS . (9.45) 

For a strictly cubic film 4K  can be replaced by K1. The sine Gordon equation is 

now 

4sin
4

2

2

J

K

n
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The solution  

))/(exp(tan 1 rn  with 2/13
04

22/1 )/(16/ aKJSKJr  (9.47) 

represents a 90° domain wall (Fig. 9.11). Figure 9.15 shows the polarization of 
secondary electrons in SEMPA images of a Néel type 180° wall in a 5.5 
monolayer thick Co film on Cu(100) [9.30]. Cobalt grows as an fcc crystal in that 
case. Shown is the polarization component parallel to the domain boundary. The 
polarization has therefore a maximum in one domain, passes through to zero at the 
center of the wall and levels off at the negative of the initial value after passing 
through the wall. The solid line in Fig. 9.14 is the polarization according to (9.43). 
The dashed line is a numerical simulation that includes the dipolar term [9.30]. 
The match to the experimental data is a little better though not perfect. 
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Fig. 9.15. Polarization of secondary electrons in a Scanning Electron Microscope with 
Polarization Analysis (SEMPA) across a 180° Néel wall (after Berger and Oepen [9.30]). 
The solid line is the solution of the sine-Gordon equation. The dashed line represents a 
numerical solution that includes the dipole term.  

9.4 Magnetic Coupling in Thin Film Systems 

9.4.1 Exchange Bias 

In 1956 Meiklejohn and Bean discovered that the magnetic hysteresis curve of a 
sample of cobalt nanoparticles each covered with a cobaltous oxide was shifted on 
the H-axis  after cooling to 77 K in a strong magnetic field [9.31]. The 
phenomenon was attributed to the interaction between the antiferromagnetic 
cobaltous oxide and the ferromagnetic cobalt and was termed as exchange 
anisotropy by Meiklejohn and Bean. Today, the effect is usually called exchange 
bias. While the theoretical explanation of this effect is still controversial in detail, 
it is undoubtedly caused by a local exchange coupling between the ferromagnet 
and the antiferromagnet across the interface. The existence of the effect as such 
should not surprise. After all, there is chemical bonding across the interface. The 
macroscopic manifestation of exchange coupling across the interface, as apparent 
from the asymmetric hysteresis loop, is visible only after certain preparation steps. 
We consider the example of an antiferromagnetic substrate, e.g. NiO, which is 
covered with a ferromagnetic film. In general, the substrate has disordered 
domains and so has the ferromagnetic layer. No asymmetry of the ferromagnetic 
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hysteresis loop results from that since an equal number of opposite domains 
compensates any bias imposed by one type of domains in the antiferromagnet, 
even if exchange coupling across the interface exists. Exchange bias is obtained if 
the antiferromagnet itself is polarized such that the surface layer has only one spin 
orientation. This can be achieved if the system is annealed above the Néel 
temperature of the antiferromagnetic substrate, which must lie below the Curie 
temperature of the ferromagnetic layer. The domains of the ferromagnetic layer 
order in an applied strong magnetic field. Upon cooling the system below the Néel 
temperature, the exchange bias takes care that the antiferromagnetic substrate 
orders according to the magnetization of the ferromagnetic layer. Figure 9.16 
illustrates the effect. The dashed line is the hysteresis loop for the ferromagnetic 
film when deposited on a disordered antiferromagnetic substrate. After cooling 
below the Néel temperature in an H-field in the positive direction, the 
antiferromagnetic substrate develops ordered domains because of the exchange 
coupling to the ferromagnet (assumed to prefer the spins parallel). The exchange 
bias then shifts the hysteresis to the left. 
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Fig. 9.16. Hysteresis loops for the magnetization of a ferromagnetic film exchange coupled 
to a disordered and ordered antiferromagnet substrate (dashed and solid lines, respectively). 
Ordering of the antiferromagnetic substrate is achieved by annealing the system above the 
Néel temperature of the substrate and cooling in a strong magnetic field (parallel to the film 
plane). 

The technological importance of the exchange bias effect can hardly be 
overestimated, as it is one of the cornerstones in the construction of sensors for 
magnetic fields. To understand this better we consider the four-layer sandwich 
displayed in the inset of Fig. 9.17. The system consists of an exchange-coupled 
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ferromagnet (ECFM) on an antiferromagnetic substrate (AF), a nonmagnetic layer 
(NM) and a second ferromagnetic layer (FM) on top. The FM-layer is assumed to 
have an in-plane easy axis. The external magnetic field is parallel to the layers. If 
the magnetic field is cycled between large negative and positive values, the 
magnetic fields are large enough to rotate the magnetization in the ECFM-layer 
and in the ferromagnetic top layer. The corresponding hysteresis loop is the solid 
line in Fig. 9.17. If the magnetic field cycle stays closer to zero, the magnetization 
follows the small loop indicated by the dotted line. By applying small magnetic 
fields, one can therefore switch the sandwich between a state where the two 
ferromagnetic layers have the same orientation of the magnetization and where the 
magnetizations have the opposite direction. Both states are stable in zero magnetic 
field. In this configuration, the system represents a storage device. 
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Fig. 9.17. Hysteresis curve of a sandwich structure consisting of an exchange-coupled 
ferromagnet (ECFM) on an antiferromagnetic substrate (AF), a nonmagnetic layer (NM) 
and a second ferromagnetic layer (FM) on top. The hysteresis loop marked by the solid line 
is for magnetic fields large enough to rotate the magnetization in the ECFM-layer. For 
smaller fields one stays inside the small loop around zero fields (dotted line). The dash-
dotted line is for an FM-top layer made of a soft magnetic material (e.g. NiFe permalloy).

If the FM-top layer made of a soft magnetic material (e.g. NiFe permalloy) the 
orientation of the magnetization in the top layer is shifted continuously by an 
external field (dash-dotted line in Fig. 9.17). In this configuration, the system 
represents a sensor that converts an external field into a particular magnetization 
state. The state can be read out by the electrical resistance of the sandwich as 
explained in the following section. 
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9.4.2 The GMR-Effect 

In 1988, two groups independently discovered that the resistance of a sandwich 
structure of two ferromagnetic Fe-layers separated by an antiferromagnetic Cr-
interlayer depends on the relative orientation of the magnetization in the Fe-layers 
[9.32, 33]. The magnetoresistance defined as  

RRRRR /)(/  (9.48) 

amounted to 1.5% for a trilayer system [9.32, 33] and up to 50% for a multilayer 
system at low temperatures [9.32, 33]. The effect is observable because the Cr-
interlayer couples the magnetization of the iron layer so that the magnetizations in 
the ferromagnetic layers are antiparallel in zero fields and parallel in a high 
external field (Fig. 9.18). We discuss the original work of Binasch et al. 
concerning the trilayer system in more detail. The entire thin film system was 
grown on a GaAs(110) substrate. The Fe-films also grow (110) oriented so that the 
easy [100] axis and the hard [110] axis are in the film plane. The iron films were 
12 nm thick, the chromium films 1nm thick. The resistance is measured parallel to 
the films. In Fig. 9.18 the [100] direction is horizontal and in the plane of drawing. 
When an external magnetic field is applied in the [100] direction and the field is 
strong enough to overcome the antiferromagnetic coupling and the coercive field 
of the iron layer, then the magnetizations are switched to parallel orientation. The 
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Fig. 9.18. Magnetoresistance in a three layer sandwich after Binasch et al. [9.32, 33]. In 
zero fields, the magnetizations in the two iron layers are held antiparallel via interlayer 
coupling through the antiferromagnetic chromium. The magnetizations become parallel by 
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applying external fields. The electrical resistance is lower for that state. This effect is called 
Giant MagnetoResistance (GMR). 
parallel state has as 1.5% lower resistance (left graph). When the magnetic field is 
moved back to smaller values, the magnetizations stay parallel for a little while 
because of the coercive field and then switch back to the antiparallel state. If the 
external field is along the hard axis (perpendicular to the plane of drawing), the 
magnetizations of the two Fe-films are gradually rotated into the direction of the 
applied field until they become eventually parallel at rather high fields (right panel 
in Fig. 9.18). The total change in the resistance is a little larger because of the 
normal, anisotropic magneto resistance effect. Evidently, the magnetoresistance 
observed in the magnetically coupled sandwich is significantly larger than the 
normal magnetoresistance. Exaggeratingly it is called the Giant Magneto-
Resistance (GMR). We note that the magnetoresistance curves are symmetric 
around 0H = 0 and that the slope of R(H) is zero there. The arrangement shown in 
Fig. 9.18 is not yet a technical useful device. Before we can proceed to make such 
a device by combining GMR and exchange bias, we devote ourselves to the basic 
physics of the GMR effect. 
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E E

E E

Fig. 9.19. Density of states of a ferromagnet (nickel) for spin parallel and antiparallel to the 
magnetization. The diagrams on the left and right represent the two ferromagnetic layers. In 
the upper pair, the magnetization in the layers is parallel and antiparallel in the lower pair. 
The antiparallel configuration has a higher resistance (see text).  

Figure 9.19 shows the density of states of a ferromagnet (here nickel) for electrons 
with spins parallel and antiparallel to the magnetization. The diagrams on the left 
and right of each panel represent the two ferromagnetic layers. The layer 
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magnetizations are parallel in the upper and antiparallel in the lower panels. The 
mean current parallel to the film plane is a weighted average over the 
contributions from electrons that embark on trajectories forming an angle 

90  with the film plane. These trajectories carry electrons from one 

ferromagnetic layer into the other as long as the mean free path of the electrons is 
larger than the distance between the ferromagnetic layers along the trajectory. The 
current carried by those electrons is part of the total current. We assume that the 
electrons do not loose their spin orientation while traversing the chromium layer. 
Electrical current is carried only by electrons at the Fermi level and we therefore 
need to consider only those. For parallel oriented magnetization, the Fermi 
electrons find a high density of states of the same spin orientation in the other 
ferromagnetic layer. They can therefore continue their path with little scattering at 
the interface and thereby contribute to the current. If the magnetizations are 
antiparallel then also the spin orientation of electrons with a high density of states 
at the Fermi level is antiparallel. Electron transfer from one film to the other is 
only from a high density of states into a low density of states of the same 
orientation and vice versa. This causes a larger interface resistance, which leads to 
an increase in the resistance of the sample. Saying that implies that electrons 
which have been denied entry into the ferromagnet are not mirror reflected at the 
interface. Some interface roughness therefore supports the longitudinal GMR-
effect.
 The picture outlined above is a little too simplistic. It treats conduction of d-
electrons, which have a lower mobility, on the same footing as the s-electrons. The 
model thereby neglects the different bulk conductivity for electrons with majority 
and minority spins. Furthermore, specific contributions of the interface that arise 
from matching the wave functions across the interface are not considered. 
Qualitative aspects are correctly described however. For example, the physical 
picture outlined above does not refer to the magnetic coupling across the interlayer 
and the material of which the interlayer is made; it could consist of a high 
conductivity material such as copper, and does in fact in actual devices. The layer 
of chromium in the early experiments was necessary only to achieve antiparallel 
orientation of the magnetic layers. In combination with the exchange bias, such a 
state is obtained in zero magnetic fields without any magnetic coupling across the 
interlayer (Fig. 9.17). At the same time, the exchange bias system shown in 
Fig. 9.17 makes for a much more useful device as one can vary the magnetization 
in the outer film in small external fields, and the variation of the magnetization 
and therefore of the magnetoresistance is linear in the field.  
 A sensitive detector for small magnetic fields requires the magnetization of the 
outer ferromagnetic layer to change rapidly with the applied field. The dash-dotted 
line in Fig. 9.17 should therefore be as steep as possible. The nickel/iron alloy 
permalloy is a suitable material for the outer ferromagnetic layer. A technically 
advanced layer system for a sensor is shown in the inset of Fig. 9.20 [9.34]. Two 
very thin Co layers on either side of the Cu-interlayer act as a spin filter to 
enhance the magnetoresistance effect. Composite structures like that are called 
spin valves. The antiferromagnetic layer that provides the exchange bias is made 
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of FeMn. The entire composite is grown by magnetron sputtering on an oxidized 
silicon wafer so that the sensor is electrically isolated and integrated into silicon 
device technology. Buffer and texture layers between the wafer and the active part 
of the sensor serve for growing smooth and well-ordered films. Figure 9.20 shows 
schematically the magnetization (in arbitrary units) as a function the applied field. 
For a sensor, only the magnetization near zero fields is of interest. There, the 
magnetization in the free ferromagnetic layer rises steeply in an external field 
(Fig. 9.20). The magnetoresistance follows with a likewise steep curve so that the 
entire system is a sensitive device for the detection of magnetic fields. Its 
sensitivity and the fact that it can be made quite small have made the GMR-sensor 
the present day sensor in hard disk data storage devices. 
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Fig. 9.20. Magnetization (solid line) and magnetoresistance (dashed line) of a complex 
layer system (schematic after Paul et al. [9.34]). The magnetic field is in Oerstedt (1Oe for 
H is 1000/4 Am-1

9.4.3 Magnetic Coupling across Nonmagnetic Interlayers

In 1986, Grünberg et al. found that two Fe-layers separated by 10 Å thick Cr-film 
are antiferromagnetically coupled [9.35]. The work was instrumental for the 
discovery of the GMR effect, but was also a very interesting effect in its own 
right. An important stimulus to the field of interlayer exchange-coupling was the 
discovery that the exchange-coupling oscillates between ferromagnetic and 
antiferromagnetic coupling as a function of the interlayer thickness [9.36]. The 
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effect can be observed with virtually any interface material [9.37]. The effect is 
elegantly demonstrated by shaping the interlayer as a wedge so that different 
positions on the surface of the ferromagnetic cover layer correspond to different 
thicknesses of the interlayer. The oscillations between ferromagnetic and 
antiferromagnetic coupling can be made visible by imaging techniques that are 
sensitive to the orientation of the magnetization. Figure 9.21 displays the scheme 
of such an experiment following Unguris et al. [9.38]. An iron whisker crystal (a 
crystal that is free of dislocations) serves as the substrate. The shading of the top 
Fe layer indicates the black and white contrast in a SEMPA image (Sect. 9.2).  

300-500 m

5-20 nm Cr

2 nm Fe

Fe whisker

Fig. 9.21. Schematic picture of an experiment for the observation of the oscillations 
between ferromagnetic and antiferromagnetic coupling of two ferromagnets as a function 
the interlayer thickness (After Unguris et al. [9.38]). The shading of the top Fe layer 
indicates the observed black and white contrast in a SEMPA-image.  

The oscillation periods depend also on the thickness of the ferromagnetic cover 
layer. For the rather thin Fe-layer of 2 nm a second, rapid oscillation period was 
observed [9.38]. Double wedge structures in which the non-magnetic as well as 
the magnetic layer thickness varies display a two-dimensional polarization pattern 
if the wedge orientations are mutually orthogonal to each other [9.39]. 
 The interlayer exchange coupling through non-magnetic layers is caused by 
spin dependent quantum size oscillations [9.40]. In Sect. 8.3.1 we considered the 
energy associated with the oscillations in the density of states for the nonmagnetic 
case
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Here ra and rb are the reflection coefficients for electrons at the interfaces a and b
of the spacer layer to the ferromagnetic layers. These reflection coefficients now 
depend on the spin state of the reflected electron in relation to the spin orientation 
within the ferromagnet, since the band structure in the ferromagnet differs for 
spin-up and spin-down electron. Thereby the energy becomes dependent on the 
relative orientation of the spins in the ferromagnets. For parallel orientation of the 
spins in the two magnetic layers the energy is 
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For antiparallel orientation one has 
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For the sake of a simpler discussion, we assume that differences between the spin-
up and spin-down reflection coefficients are small. 

2/)(2/)( rrrrr  (9.52) 

The first order expansion of the energy difference between the ferromagnetic and 
antiferromagnetic orientation in r is
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The energy E oscillates between negative and positive values with an oscillation 

period determined by the Fermi vector kF. The reason is that for 1
FkD , the 

integrand oscillates so rapidly that no contribution to E survives except those 
near the Fermi cut-off. The oscillation period is therefore DkF2 .  
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9.5 Magnetic Excitations  

9.5.1 Stoner Excitations and Spin Waves

Theory and experiment discern two types of elementary excitations in solids that 
involve a reversal of an electron spin. In the case of Stoner excitations, the spin of 
a single electron is reversed ("flipped"). This excitation corresponds to a transition 
from a spin-up to a spin-down band. The second case is a collective excitation, a
spin wave or a magnon. The excitation of one quantum of a magnon corresponds 
to a change of the magnetization equivalent to the spin flip of one electron. 
However, the spin flip is distributed over the entire ensemble of electrons. 
Figure 9.22 illustrates schematically the two excitations. In Fig. 9.22a two energy 
bands are shown that are separated by the k-dependent exchange splitting 

)(kexE . Transitions between the two bands can take place between occupied and 

unoccupied states. In the case shown the spin up band is completely occupied and 
separated from the Fermi level by an energy gap, the Stoner gap , which marks 
the minimum energy required to reverse the spin of an electron. Ferromagnets that 
possess a nonzero Stoner gap are called strong ferromagnets, those who do not 
posses a Stoner gap are called weak ferromagnets. This distinction is not related in 
any way to the saturation magnetization or the magnetic anisotropy, which would 
differentiate strong and weak magnets in the conventional sense of the words. 
Among the 3d-metals, Ni and Co are strong ferromagnets if the low density of s-
electrons at the Fermi level is disregarded, and Fe is a weak ferromagnet.
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Fig. 9.22. Schematic illustration of (a) Stoner excitations and (b) a classical spin wave 
(magnon). Both excitations correspond to the flip of one spin. In the case of spin waves, the 
spin flip is distributed over the entire ensemble of electrons. The dashed and dotted arrows 
in (a) correspond to the minimal energies for momentum conserving and non-conserving 
spin flip transitions, respectively. 
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Figure 9.22b illustrates a spin wave in the classical limit. The spin rotates around 
the magnetization direction with a phase in the form of a wave. Quantum me-
chanically the spin wave is a particular excited state solution of the Heisenberg 
Hamiltonian with nearest neighbor interactions 
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The spin operators S+ and S- flip the spin state from "down" to "up" and from "up" 
to "down", respectively. For the spin of one electron the operators Sz, S+ and S-

can be represented by Pauli matrices 
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As easily proved, these operators have the commutators 
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The time dependence of the operator S+ is given by 

Hjj ,i )( SS&  . (9.57) 

With the help of the commutator rule [A, BC]=[A, B]C+B[A, C] one obtains 
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One now assumes that the system is in the ferromagnetic ground state and replaces 
the operator Sz by the scalar S. The Heisenberg operator becomes linear thereby,  

))()()( 2i (jjjj JS SSSS&  . (9.59) 

Equation (9.59) is solved with the ansatz for the spin wave 

jrkSS ii)( ee tj . (9.60) 

Inserting (9.60) into (9.59) yields the spin wave frequency 
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rkrkrk cos2)ee2( ii JSJS - . (9.61) 

While spin waves and their dispersion relation are most easily deduced from the 
Heisenberg Hamiltonian they do exist also in itinerant ferromagnets where the 
magnetization arises as a collective property of delocalized band electrons. Ex-
periments using neutron scattering show reasonable sharp lines in the energy spec-
trum that are ascribed to spin waves [9.24, 41]. The dispersion differs from the 
solution of the Heisenberg model for large wave vectors because of the increasing 
interaction with the Stoner continuum. This is illustrated in Fig. 9.23a for the case 
of a strong ferromagnet and a k-independent exchange splitting between the spin-
up and spin-down bands. Transitions with k = 0 then involve a fixed energy the 
exchange splitting Eex. For larger k, the excitation spectrum is a continuum. 
The spin-wave dispersion curve (fat solid line in Fig. 9.23a) dives into the contin-
uum of Stoner excitation at a particular point of the k-space. The coupling to 
Stoner excitations affects the dispersion and imposes a strong damping on the spin 
waves. The interaction with the Stoner-continuum is even stronger at surfaces. 
The surface reduces the symmetry and momentum conservation concerns merely 
the parallel component k|| of the wave-vector while the perpendicular component 
may assume an arbitrary value. At surfaces and in thin films spin waves are there-
fore even more severely damped than in the bulk.  
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Fig. 9.23. Spectrum of Stoner excitations and the spin wave dispersion (a) in bulk crystals 
and (b) at the surface and in thin film systems, both for the case of a strong ferromagnet 
possessing a Stoner gap . For surfaces, momentum conservation holds only for the parallel 
component of the wave vector, which provides a larger phase space for magnon/electron 
interaction.  
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9.5.2 Magnetostatic Spin Waves at Surfaces and in Thin Films

In the limit of very small k-vectors, the frequency of exchange-coupled spin 
waves goes to zero proportional to k2. In an external magnetic field H0, the fre-
quency merges into the frequency of the magnetostatic spin waves. Their k-
independent frequency is calculated by assuming that the entire magnetization 
precesses around the magnetic field. The result is in SI-units [9.23] 

0
2
00 HMH s . (9.62) 

Here,  is the gyromagnetic ratio g B/h.
 If the solid has the form of a slab, surface waves exist in addition to the bulk 
spin waves. These surface spin waves are called Damon-Eshbach waves. Their 
amplitude decays into the bulk as exp( k|z|), if the slab thickness D is large 
enough so that exp( kD) << 1. Otherwise, the modes on the two surfaces couple to 
each other. As the k-vector is small compared to a vector of the reciprocal lattice 
Damon-Eshbach waves do not reflect genuine surface and thin film properties, 
analogous to long wave-length surface plasmons (Sect. 8.1) and Fuchs-Kliewer 
surface phonons (Sect. 7.1.7). The frequency of Damon-Eshbach waves is 

)2/( 00 HM sDE . (9.63) 

Damon-Eshbach waves have the interesting property that they travel only in one 
direction: Viewed from the tip of the magnetic vector they circulate around the 
slab in clockwise direction (Fig. 9.24, for a derivation of (9.63) and further details 
see [9.23]).  

M

k

k

Fig. 9.24. Direction of Damon-Eshbach magnetostatic surface waves relative to the orienta-
tion of the magnetization.  

Damon-Eshbach waves can be observed by the optical technique of Brillouin scat-
tering. Because of their handedness, Damon-Eshbach waves appear either as 
Stokes-lines or as Anti-Stokes lines, depending on the scattering geometry (see 
e.g. [9.23], p.221ff.).  
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Fig. 9.25. Dispersion of spin waves in a thin slab in the transition region between the mag-
netostatic and the exchange-coupling regime. 

The normally k-independent frequency of magnetostatic spin waves can acquire 
dispersion because of k-dependent magnetic dipole interactions in thin films. This 
leads to an interesting transition regime between magnetostatic and exchange cou-
pled spin waves [9.42, 43]. The initial dispersion is linear in k and negative (posi-
tive) if the angle  between the magnetization and the k-vector is smaller (larger) 
than a critical wave vector c (Fig. 9.25). The negative dispersion for some direc-
tions opens a channel for the decay of ferromagnetic resonance oscillations into 
magnons of the same frequency. This yields a damping of ferromagnetic reso-
nance modes in thin film systems, which comes in addition to the conventional 
Gilbert damping of the ferromagnetic resonance in bulk systems. 

9.5.3 Exchange Coupled Surface Spin Waves 

Just as for surface phonons, surface spin waves localize at the surface on an 
atomic scale when the k-vector approaches the boundary of the Brillouin zone. 
Their dispersion therefore reflects the exchange coupling and magnetic moment of 
the surface atoms. Probing for localized surface spin waves requires particles that 
have a high cross section with matter, much higher than neutrons. Electrons are 
suitable for that purpose. However, the inelastic cross-section for spin waves lies 
about 2-3 orders of magnitude below the cross-section for phonon excitations 
[9.44]. Despite several attempts, short wavelength spin waves had therefore es-
caped detection for a long time. In order to be able to discriminate spin waves 
against vibrational modes one must demonstrate the dependence of the intensity of 
energy losses on the spin orientation of the scattered electron. A feasible way is to 
scatter spin-polarized electrons from a magnetically polarized sample and measure 
the asymmetry of the cross-section with respect to the spin orientation of the elec-
tron beam as a function of the energy loss. This technique is called Spin Polarized 
Electron Energy Loss Spectroscopy (SPEELS). As discussed in Sect. 9.2 strained 
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GaAsP negative electron affinity cathodes are employed in the production of spin 
polarized electrons. A special layout of the electron spectrometer serves for the 
suitable orientation of the electron spin perpendicular to the scattering plane and a 
high intensity of the electron beam while maintaining sufficient energy resolution 
of 20-40 meV (Fig. 9.26) [9.45].  

Fig. 9.26. Electron spectrometer for inelastic scattering of spin polarized low energy elec-
trons from surfaces. Longitudinal polarized electrons are photoemitted from a GaAsP cath-
ode and energy-selected in a specially designed electrostatic double-pass deflector featuring 
a total deflection angle of 90°. The spin polarization is thus perpendicular to the scattering 
plane [9.45].  

Figure 9.27 shows selected results of the first successful experiment for inelastic 
scattering of electrons from spin waves [9.46]. Electrons were scattered from an 
eight monolayer thick fcc-cobalt film, which was pseudomorphic with the 
Cu(100) substrate. The scattering plane was oriented along the [110]-direction. 
Spectra in Fig. 9.27a are shown for the spin-up and spin-down channels. As usual, 
spin-up refers to the orientation of the majority spins in the ferromagnet. If the 
spin of the incoming electron has spin-down orientation, it can transfer its spin, 
energy and wave vector, and its spin orientation flips upwards in the scattering 
process. If the incoming electron has spin-up orientation no inelastic scattering 
from spin waves occurs since a spin wave in a ferromagnet involves always in-
volves a transition from spin-up to spin-down orientation and the total spin must 
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be conserved in the scattering. The spectra I  and I  as shown in Fig. 9.27a are 

calculated from the observed spectra I  and I  in order to correct for the finite 

polarization P < 1 of the cathode. 

PPIPII 2/)1()1( )()()( . (9.64) 

The increased noise in the spectra around the spin wave energy arises from that 
procedure.  
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Fig. 9.27. (a) Spin-up and spin-down electron energy loss spectra for an 8ML pseudomor-
phic Co film on Cu(100). The momentum transfer to the spin wave is k = 0.87 Å-1 along the 
[110] direction. The inset displays the scattering geometry. (b) Spin wave dispersion of the 
film. The spin wave is a surface spin wave because of the horizontal tangent at the bound-
ary X  of the surface Brillouin zone [9.46]. 

Figure 9.27b displays the dispersion of the spin wave. The data can be nicely 
matched to an analytical expression for the surface spin wave dispersion of an fcc-
structure [9.47] 

)cos1(8)( nnkaJSkh  (9.65) 

in which 2/0nn aa  is the nearest neighbor distance. From the fit one obtains 

JS = 15 meV. The surface wave has its maximum frequency at nnka , the X -

point of the surface Brillouin zone. The dispersion is quite distinct from the dis-
persion of a bulk spin wave traveling along the [110] direction as calculated from 
(9.61) to 
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)2/cos4cos5(4)( nnnnbulk kakaJSkh . (9.66) 

There is a small correction to the frequency for a thin film due to the missing 
nearest neighbors in adjacent layers for the two outer layers, which, however, is of 
no concern here. The bulk waves have their maximum frequency at 2nnka , a 

point which is equivalent to the X-point. (Note, the k-vector of a bulk wave in the 
[110] direction goes from  over K to the X-point of an adjacent bulk Brillouin 
zone. The same point is reached by moving from  to X along the [001] direc-
tion). The fact that the experimental data display a zero slope at the X -point of 
the surface Brillouin zone therefore proves that indeed surface spin waves are 
excited (cf. Fig. 7.2). 
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Fig. 9.28. Spectral density of spin flip excitations at k|| = 0.6 /ann for an 8 ML Co film on 
Cu(100). The solid line represents the combined excitation spectrum of spin waves and 
Stoner excitations calculated with a realistic representation of the electronic structure of 
cobalt [9.49]. The dashed line is a frozen magnon calculation with a nearest neighbor 
Heisenberg Hamiltonian. 

In addition to the spin wave, the spectrum in Fig. 9.27a shows a continuum of 
Stoner excitations. Furthermore, the energy loss due to spin wave excitations is 
quite broad. The width increases with increasing momentum transfer so that near 
the zone boundary the spin wave signal is hardly distinct from an onset of a Stoner 
continuum. This demonstrates that for itinerant ferromagnets spin waves and 
Stoner excitations are closely coupled. Fits of experimental data to spin wave 
solutions of the Heisenberg Hamiltonian, which yields discrete -function shaped 
magnon modes, are therefore not very meaningful, even though they might work 
technically to describe the dispersion. An appropriate theory has to take the itiner-
ant nature of the magnetism in 3d-metals and thus the electronic band structure 
properly into account. A first attempt in this direction is the work of Costa, Muniz 
and Mills [9.48, 49]. As an example of their results Fig. 9.28 shows the calculated 
spectral density of the excitation spectrum of the surface layer of an 8ML thick Co 
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film on Cu(100) at k|| = 0.6 /ann.. Only the surface mode stands out as a discerni-
ble, albeit broad feature. Bulk spin waves of the slab and Stoner excitation are 
submerged in a broad continuum. A frozen magnon calculation using the Heisen-
berg Hamiltonian produces the spectral density shown by the dashed line, which 
bears little resemblance to the experimental spectrum (Fig. 9.27). 



10. Diffusion at Surfaces  

10.1 Stochastic Motion

Diffusion phenomena at surfaces range from the random walk of single atoms to 
mass transport on macroscopic length scales which involves hundreds, even thou-
sands of different individual processes with merely a few of them being rate-
determining. Their nature remains frequently unknown. A theoretical description 
of diffusive mass transport has to take the various length scales and the different 
levels of knowledge into account. Transport over large distances and across many 
atom layers is best described in a coarse-grained view with the thermodynamic 
and statistical models developed in chapters 4 and 5, supplemented by however 
rudimentary knowledge of the processes on the atomic level. We begin the presen-
tation with the random walk of single atoms on flat surfaces, a process that is well 
understood from an atomic point of view.  

10.1.1 Observation of Single Atom Diffusion Events 

Experimental studies of the random walk of single atoms became possible rather 
early in the history of surface science. In 1951 Erwin Müller invented the Field 
Ion Microscope (FIM) [10.1], an instrument that permits the real space observa-
tion of surfaces with atomic resolution. The experimental set-up is extremely sim-
ple, though quite some expertise is involved in the preparation of field emission 
tips. Figure 10.1 shows the basics of the experimental equipment. A sharp tip 
made from a single crystal wire is mounted on a liquid nitrogen cooled cryostat 
inside a UHV-vessel. The UHV-vessel is backfilled with a dilute helium gas. A 
positive potential is applied to the tip. He-atoms are ionized in the high-electric 
field at the tip, preferably at atomic protrusions such as steps, corners and single 
adatoms. The positive He+-ions are accelerated towards the phosphorous screen 
along a radial trajectory whose direction reflects the position on the surface at 
which the ionization had occurred. The image on the phosphorous screen is there-
fore a magnified image of the surface. The magnification factor is the ratio of the 
radii of the screen and the tip, and hence of the order of 107. Although the use of 
the field ion microscope for diffusion studies was already proposed by E. W. 
Müller in 1957 [10.2] it took almost a decade until Ehrlich and Hudda published 
the first systematic study of single atom diffusion [10.3]. Figure 10.2 shows an 
example from the review of G. Kellogg [10.4]. The FIM images display a rhodium 
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tip with a (100) surface at the apex. A single platinum atom has been deposited 
onto the tip. 

Liq.
N2

UHV, backfilled with
a dilute He-gas

+
_

He+

phosphorous
screen

Vacuum vessel

Fig. 10.1. Scheme of a Field Ion Microscope (FIM). A sharp single crystal tip with a tip 
radius of 50-200 Å is fixed to a liquid-nitrogen cooled cold finger. Instruments that are 
more elaborate use liquid helium cooled tips. The image is generated by He-atoms, which 
are ionized at atomic protrusions on the tip and accelerated towards a screen to form a 
magnified image of the protrusions there. 

Quantitative studies of the random walk of single atoms are performed by the so-
called cook-and-look technique: At liquid nitrogen temperature, the single atom 
stays in fixed position forever. Diffusion is initiated by heating the tip quickly to a 
particular temperature while the imaging electric field is switched off, so that the 
diffusion process is not affected by the high electric field. After some time at the 
higher temperature, the tip is cooled down to liquid nitrogen temperature and the 
FIM-image is observed. If the annealing temperature was high enough, the atom 
may be found at the nearest neighbor site of its original position or at sites farther 
away (Fig. 10.2 b, c, and d). The great advantage of the cook-and-look technique 
is that the diffusion process is not affected by the imaging technique. This is more 
difficult to ensure for the other available technique, scanning tunneling micros-
copy. There, cook-and-look is not possible, as one cannot find the same site and 
the same atom on the surface after a thermal circle. Furthermore, the drift induced 
by thermal cycles would render observation impossible for some time. The ran-
dom walk of atoms must therefore be observed with the sample and the STM sta-
bilized at a particular temperature. Tip effects on the diffusion process cannot be 
excluded systematically. The absence of a tip-induced effect (if so) can be estab-
lished by running a series of images representing a certain time span, but with a 
different number of images taken within the time span.  
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Fig. 10.2. A series of FIM images showing a single Pt adatom on a Rh(100) tip. The images 
are recorded at 77 K. Adatom motion is induced by heating the tip to 345 K for 30 s be-
tween each image (Courtesy of Gary Kellogg).

The observation of random walk processes on surfaces yield important informa-
tion on the atomic nature of the diffusion process. We illustrate this with the ex-
ample of the random walk of a single atom on a square lattice such as represented 
by (100) surfaces of cubic materials. The extension to trigonal (111) surfaces is 
straightforward. On both types of surfaces, the diffusion is isotropic. The move-
ment of one atom from one site to the next may proceed via two different proc-
esses. One possibility is the hopping of the adatom from one site to the next across 
the bridging site as the intermediate state (Fig. 10.3a). 

(a) (b)

-
-

-

-

-

Fig. 10.3. Illustration of two different transport mechanisms that take an adatom from one 
site to the next equivalent site: (a) the hopping process and (b) the exchange process where 
the adatom dives into the surface and pushes the atom in the surface layer upwards into the 
adjacent site. Note that the transport is in different directions in the two cases. 
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The other process involves an exchange of atom positions. The adatom dives into 
the surface and, in a concerted motion, the atom that was originally in the surface 
plane moves up into the next-nearest neighbor site along the [100] direction 
(Fig. 10.3b). The two processes are easily distinguished by the fact that in the 
latter case only every second site is visited by the adatom. The sites denoted by "-" 
in Fig. 10.3b are avoided. The visited sites form a c(2 2) pattern. The clearest 
experimental evidence for the mechanism of adatom diffusion is therefore from 
FIM investigations. Figure 10.4 shows the site visiting maps for the diffusion of Pt 
and Pd on Pt(100) after Kellogg et al. [10.5]. For Pt the visited sites form a c(2 2) 
pattern. The diffusion mechanism is therefore of the exchange type, contrary to the 
case of Pd diffusion on the same surface. 

[110]

[100]

[010]
Pt on Pt(100)

[100]

Pd on Pt(100)
[010]

[110]

(a) (b)

Fig. 10.4. Site visiting map of (a) Pt atoms and (b) Pd atoms in FIM images of a Pt(100) 
tip. The orientation and the lattice constant identify the diffusion mechanisms as exchange 
for Pt atoms and hopping for Pd atoms. The distortions of the lattices reflect the distortions 
of the FIM images (after Kellog et al. [10.5]).  

Table 10.1. Activation energies for self-diffusion on some fcc(100) surfaces; "hop" stands 
for adatom hopping, "ex" for exchange of adatoms, and "vac" for vacancy diffusion. The 
activation energies are approximate insofar as different values have been calculated from 
experimental data as well as from different theoretical approaches (see e.g. [10.12]).  

(a: [10.6], b: [10.7], c: [10.8], d: [10.9], f:  [10.10], g: [10.11])

Surface Rh(100) a Ir(100) b Pt(100) c Cu(100) d Cu(100) f Au(100) g

Mechanism hop ex. ex. vac. hop hop 

Ea / eV 0.88 0.93 0.47 0.42 0.44 0.50 
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Table 10.1 lists three cases where exchange diffusion was established using FIM. 
The transport mechanism in surface self-diffusion is not always via adatoms. On 
Cu(100) e.g., the easiest pathway is mass transport via vacancies. On the other 
hand, theory and (indirect) experimental evidence point towards hopping of ada-
toms as the dominant mass transport mechanism on the unreconstructed Au(100) 
surface [10.11]. At present, there seems to be no systematic understanding as to 
which transport mechanism should occur when and where. 

10.1.2 Statistics of Random Walk 

We consider the random walk of atoms on surfaces with square symmetry. Be-
cause of the stochastic nature of the process the random walk in the two mutual 
orthogonal directions are independent of each other. It suffices therefore to con-
sider random walk in one dimension. We denote the sites and the jumps by the 
indices i and j, respectively, both starting from zero. After a first jump the atom is 
either at i = -1 or at i = +1 with a probability 1/2. The position of the atom is 
xj=1 = l, with l the jump length. After a second jump (j = 2) the atom resides with 
a probability 1/4 at i = 2, hence at xj=2 = 2l and with the probability 
1/4 + 1/4 = 1/2 at i = 0. The general rule for the probability to find the atom at site 
xj after j jumps is 
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1
1,11,1 jijiij www . (10.1) 

For a particular number of jumps, e.g. j = 2, one finds that the mean square dis-
tance from the origin is 
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By complete induction, one can prove this law to hold for any number of jumps. 
With the progression law (10.1) one obtains 
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As one can show (10.2) to be correct for a particular number of jumps j, eq. (10.3) 
proves that (10.2) holds also for j+1 jumps, and so forth. The total number of 
jumps j can be expressed as the product of a jump rate and time. We will later 
introduce a theory that permits the calculation of the jump rate  in each identical 
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direction of which we have two here. Thus we write j = 2 t. The mean distance 
from the origin after a time t is therefore 

tlyx 222 2)()( . (10.4) 

We have introduced a mean jump distance l  to account for the possibility that the 
jump distance need not always be the distance from one site to the next possible 
site but could include so called long jumps. Since the random walk along the x and 
y directions are independent of each other the mean distance r from the origin 
after a time t is 

tlyxr 2222 4)()()( . (10.5) 

The product of the squared mean jump length and the jump rate in one direction  

2* lD  (10.6) 

is the jump diffusion coefficient D* 17, also named tracer diffusion coefficient be-
cause it is measured in diffusion experiments with individually marked radioactive 
isotopes (tracers). For a triangular lattice (a (111) surface) one needs to consider 
that the jumps into the four orthogonal cartesian directions progress differently far. 
By averaging the squares of the jump length one obtains 

2*

4

3
lD . (10.7) 

Evidently, one cannot determine whether the atom transport involves long jumps 
from the observation of the mean square displacement r in the long time limit. 
However, the existence of long jumps can be proven with the help of site visiting 
maps at short times. FIM is the ideal instrument for that purpose. The first experi-
mental evidence of long jumps from FIM images came from the one dimensional 
diffusion along the [111] direction on the W(211) surface (Fig. 10.5a) [10.13]. 
Figure 10.5b and 10.5c show the number of observations for an adatom displace-
ment in units of the nearest neighbor distance along the [111] direction 

( 02/3 aann , with a0 the lattice constant). The experimental data (shaded col-

umn) is compared to the probability distribution derived under the assumption that 
the probability for a jump length of twice the nearest neighbor distance w2 is zero 
(white columns) and under the assumption that the jumps over twice and three 
times the nearest neighbor distance (w3) have a nonzero probability. The probabil-
ity distributions for the various cases can be calculated analytically from an ex-

17 The jump diffusion coefficient is sometimes defined as 4/0
2* lD , with 0 the total 

jump rate.
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pression, which involves Bessel-functions of the second kind [10.13]. For the 
limited number of jumps it is just as easy to calculate the probability distribution 
from the recursion  
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For the strongly bound W atoms on W(211) (for which the activation barrier for 
diffusion is high, Eact = 0.83 eV) the distribution is compatible with nearest 
neighbor jumps (Fig. 10.5b). For the weakly bound Pd the activation barrier is 
Eact = 0.31 eV. The probability distribution can only be fit successfully if one as-
sumes a high probability of long jumps (w2/w1 = 0.21 and w3/w1 = 0.14). 
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Fig. 10.5. Diffusion of W and Pd atoms on W(211) (after Senft et al. [10.13]). Panel (a)
shows a ball picture of the W(211) surface. Diffusion is solely along the [111] direction in 
the temperature range of interest here (white arrow). For W atoms, the probability w2 of 
long jumps with twice the nearest neighbor distance is small (b). The distribution calculated 
with w2/w1 = 0.015 is compatible with the data as well as the distribution with w2 = w3 = 0. 
For Pd on the other hand the experimental result can only be fitted to a distribution calcu-
lated with significant contributions from long jumps (c).
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10.1.3 Absolute Rate Theory 

The absolute rate theory, also known as transition state theory, is an attempt to 
describe kinetic processes by equilibrium properties of the system in its ground 
state (or a metastable steady state) and in one particular activated state, called the 
transition state. The theory was originally designed to describe rate constants for 
complex systems with many degrees of freedom and provides a simple rational for 
the general observation that the speed of kinetic processes can be described by a 
rate constant k which consists of exponential term and a prefactor [10.14]. We 
have encountered a special form of the transition state theory already in the con-
text of adsorption-desorption in Sect. 6.3.2. Applied to the diffusion of single at-
oms on a flat surface we can write the jump rate  introduced in (10.4) as 

Tk

E

eTT B
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)()( 0 . (10.9) 

In general, the prefactor 0 depends also on the temperature T in a power law 
form. The transition state theory links in a rather general way the temperature 
dependence of 0 and the activation energy to calculable properties of the surface.  
 The transition state theory in its conventional form considers the Gibbs free 
energy G of the system along a minimal path that leads from the initial state to a 
final state. Traveling along that path involves a concerted variation of the entire 
ensemble of general coordinates {q} and their conjugated momenta {p} in such a 
way that G({q},{p}) stays minimal with reference to all adjacent paths. This 
minimal path is described by only one coordinate, the reaction coordinate qr and 
its canonical conjugate pr (Fig. 10.6). For the special application to diffusion on 
surfaces, the conventional Gibbs free energy has to be replaced by the surface 
excess thermodynamic potential that is appropriate to the boundary conditions (cf. 
Chapt. 4). For diffusion on surfaces in vacuum, the external pressure is zero and 
the macroscopic strain on the solid surface remains constant. The appropriate 
thermodynamic potential is therefore the Helmholtz surface free energy F(s). For 
surfaces held at constant potential in an electrolyte of fixed concentration, the 
Helmholtz free energy is to be replaced by the product of the surface tension  and 
the area A as defined in eq. (4.19) in Sect. 4.2.3. In order to have the following 
equations in a general form we denote the relevant thermodynamic potential as the 
free energy G({q},{p}) but keep in mind that G({q},{p}) is something very differ-
ent, depending on the specific problem. The point on the path where G has a 
maximum is the transition state. The free energy G at this point without the ki-
netic energy associated with pr is G(q+). Because of the construction of the mini-
mal path the transition state represents a maximum of G with respect to the 
reaction coordinate and a minimum with respect to all other adjacent paths, hence 
a saddle point. For the example of hopping diffusion of an adatom from one four-
fold site to the next on a (100) surface the transition state is the two-fold bridge 
site (Fig. 10.3). In that case, the reaction coordinate would involve only the 
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Fig. 10.6. Schematic representation of G along the reaction path for the case of diffusion. G
is equal in the initial and final state in that case.  

x- and z-coordinate of the adatom. In reality, the positions of neighboring surface 
atoms around the adatom yield to the changing bonds with the adatom, and the 
vibration spectrum also changes as the adatom moves along the minimum path. 
Hence, G is a quite complex entity even in a comparatively simple case of diffu-
sion. If one assumes that the system moves adiabatically along the minimum path 
the jump rate  can be expressed in terms of the difference of G in the transition 

state and the ground state. The kinetic energy along the reaction path is 2/2
rp

with  a reduced mass and the conjugate momentum rr qp & . The number of 

quantum states in the phase volume rrdd qp  is hqp /dd rr  with h the Planck con-

stant. The transition state theory assumes that the transition state is in equilibrium 
with the initial state. The probability to find the system in the transition state is 
then 
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The second term in the nominator )2/exp( B
2
r Tkp  is the contribution to G by 

the momentum along the reaction coordinate. The transition rate  is given by the 
integral over all probabilities ),( rr pqw  multiplied with the velocity along the 

path, which is rq&
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G
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with  

iGqGG )( . (10.12) 

If G contains only energetic terms, the prefactor is  

hTk /B0 . (10.13) 

We have encountered this prefactor already in the context of desorption 
(Sect. 6.3.2). Its value at 300 K is 6.25 1012 s 1. The fact that the prefactor is of 
the order of a vibration frequency has frequently lead to the misunderstanding that 
it represents an attempt frequency. Accordingly, (10.9) was misinterpreted as the 
product of an attempt frequency with the probability of successful attempts given 
by the Boltzmann factor. This is a gross misunderstanding insofar as the ground 
state, being a quantum mechanical eigenstate, does not couple to the transition 
state being another quantum mechanical eigenstate. The transition occurs via the 
thermal population of the entire ensemble of eigenstates including the ones having 
energies above the transition state. In these delocalized states an adatom, de-
scribed by a localized wave packet moves into the neighboring sites by virtue of 
its group velocity. We see that long jumps are a natural consequence of the 
mechanism: The longer the lifetime of the atom in an excited state, the larger the 
probability of long jumps. Quite generally the lifetime is the shorter the higher the 
energy above the ground state. Hence, long jumps are rare when the activation 
energies are high (cf. Fig. 10.5). The fact that the interpretation of 0 as an attempt 
frequency is erroneous becomes obvious also if one calculates 0 in specific mod-
els. A simple one is being considered now. 

10.1.4 Calculation of the Prefactor 

The simplest conceivable model for diffusion is a particle in a one-dimensional 
parabolic potential (Fig. 10.7). For the calculation of the vibrational entropy, we 
take the vibrational eigenstates in the harmonic approximation 

MaEE 2
nng 2/)(2  (10.12) 

where ann is the distance between the minima in the potential, M is the mass of the 
atom and E+ and Eg are the energies in the transition state and the ground state, 
respectively. With this frequency the difference G is 
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The prefactor is therefore 
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In the limit hTkB , the prefactor remains hTk /B  and the "attempt fre-

quency"  does not enter the prefactor at all. In the reverse case hTkB , the 

prefactor becomes temperature independent and equal to the "attempt frequency"  

MaEE 2
nng0 2/)(2/ . (10.16) 
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Fig. 10.7. A particle in a one-dimensional parabolic potential is the simplest model for 
diffusion. The dashed lines indicate schematically the vibrational levels of the particle in its 
binding site. 

We apply this model to the hopping diffusion on a Cu(100) surface. The activation 
barrier is (E+ Eg) = 0.44 eV (Table 10.1) from which one calculates 

3.9h  meV. The solid line in Fig. 10.8 shows the prefactor as calculated from 
the 1D-model. The dashed and dash-dotted lines are the high and low temperature 
limits according to the model. Also shown is the theoretical result of Ulrike Kür-
pick (dotted line) [10.10]. Her analysis took the vibration entropies in the activated 
state and the ground state fully into account. While the results of the full theory 
were only given down to a temperature of 100 K one can argue that ultimately the 
prefactor obtained from the full theory must also vanish at T = 0 K. As seen from 



 10  Diffusion __________________________________________________________________________ 502

Fig. 10.8, the simple model reproduces the prefactor of the full theory within a 
factor of two. The same holds for the (110) and (111) surface of Cu and for the 
same ensemble of low index surfaces of Ni (Table 10.2).  
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Fig. 10.8. Prefactor as calculated from the 1D-model (solid line). The high and low tem-
perature limits according to the model are drawn as dashed and dash-dotted lines, respec-
tively. Also shown is the result of a theory that takes the vibration states in the ground state 
and the transition state correctly into account (dotted line) [10.10]. 

Table 10.2. Activation energies for diffusion Eact in eV and prefactors 0,th in 1012 s 1 for 
the low index surfaces of Cu and Ni according to Ulrike Kürpick [10.10] together with the 
values for 0,mod calculated from (10.15). The work of Kürpick quotes prefactors for the 
diffusion coefficient which are converted into the prefactors 0 according (10.6) and (10.7). 

Surface Eact(Cu)  0,th Cu)  0,mod(Cu) Eact(Ni)  0,th(Ni)  0,mod(Ni)

(100) 0.44 3.8 2.3 0.68 5.9 3.0 

(110) 0.25 1.7 1.7 0.39 2.3 2.3 

(111) 0.042 0.74 1.2 0.063 1.2 1.6 

Several lessons may be learned these considerations. Firstly, in analyzing experi-
mental data on diffusion the prefactor may be taken as constant. The situation is 
here distinctly different from the prefactor in desorption (Sect. 6.3.2). Secondly, 
the prefactor should be in the range of 1012-1013 s 1. Converted to the prefactors of 
the diffusion coefficients D0, this corresponds to values of the order of 
D0 10 3 cm2 s 1. The values listed for a large number of single atom diffusion 
events are in that ballpark [10.4]. If one finds prefactors that differ by orders of 
magnitude, one might question the theoretical foundation of the analysis. This 
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comment applies in particular to the analysis of data where diffusion on terraces 
enters indirectly through certain model assumptions. Examples are data on Ost-
wald ripening, step fluctuations and nucleation (see Sects. 10.4, 10.5, 11.1). Fi-
nally, one may use the high temperature limit of the prefactor of the 1D-model 
(10.16) as a rule of the thumb to estimate the prefactor from the activation energy, 
the atom mass and the hopping distance.  

10.1.5 Cluster and Island Diffusion 

Single atoms or single atom vacancies are the species which carry the atom trans-
port in the equilibration of rough surfaces, because they require lower formation 
energies than units of two or more atoms. Frequently, but not always, single atoms 
and single atom vacancies are the fastest moving species. However, cluster of two 
or more atoms, even large islands diffuse as well. Such processes are particular 
important during epitaxial growth on flat surfaces. Two or more atoms form stable 
nuclei on surfaces during growth and the motion of these nuclei contributes to the 
coarsening process. In some cases, clusters may diffuse even faster than single 
atoms. Figure 10.9 shows two diffusion mechanisms of dimers on (100) surfaces. 
The dimer in Fig. 10.9a moves by shearing, the dimer in 10.9b moves by ex-
change. The exchange involves a concerted motion of three atoms with the sur-
rounding atoms relaxing their positions adiabatically during the process. 
Depending on the material, both mechanisms can have a lower activation energy 
than single atom motion [10.15, 16]. Diffusion by shearing is also pathway with a 
low activation energy for larger clusters. Figure 10.10 shows the shearing motion 
of a tetramer on a (100) surface after Zhu-Pei Shi et al. [10.15].  

(a)

(b)

Fig. 10.9. Diffusion mechanisms of dimers on (100) surfaces. Dimer shearing (a) has a 
lower activation energy than single atom hopping on Cu(100) [10.15]. The same holds for 
exchange diffusion (b) on Pt(100) [10.16]. 
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Fig. 10.10. Diffusion of a tetramer by shearing. The two atoms in the ellipse move together 
in a concerted motion. The activation energy for this cluster diffusion process is signifi-
cantly lower than for diffusion by evaporation of an atom (after Zhu-Pei Shi et al. [10.15]). 

On (111) surfaces the motion of large islands may also proceed via formation of 
dislocations. This process is particular effective for strained heteroepitaxial islands 
on (111) surfaces. Figure 10.11 illustrates the process on a small island. In the left 
panel the atoms of the island reside in fcc-sites. In the center panel, the island has 
a partial dislocation in the center. The atoms in right half of the island have as-
sumed hcp-sites. The energy for the formation of a dislocation is particularly low 
if the island is elastically compressed, i.e. if its natural lattice constant is larger 
than the lattice constant of the substrate material. The activation energy of diffu-
sion via the motion of dislocations depends also critically on the number of atoms 
in the island [10.17, 18].  

Fig. 10.11. Island diffusion by generation and motion of a partial dislocation. The mecha-
nism is effective for large islands, in particular when the island is elastically compressed 
because of a misfit between the lattice constant of the island and the substrate. 

Considerably experimental and theoretical effort has been devoted to the investi-
gation of the Brownian motion of large islands. First observations of the Brownian 
motion of islands were reported by Karina Morgenstern et al. [10.19]. The term 
Brownian motion refers to the random walk of the center of gravity of large is-
lands or vacancy islands across the surface such that the center of gravity r(t)
obeys 
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The origin of the Brownian motion is the stochastic fluctuations of the center of 
gravity due to diffusion of atoms from one side of the island to the other. A theory 
based on the continuum description of equilibrium shape fluctuations (cf. 
Sect. 4.3.8) predicts a scaling law for the island diffusion coefficient D [10.20] 
according to which D should scale as 

RD  (10.18) 

where R is the mean radius of the island with the exponent  depending on the rate 
limiting process in the fluctuations of the shape. If the shape fluctuates because of 
diffusion along the periphery then  = 3. If terrace diffusion is rate limiting, then 

 = 2, and  = 1 should hold if the attachment-detachment process of atoms from 
the periphery is the rate limiting process. Because of the scaling law, small islands 
should diffuse faster than large islands. This scaling is qualitatively consistent 
with experimental observations. Since small islands diffuse quite rapidly, the dif-
fusion can lead to coalescence events in which two islands merge to become one. 
Island coalescence can be the prevailing coarsening mechanism on surfaces. The 
continuum theory based on shape fluctuations as well as other theories fails com-
pletely on the quantitative side. Careful and detailed experimental studies show 
[10.21] that the scaling exponent for Cu(111) and Ag(111) vacancy islands is 
fractional (  1.5) over a wide range of island sizes and temperatures. The reason 
for the failure of existing theories is presently not understood. The recently dis-
covered considerable elastic strain field even around homoepitaxial islands 
(Sect. 3.4.1) may play a role.  

10.2 Continuum Theory of Diffusion

10.2.1 Transition from Stochastic Motion to Continuum Theory 

The transition from stochastic motion to continuum theory of diffusion is made by 
defining the coverage (x,y) as the density (x,y) of diffusing species multiplied 
by the area s of an adsorption site 

),(),( s yxyx . (10.19) 

In the spirit of a continuum approach, we assume that the concentration from site 
to site varies merely by an infinitesimally small amount. On a square lattice the 
variation of the coverage in the time interval dt is then 
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Here, l is again the jump length which can be replaced by the mean jump length 

l . In writing (10.20), we have assumed that coverage is small. After introducing 
the concentration one obtains 

),(),(),( *2 yxDyxlyx&  (10.21) 

where  denotes the Laplace operator. Stationary diffusion profiles therefore obey 
the Laplace equation  

0),( yx . (10.22) 

The time derivative of the concentration is related to the divergence of the particle 
current density j(x, y), which is defined as the number of particles per cross section 
length and time that flow from one length element into the next. The change of the 
concentration of particles in a length element dx per time equals the difference in 
the current density of influx and outflow  

xxxjxxj xx d)()()d( &  (10.23) 

so that 

&j . (10.24) 

From (10.21) follows  

Dj . (10.25) 

This equation is known as the first Fick's law of diffusion. We have omitted now 
the asterisk in the notation of the diffusion coefficient since (10.25) is a general 
linear equation for the diffusion current for arbitrary coverages and the diffusion 
coefficient can depend on the coverage in a very complex way that is not covered 
by the single atom jump model. The diffusion coefficient D is called chemical
diffusion coefficient or sometimes Fick's law diffusion coefficient.
 Fick's law is a special form of a general transport equation that relates the parti-
cle current to the gradient in the chemical potential 
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(t)
TLj . (10.26) 

Here (t)
TL  is a transport coefficient for diffusion on terraces, which can be ex-

pressed in terms of microscopic parameters of certain models (Sect. 10.2.4). Eq. 
(10.26) can be related to (10.25) if one considers the chemical potential to be a 
function of the coverage 

s
(t)
T

(t)
T LLj  (10.27) 

The chemical diffusion coefficient D is therefore 

s
(t)
TLD . (10.28) 

The relation between the chemical diffusion coefficient D and the jump coefficient 
D* is obtained by considering the chemical potential of a non-interacting dilute 
(  << 1) lattice gas (Sect. 5.4.1, eq. 5.95) 

lnB0 Tk . (10.29) 

The chemical diffusion coefficient D becomes

Tk
LD B

s
(t)
T . (10.30) 

For a non-interacting lattice gas the diffusion coefficient must be equal to the 

jump diffusion coefficient 2* lD . By comparison, one obtains the transport 

coefficient of a dilute lattice gas 

Tk
lL

Bs

2(t)
T  (10.31) 

After inserting (10.31) into (10.27) one obtains 

Tk
lj

B

2 . (10.32) 

Hence the relation between the jump diffusion coefficient D* and the chemical 
diffusion coefficient D is
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ln

)/( B* Tk
DD . (10.33) 

This relation is known as the Darken equation. While the derivation here was only 
for the trivial case of a dilute non-interacting lattice gas, it can be shown that the 
relation holds in general. For the derivation of the equation as well as of many 
other useful relations in the context of diffusion, see e.g. [10.22]. 

10.2.2 Smoothening of Rough Surfaces 

Standard methods of surface preparation frequently involve sputtering by rare gas 
atoms (Sect. 2.2.3). The locations of arrival on the surface and therefore the asso-
ciated removal of mass are stochastically distributed. Prolonged sputtering leads to 
a roughening of the surface. To heal the damage and to remove the roughness each 
sputtering cycle is followed by an annealing step. We study the smoothening 
process via surface diffusion in a continuum approximation with the help of the 
general transport equation (10.26). To do so we need to assume that the chemical 
potential is a continuously differentiable function. In other words, the surfaces 
must be rough in the thermodynamic sense, i.e. must not have facets due to cusps 
in the chemical potential (Sect. 4.3.1). The driving force for smoothening by diffu-
sion is the gradient of the chemical potential according to the Herring-Mullins 
equation (Sect. 4.3.2, eq. 4.63).  

y

z

Fig. 10.12. A cosine surface profile. The arrows mark the directions of diffusion from re-
gions of high to low chemical potential. 

Since an arbitrary roughness profile of a surface can be decomposed into its Fou-
rier-components, it suffices to study the decay of a one-dimensional cosine profile 
(Fig. 10.12) 

qyzxz cos)( 0  (10.33) 
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With the one-dimensional Herring-Mullins equation for small curvatures 

2

2
~

y

z
 (10.34) 

one obtains the particle current density j

3

3
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T
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y

z
Lj , (10.35) 

in which  is the atomic volume and ~  the surface stiffness. As the orientation 
dependence of the surface tension is generally small, the stiffness ~  is frequently 
equated with the surface tension . The sign in (10.34) refers to a surface of a solid 
in the negative half space so that a bump in the surface has a positive chemical 
potential. A second equation follows from the continuity condition (10.24). A 
gradient in the flux of atoms must lead to a reduction of the local height, 
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The profile therefore decays according to  

4

4
2(t)

T
),(~),(

y

tyz
L

t

tyz
. (10.37) 

Each Fourier component decays as 
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with  

42(t)
T

1 ~)( qLq . (10.39) 

This remarkable result tells us that roughness on a short length scale anneals out 
quickly. However, it takes impractically long times or very high temperatures to 
smoothen roughness on a long length scale. Applied to the problem of sputtering 
and annealing, this means that one can expect to heal sputter damage effectively 
when the total dose amounts to a removal of merely a few monolayers, as the 
roughness introduced by that is only on a lateral length scale of a few atoms. Pro-
longed and repeated sputter-annealing cycles that involve a removal of many lay-
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ers on the other hand, may lead to irreparable damage. Roughness on a long length 
scale can often be noticed visually by the naked eye. The mirror finish of the sam-
ple has given way to an orange skin appearance. Because of the danger of sputter 
damage beyond repair, alternative methods of preparation were introduced if pos-
sible. An example is the Si(111) surfaces. In the early days of surface science, it 
was customary to prepare Si(111) by sputter-annealing cycles. Much better results 
are however obtained by wet chemical cleaning, thermal oxidation and a short 
flash in UHV to remove the oxide (Sect. 2.2.3). 
 For very high temperatures, profile decay can also proceed via exchange with 
the surrounding vapor phase through evaporation/condensation or by exchange 
with the bulk by evaporation/condensation of defects, vacancies in practice. If the 
exchange with the vapor phase or the bulk is determined by the attach-
ment/detachment process then the current density leading to decay is simply pro-
portional to the local chemical potential 

(b)
TLj  (10.40) 

in which (b)
TL  is a rate constant characterizing the detachment process. The profile 

decay then obeys 
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with  

22(b)
T

1 ~)( qLq . (10.42) 

Roughness on a long length scale anneals out much more quickly in this case. 
Excessive sputter damage can therefore be removed by annealing to temperatures 
just below the melting point where most solids have a high equilibrium concentra-
tion of bulk vacancies. However, the method works only, if the surface of interest 
does not undergo a roughening transition up to the melting temperature.  
 There is also an intermediate case where the rate constant is proportional to q3

when the surface is in local equilibrium with the gas-phase or the vacancy concen-
tration. Mullins has discussed all these scenarios theoretically as early as 1959, 
long before atomic scale experiments became available [10.23]. The correspond-
ing theoretical models have later been rediscovered and outlined in the context of 
step fluctuations and 2D Ostwald ripening processes. We shall consider these 
different scenarios in the theory of step fluctuations (Sect. 10.5). A special case is 
the frequently observed decay of a non-equilibrium protrusion in a step to which 
we turn now.  
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10.2.3 Decay of Protrusions in Steps 
and Equilibration of Islands after Coalescence 

Protrusions in steps form temporarily during coarsening when an island merges 
with a step. The decay of such protrusion with time can be studied with the help of 
STM images. Figure 10.13 shows an example of four consecutive STM images of 
a Cu(111) surface taken at 303 K [10.24]. Each image represents a time span of 
only 30 s. Equilibration proceeds therefore very fast on Cu(111) even at room 
temperature. The islands and vacancy islands seen in the images were formed 
during deposition of several monolayers of copper. In the course of a ripening 
process, the islands migrate across the surface in a random walk. In Fig. 10.13a 
one island has come close to a [ 011 ]-oriented step and has merged with the step 
in Fig. 10.13b, causing temporarily a protrusion in the step.  

[112]

        [110]

(a) (b) (c) (d)

Fig. 10.13. A series of 90 nm  90 nm STM images of a Cu(111) surface taken 303 K (after 
M. Giesen and G. Schulze Icking-Konert [10.24]). The time difference between images is 
about 30 s. The island seen in (a) merges with the step due to the random walk of islands 
and the resulting protrusion decays because of diffusion along the step edge.  

The theory of profile decay outlined in the preceding section applies also to this 
one-dimensional case. Instead of the surface stiffness, now the line stiffness 

~
 is 

the driving force. We note that the line stiffness cannot be equated, not even ap-
proximately with the line tension  (Sect. 5.3.2). In keeping with the nomenclature 
introduced in Sect. 4.3.7 we denote the profile function as x(y) where x and y are 
the directions perpendicular and parallel to the step direction. Contrary to the pre-
ceding case of an assumed very flat profile in the surface, we have now large an-
gles with the [ 011 ]-orientation of dense atom packing. The exact expression for 
the chemical potential in that case is  
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with a  and ||a  the distance between atom rows on (111) surfaces and the atomic 
length unit parallel to the step orientation (atom diameter), respectively. Integra-
tion of the differential equation for the profile decay requires the knowledge of the 
dependence of the line stiffness on the angle and a numerical solution of the re-
sulting differential equation. The task is greatly facilitated, however, by making 
use of the fact that the protrusion in the step originated from the consumption of 
an island, which had an equilibrium shape. The "corners" and angles of the protru-
sion shown in Fig. 10.13b are those of the island equilibrium shape shown in 
Fig. 10.13a. Equilibrium shape means that the chemical potential is constant along 
the perimeter. The shape of the initial protrusion is therefore such that  is at least 
approximately constant. It may be therefore permitted to assume that the simple 
expression for the chemical potential near the [ 011 ]-orientation holds everywhere 
so that  

22
|| /)0(

~
yxaa . (10.44) 

For the line tension of a step on the (111) surface along the direction of dense 
packing we have derived in Sect. 5.3.2, eq. (5.84) 
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with k  the kink energy. For a rectangular lattice, we had (5.83) 

Tk

a

Tak
Bk /

2
||B

rect e
2

)0(
~

 (10.46) 

with ||aa  for a square lattice like the fcc(100) surface. In analogy to the deriva-

tion above (10.34 - one finds that each Fourier-component of the profile 
function decays with the time constant 

42
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2(st)
T
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)( qaaLq  (10.47) 

where (st)
TL  is the one-dimensional transport coefficient describing diffusion along 

step edges and 
~

 is the line stiffness of the corresponding lattice. The relation 
4q  is well fulfilled for the decay of the Fourier-components proving that 

indeed the rate determining transport mechanism is along the step edges 
(Fig. 10.14). 
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Fig. 10.14. Time constant (q) of the Fourier-component of the step profile function dis-
played in Fig. 10.13. The q 4-dependence shows that the rate determining transport mecha-
nism is diffusion along the step (after M. Giesen and G. Schulze Icking-Konert [10.24]).

20nm

-1 min 0 min 10 min

20 min 110 min 220 min

20nm 20nm

20nm 20nm 20nm

Fig. 10.15. Coalescence of two vacancy islands on Cu(100) at 323 K (After Ikonomov et al. 
[10.25]). 
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Shape equilibration is also observed when two islands coalesce on surfaces. Fig-
ure 10.15 shows a series of excerpts of STM images of a Cu(100) surface on 
which vacancy islands were produced by mild sputtering [10.25]. Occasionally 
two islands meet and coalesce due to the random walk of these islands on surfaces 
and a dumb-bell shaped island forms temporarily. The neck widens quickly as 
atoms move from regions of high to low chemical potential. Eventually the equi-
librium shape is established again. Experiments show that both the width of the 
neck and the length of the dumb-bell approach the final equilibrium in an expo-
nential manner with a characteristic time constant . The time constant depends on 
the length scale L (the diameter of the resulting equilibrium shape, e.g.) according 
to 

L . (10.48) 

The exponent follows from the rate determining transport mechanism in the same 
way as the exponents of the relaxation time of the Fourier-components of step 
profiles. For Cu(100) steps mass transport along the step edges dominates and the 
exponent is therefore  = 4. 

10.2.4 Asaro-Tiller-Grinfeld Instability and Crack Propagation 

An enormous analytical and predictive power of theory is occasionally gained if 
one relinquishes comprehension on an atomic scale. There is no better demonstra-
tion for this than with concepts that develop from the combination of elasticity 
theory with diffusion. We consider a solid or a thin solid film under compressive 
stress parallel to the surface. The stress can arise from an external pressure or, in 
case of an epitaxially grown film, from misfit with the substrate lattice constant. 
The chemical potential of a surface then acquires an additional term from the elas-
tic energy. For a (thermodynamic rough) surface curved in the z,y plane and 
stressed along the y axis the chemical potential is 

2
2

2

1
yyY

 (10.49) 

where  is the curvature, yy is the stress,  the Poisson number, Y is Young's 
modulus (cf. Sect. 3.64) and  is the surface tension. The elastic term is always 
positive whereas the curvature term depends on the sign of the curvature. We con-
sider the consequences of the stress term in (10.49) for a sinusoidal profile  

qyzz sin0  (10.50) 

For this profile, the total free surface energy per area is higher than for a flat sur-
face by the amount 
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In the absence of the stress term, this energy drives the profile decay as discussed 
above. Because of the stress term, the elastic energy may be larger in the valleys 
than on the hills. Then the amplitude of the profile grows in time so that a flat 
surface becomes unstable. A full study of the spatiotemporal evolution of a sur-
face profile under stress requires the solution of a nonlinear integral-differential 
equation. However a qualitative criterion for the stability or instability of a flat 
surface can be derived by considering the contributions to the energy per area 
[10.26].  

2z0

yy < 0

z

y

Fig. 10.16. A thin film or bulk system under compressive stress with a sinusoidal surface 
profile. The energy gain associated with the outward relaxation in the upper hill region 
(black arrows) may outweigh the energy expenditure for the increased surface energy, 
which gives rise to the Asaro-Tiller-Grinfeld (ATG) instability. The height of the profile 
grows by a surface diffusion flux (gray block arrows) from the regions of high strain to the 
regions of low strain. 

For a solid under stress, we have two contributions to the change in the energy 
from elasticity. One arises from the elastic relaxation near the top of the hills in 
the profile (Fig. 10.16). We estimate this energy per area by 

yyz0relax  (10.61) 

where  is the relative relaxation of the compressed solid. This relaxation occurs 
only in the upper section of the profile not at the bottom. The relaxation therefore 
imprints a periodic strain field into the solid. The extension of that field is of the 
order of the inverse wave vector of the profile. The elastic energy per area associ-
ated with the periodic strain field is therefore estimated as 
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The sum of the two elastic contributions has a minimum at  

Yqz yy /)1( 2
0  (10.54) 

which fixes the strain relaxation for a given wave vector. The sum of all contribu-
tion to the energy per area is 
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This energy is negative for small enough wave vectors q, which means that energy 
is gained by an accidental perturbation if q is below a critical value qcrit that is 
given by 

Y
q

yy )1(2 22

crit . (10.56) 

The energy gain has its maximum at half the critical wave vector qmax = qcrit/2. 
Accidental perturbations with q < qcrit grow by surface diffusion from the regions 
of high strain at the bottom of the profile (gray block arrows in Fig. 10.16) to the 
region of low elastic strain at the top. In other words, the mass flow is reversed 
compared to the normal situation. This is the Asaro-Tiller-Grinfeld (ATG) insta-
bility [10.27, 28]. We note that the instability occurs independently of the sign of 
the stress.  
 The ATG instability gains practical importance if the wavelength of a growing 
perturbation is in the range of nanometers. Otherwise, the time scales for diffusion 
are too long and the energy associated with (10.55) becomes too small. The stress 
must therefore exceed a certain limit before the ATG instability becomes noticea-
bly. For a wavelength of crit = 100 nm, e.g, a typical surface tension of  = 2 N/m, 

and an elastic constant of )1/( 2Y = 1011 N/m2 the critical stress amounts to 

2.5 GPa. Stress of this order of magnitude builds up in epitaxial layers with misfits 
of a few percent. Such films are therefore prone to show ATG instability if held at 
higher temperatures to allow for sufficient surface diffusion [10.29].  
 The growth of the ATG instability shows a highly nonlinear behavior due to the 
nonlinear nature of the diffusion equation and the nonlinearity of the chemical 
potential in terms of the height profile (10.43). Some of that nonlinearity is re-
vealed even in the simple scaling considerations above: the energy gain increases 
quadratic with the depth of the protrusion (10.55). Because of the nonlinearity of 
the problem, an initially sinusoidal profile develops a cusp at the bottom that 
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quickly turns into a crack like feature, which (for a semi-infinite solid) grows with 
ever increasing speed. This is demonstrated in Fig. 10.17, which partly reproduces 
a selection from the profiles calculated by Yang and Srolovitz [10.30]. The times 
are given in units of  

2(t)
T

4
0 / Lt (10.57) 

The cusp develops at about t = t0 and quickly turns into a grove, then into a crack. 
The dramatic increase in speed is highlighted by the very small time difference 
between the two last profiles which differ merely by 0.002t0. Concomitant with 
the increase in speed the radius of the crack at the tip decreases to eventually col-
lapse into a singularity. This behavior is at variance with the experimental obser-
vation that cracks propagate with a defined speed that depends on the driving 
force and saturates at a fraction of the speed of the Rayleigh wave (Sect. 7.1.4). It 
was therefore not clear for some time whether crack development and propagation 
can be understood as an ATG instability. Brener and Spatschek [10.31] showed 
that the singular behavior of conventional ATG-theory is removed by introducing 
a kinetic energy term into the expression for the chemical potential (10.49). In 
their theoretical approach, the crack propagates with a finite speed that is a func-
tion of the driving force. The ATG-instability as such reappears in their theory as 
a bifurcation of cracks.  
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Fig. 10.17. The growth of a crack-like feature in the sinusoidal height profile of a solid 
under stress that amounts to 1.7 crit (after Young and Srolovitz [10.30]). 
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It may be surprising that the phenomenon of crack propagation that most people 
would intuitively associate with bond breaking rather than with diffusion should 
boil down to a stress-induced diffusion problem. After all, cracks develop and 
progress at low temperatures, where there is no diffusion. However, as Brener and 
Spatschek pointed out, an enormous energy is released at the progressing tip of the 
crack that should bring the local temperature at the tip close to the melting tem-
perature, independently of the temperature of the environment. Surface diffusion 
right at the tip should therefore by quite high. Furthermore, the mathematics of 
surface diffusion that enters the theory may stand for a wider range of transport 
mechanisms that include bulk diffusion and plastic flow of material. 

10.3 The Ehrlich-Schwoebel Barrier  

10.3.1 The Concept of the Ehrlich-Schwoebel Barrier  

The elegance and simplicity of the theory of profile decay is owed to the fact that 
all atomic processes are hidden in the transport coefficient L which is assumed to 
be independent of the azimuthal and polar orientation. In particular, the latter as-
sumption cannot be justified on general grounds. A surface that is vicinal to a low 
index orientation consists of terraces and monatomic steps. We exclude the possi-
bility of faceting and the formation of step bunches for the moment. A profile on 
the surface is then equivalent to a variation in the local density of steps 
(Fig. 10.18). The decay of a profile on a surface therefore requires atom transport 
not only across the terraces but also across steps, in other words intralayer and 
interlayer transport. 

Fig. 10.18. Microscopic view on an undulated surface. Profile decay requires intralayer as 
well as interlayer mass transport across step edges (arrow). Interlayer mass transport re-
quires to overcome an activation barrier which is often larger than the activation barrier for 
intralayer transport. The additional activation energy is called ES-barrier. 
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The activation barriers for intralayer and interlayer transport are in general differ-
ent. The effective diffusion coefficient must therefore depend on the local 
concentration of steps, hence on the local orientation of the surface. The transport 
coefficient LT is independent of orientation only if traversing the steps either in-
volves the same activation barrier than diffusion on the terraces or if the activation 
barrier for interlayer transport is small and the concentration of step small. The 
difference (!) in the activation barrier for transport across a step edge and on ter-
races is called the step edge barrier or Ehrlich-Schwoebel barrier ("ES-barrier" in 
the following) after the first authors of two papers that appeared in 1966. The pa-
per of Ehrlich and Hudda describes experimental FIM-observations on the reduced 
diffusion across steps [10.3]. The second paper by Schwoebel and Shipsey postu-
lates the existence of a step edge barrier and discusses its consequences for 
epitaxial growth [10.32]. This truly remarkable paper anticipates many experimen-
tal and theoretical developments of the decades that followed. Figure 10.19 is 
adapted from Fig. 1 of that paper and shows schematically the potential for an 
atom near a step edge. The figure is actually quite ingeniously designed, as it sug-
gests the correct physics for the wrong reason: The ES- barrier appears to arise 
from the low coordination of the adatom when it "rolls" over the step site.  

Energy

ED

EES

EA

Fig. 10.19. Schematic drawing of the potential for an atom near a step edge with an ES-
barrier EES. EA is the binding energy to a step site and ED the activation energy for terrace 
diffusion. The dashed lines represent a potential with an attachment barrier and with a 
higher or lower binding energies at the last binding site at the upper step edge. All three 
alternatives may exist independently. An ES-barrier may exist also for vacancy diffusion. 

A three-dimensional picture reveals however that the nearest neighbor co-
ordination in the transition state at the upper step edge is just the same as in the 
transition state on the terrace. The binding energy in the transition state at the step 
edge is lower than on a terrace only because of the fewer number of next-nearest 
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neighbors compared to the transition state in terrace diffusion. An alternative in-
terpretation of the lower binding energy is that embedding energy of the atom in 
the transition state at the step edge is lower because of the lower electron density 
there. The higher binding energy EA at the lower edge of a step follows from the 
larger number nearest neighbors. The dashed lines in Fig. 10.19 show the possi-
bility of an attachment barrier for adatoms approaching the step from the lower 
terrace and a site of higher binding energy next to the upper step edge. All three 
alternatives may exist independently of each other. 
 The set of three energies EES, ED, and EA is the minimal set of energies and 
activation energies required for the description of profile decay and epitaxial 
growth. The one-dimensional potential suffices for the rationalization of some 
phenomena. Other phenomena such as certain growth instabilities require the con-
sideration of the full three-dimensional potential landscape. 

10.3.2 Mass Transport on Stepped Surfaces 

We consider the effect of an ES-barrier on the transport coefficient LT and the 
effective diffusion coefficient Deff on a stepped surface. The problem is easily 
treated by analogy to an electrical network consisting resistive elements i in series 

for which the conductance is known [10.33]. The total conductance 1
totR  is 
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. (10.58) 

The result for 1
totR  is independent of the order in which the individual conductors 

appear in the sequence. By analogy we can write for the mean jump rate  
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Here, i is the occupation probability of site i and i,i+1 the jump rate from site i to 
site i+1. To calculate  one may either consider transport from left to right or 
right to left in Fig. 10.19. Choosing the latter we notice that the coverage at the 
lower edge of the step site is 1)(s

i . For the ns step sites we have therefore  
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with )(
0

s  the prefactor for jumping over the step edge. For the st nNn  terrace 

sites the coverage )(t
i  is the equilibrium coverage of the diffusing species 
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TkE BA /(t)
eq e . (10.61) 

This equation holds under the assumption that 1)(t
i  which is extremely well 

fulfilled in all realistic situations. The jump rate on the terrace is 
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with (t)
0  the prefactor for terrace diffusion. Summing up one obtains for 
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where Nnc /ss  is the step concentration. The mean jump rate can also be ex-

pressed in terms of the mean jump diffusion coefficient (t)
effD  of the diffusing 

species 

(t)
eq

2/2(t)
eff /e BA llD TkE  (10.64) 

in which (t)
eq  is the equilibrium concentration on the terraces. We note in passing 

that in three dimensions the energy, which determines the equilibrium concentra-
tion on terraces, is the work required to bring the diffusing species from a kink site 
to a terrace (Sect. 4.3.4, eq. 4.72). This issue is not well represented by the one-
dimensional potential in Fig. 10.19. We see from (10.62) that for EES = 0 or small 

step concentrations cs,
(t)
effD  equals the tracer diffusion coefficient 2* lD  on 

the terraces introduced in (10.6) with the jump length l equal to the distance be-
tween one site and the next. If the ES-barrier is large, the effective diffusion 
coefficient is determined by EES but also by the step concentration or by the slope 
of the profile. With the help of (10.31), we can express the general transport coef-

ficient (t)
TL  in terms of (t)

effD

Tk

l

Tk
DL

Bs

2

Bs

(t)
eq(t)

eff
(t)
T . (10.65) 

The transport coefficient depends on the step concentration and thus on the slope 
of the profile if EES is not small. This complicates the solution of the macroscopic 
equation for profile decay (10.37). Experimental results on profile decay are there-
fore difficult to interpret in terms of microscopic parameters, even in simple 
models.  
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10.3.3 The Kink Ehrlich-Schwoebel Barrier  

The equivalent of an ES-barrier exists also in mass transport along step edges. 
There, transport of atoms (or vacancies) around a kink may be hindered by an 
additional activation barrier relative to the activation barrier for transport along 
straight steps. In analogy to the Ehrlich-Schwoebel barrier at steps, the barrier at 
kinks is called the kink Ehrlich-Schwoebel barrier or kink-rounding barrier. Theo-
retical papers refer to the phenomenon mostly as Kink Ehrlich-Schwoebel Effect
(KESE). The potential for atom transport along a step is schematically the same as 
for step crossing (Fig. 10.19). Mass transport along steps is generally believed to 
occur via adatoms at step edges and we discuss only this case in the following. 
The energy EA is then the difference in binding energy of an atom at a kink site 
and the straight step and determines the equilibrium concentration of atoms at 

steps (st)
eq .

1if,e (st)
eq

/(st)
eq

BA TkE . (10.66) 

In the nearest neighbor bond-breaking model, EA equals twice the kink energy k.
The mean diffusion coefficient for transport along steps is calculated the same 

way as for interlayer transport on vicinal surfaces. We note, however, that (st)
eq  is 

not quite as small as the equilibrium concentration on terraces. There is further-
more the reduced dimension. Two adatoms at a step site have good chance to meet 
before they recombine with existing kinks and form a nucleus of a short step with 
two new kinks. Contrary to the transport across steps, transport along step edges 
involves therefore perpetual kink generation and annihilation, rather than just 
transport across an existing kink structure. With this caveat one can write  

2(st)
eff

(st)
eq / lD  (10.67) 

where (st)
effD  is the effective diffusion coefficient along steps,  
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Here, (st)
0  and (st)

dE  are the prefactor and the activation energy for diffusion 

along the straight step, (k)
0  and (k)

ESE  the prefactor and the activation energy for 

rounding a kink site, and Pk is the concentration of kinks. As for diffusion on 
stepped surfaces, we have the complication that transport along kinked steps de-
pends on the kink concentration. We have argued in Sect. 10.3.2 that the chemical 
potential of the protrusion arising from the incorporation of an island can be 
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treated as that of a step running essentially along the direction of dense packing. 
For the analysis of protrusion decay it might be consequent to take the kink con-
centration Pk as that of a step in equilibrium. The transport coefficient for 
transport along step edges then becomes 

.e21e
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(st)
0

(k)
0/)((st)

0
B||

2

B||

(st)
eq(st)

eff
(st)
T

Bk
(k)
ESB

(st)
dA TkETkEE

Tka

l

Tka
DL

 (10.69) 

This relation gives us the possibility to express the characteristic time for the de-
cay of a non-equilibrium bump in a step (10.47) 
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10.3.4 The Atomistic Picture of the Ehrlich-Schwoebel Barrier  

Transport of atoms across a step edge may proceed in many different ways and it 
is not at all clear what atomic process should have the lowest possible ES- barrier 
and should therefore be rate determining in experiments. Figure 10.20 displays 
some commonly considered possibilities for steps on fcc(100) and fcc(111) sur-
faces. The three cases, hopping over the step edge, exchange at a straight step, and 
exchange at a kink site, represent a minimum set of possibilities which doubles 
already in the case of (111) surfaces because of the crystallographic different A- 
and B-steps. By inspection of Fig. 10.20, one can easily envision further possibili-
ties. Moreover, there are steps of different orientation and the mass transport may 
be via vacancies rather than by adatoms. To complicate the issue even further, it is 
not only the activation barrier, which decides what the easiest pathway is. The 
binding energy in the initial state before the jump also counts because it deter-
mines the population in that site.  
 For example, in an ab-initio calculation Feibelman has found an extremely low 
ES-barrier of 0.02 eV for exchange crossing of the A-step on Pt(111) (XA, last 
column in Table 10.3). However, by mapping out the entire landscape of binding 
energies Feibelman also found that the last position before an XA-jump has a 
0.2eV lower binding energy so that the product of equilibrium coverage and jump 
rate still calls for an appreciable ES-barrier. 
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(a) (b)

KXA

KXB

XAHA

XB

HB

HX

KX

Fig. 10.20. A basic set of possibilities for adatoms to traverse densely packed steps on (a)
fcc(100) and (b) fcc(111) surfaces. "H" stands for hopping, "X" for exchange, and "KX" for 
exchange at a kink site. On the (111) surface the type of step (A or B) is added to the nota-
tion. 

In order to establish the activation energy for a certain pathway in a total energy 
calculation one has to establish the minimal path in the sense of the transition state 
theory (Sect. 10.1.3), in other words one has to find the minimal energy with re-
spect to the coordinates of several atoms. This amounts to a substantial effort. In 
most cases semi-empirical model potentials such as provided by the embedded 
atom method (EAM) or the effective medium theory (EMT) were employed. Given 
the smallness of the energy differences involved, the predictive value of such 
model potentials remains questionable, however. A comparison of the penultimate 
and the last row in Table 10.3 illustrates the point: EAM model potentials predict 
that the lowest energy path on Pt(111) should be exchange crossing of the B-step 
[10.34] in gross disagreement with ab-initio theory [10.35]. Table 10.3 also con-
tains the ES-barriers for hopping "H", exchange "X" and exchange at kinks "KX" 
for steps on Cu(100), Ag(100) and Ni(100) surfaces calculated in the EMT model 
[10.36]. The study shows that while hopping and exchange crossing of straight 
steps require an ES-barrier, no such barrier is involved at kink sites. If correct, this 
would mean that the step-crossing rate should depend on the step orientation. 
 The energies listed in Table 10.3 are just energies, not free energies. Concern-
ing the effect of an ES-barrier, e.g. on the development of the surface morphology 
during epitaxial growth, the prefactor that is determined by the entropic contribu-
tion to the free energy in the transition state is of equal importance. 
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Table 10.3. ES-barriers in eV for hopping "H", for exchange "X", and exchange at kink 
sites "KX" for steps on some fcc(100) surfaces and of the A- and B-steps on Ag(111) and 
Pt(111). TH and TV denote the activation energies for hopping diffusion of adatoms and 
vacancies, respectively, and SV and KV the activation barriers for the filling of a vacancy 
next to a step by atoms from a straight step and a kink site. The set is a somewhat arbitrary 
selection from a large volume of calculations. Concerning the most common metal systems, 
a more complete listing that includes experimental data up to 2001 was provided by M. 
Giesen [10.12].

 Cu(100)a Ag(100)a Ni(100)a  Ag(111)b Pt(111)c Pt(111)d 
H 0.179 0.114 0.289 HA 0.44  0.24 
X 0.232 0.149 0.113 AB 0.43  0.49 

KX -0.021 -0.044 -0.160 XA 0.31 0.22 0.02 
TH 0.399 0.367 0.631 XB 0.06 0.10 0.35 
TV 0.482 0.412 0.655 KXA 0.19   
SV 0.166 0.170 0.178 KXB 0.05   
KV 0.143 0.198 0.230     

(a: [10.36], b: [10.37], c: [10.34], d: [10.35]) 

U. Kürpick has addressed this problem for straight steps on Ir(111) surfaces 
[10.38]. She found that on A-steps the activation energy is lower for hopping than 
for exchange (0.90 eV vs. 1.58 eV). However, the prefactor for exchange is higher 
by a factor of 35 so that exchange prevails at higher temperatures and hopping at 
lower. On the B-steps, the situation is reversed. Activation energies for kink sites 
are not known presently. Even less is known about kink Ehrlich-Schwoebel barri-
ers. In this somewhat unsatisfactory situation, it is pleasing that there are 
experiments from which activation energies for terrace diffusion and for the low-
est energy path across and along steps can be determined. These experiments are 
Ostwald ripening in defined geometries, the decay of stacks of islands and step 
equilibrium fluctuations. The experiments carry the additional advantage that they 
are not restricted to surfaces in vacuum.  

10.4 Ripening Processes in Well-Defined Geometries  

10.4.1 Ostwald Ripening in Two-Dimensions  

The term Ostwald ripening stands for coarsening processes in an ensemble of 
particles of different sizes [10.39]. Coarsening occurs because particles of differ-
ent size have a different Gibbs-Thomson chemical potential (Sect. 4.3.2). The 
equilibration process may be through evaporation/condensation or via diffusion. A 
typical Ostwald ripening situation occurs after nucleation. The broad distribution 
of initial sizes equilibrates towards a more homogeneous distribution. Simultane-
ously, the number of particles per area or volume shrinks because small particles 
disappear at early times due to their high chemical potential, and the mean particle 
size increases. The theory describing the ripening of the particle size-distribution 
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is complex because each particle sees another environment of particles around it 
and each individual decay or growth process has an effect on all other particles 
[10.40]. With respect to surfaces, the material has been reviewed in 1992 by 
Zinke-Allmang et al. [10.41].  

t = 0s t = 720s

t = 1440s t = 1800s

Fig. 10.21. A series of STM images of about 60 nm  60 nm of a Cu(111) surface showing 
an adatom island inside a vacancy island at different times t. The temperature was 303 K. 
Vacancy islands and adatom islands where produced by sputtering and subsequent evapora-
tion of Cu. The images are excerpts from a movie of a larger area from which these 
particular frames were selected for quantitative analysis (after Schulze Icking-Konert 
[10.12, 43].  

The complexity of the problem however results entirely from the many particle 
aspect. The ripening of a single particle in a well-defined environment is a much 
simpler problem. With the help of certain preparation steps and the STM as means 
for observation it is possible to study the decay of an island or a cluster on a sur-
face under well-defined conditions. Figure 10.21 shows a Cu(111) surface with an 
adatom island that stays approximately in the center of a vacancy island until is 
disappears by evaporation of adatoms to the terrace which surrounds the island. 
The atoms attach to the perimeter of the vacancy island, which shrinks in size 
accordingly. The system was prepared by sputtering off less than a monolayer to 
produce a distribution of vacancy islands. On that surface a sub-monolayer 
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amount of copper was evaporated which produced adatom islands on the surface. 
Some of these islands reside inside a vacancy, most of those (by virtue of the 
properties of the nucleation process, Sect. 11.1.1) near the center of the vacancy 
island. During decay the adatom islands undergoes a Brownian motion with re-
spect to its position (Sect. 10.1.5). By chance, some of the adatom islands stay 
close to the center of the vacancy islands during their entire life. Those islands are 
the ideal objects for quantitative studies. The frames shown in Fig. 10.21 are se-
lected excerpts from a movie consisting of many images from a larger area. All 
islands have the equilibrium shape, save for fluctuation and therefore a defined 
chemical potential. The advantage of a quantitative study of island decay in a va-
cancy island is that the boundary of the vacancy island provides a defined 
chemical potential. Because of the nearly round shape of the islands and because 
of the nearly centrosymmetric geometry, the diffusion problem can be analytically 
treated in cylindrical coordinates with circular islands. Studies of this type, at first 
without the vacancy island, were introduced by K. Morgenstern, G. Rosenfeld and 
G. Comsa on Ag(111) surfaces [10.42]. 
 As the islands in Fig. 10.21 have their equilibrium shape one can attribute a 
single Gibbs-Thomson chemical potential to an island that depends solely on the 
size. By applying the Gibbs-Wulff theorem, we have derived in Sect. 4.3.3 the 
chemical potential of a monolayer adatom island as 

00s / y  (10.71) 

where y0 is the distance of the point of least curvature to the center and 0 is the 
line tension of the step at the point of least curvature. By definition, the chemical 
potential of a straight step is set to zero. Since the chemical potential is uniform 
the same relation holds for A- and B-steps on (111) surfaces. In the case of 
Cu(111) surfaces however, the line tension is nearly the same for A- and B-steps 
and the islands are (truncated) hexagons. The chemical potential of a vacancy 
island has the same form but with a negative curvature term. 

00s / y  (10.72) 

These chemical potentials determine the equilibrium concentration of the diffusing 
species on the surface right next to the edge of the perimeter. To simplify the dis-
cussion we assume that the diffusing particles are adatoms on the surface that 
detach from the island perimeter. The argument can be pursued the same way if 
the diffusion current is carried by vacancies. In all realistic situations, the equi-
librium coverage of adatoms on the terraces eq  is extremely small. A realistic 

order of magnitude for the equilibrium coverage with adatoms on Cu(111) is 

eq = 10 12. The chemical potential of these adatoms is therefore that of an ideal 

lattice gas 

eqB0 lnTk . (10.73) 
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By definition, 0 is the chemical potential of the adatoms in equilibrium with a 
straight step, which is given by is the work that is required to bring an atom from a 
kink site to a terrace site. In terms of the static potential defined before 0 = EA.
Hence, the equilibrium coverage at the perimeter of an island is 

TkyTk
s

B0

0

B

0

eeeq . (10.74) 

The plus sign stands for an adatom island and the minus sign for a vacancy is-
lands. Diffusion from the center island to the perimeter is governed by the Laplace 
equation (10.21) which reads in terms of the coverage 

),(),( * yxDyx& . (10.75) 

Because of the low concentration, the relevant diffusion constant is the jump dif-
fusion constant D*. The flux of atoms from the center island changes only very 
slowly in time. The diffusion problem is therefore solved by the stationary diffu-
sion equation, which is the Laplace equation. Because of the centrosymmetric of 
the problem, we introduce cylinder coordinates.  
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The solution has the form 

21 ln crc . (10.77) 

The constants c1 and c2 are given by the coverages at the inner island with radius ri

and the outer vacancy island with the radius ro.
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The inner island decays because of a net current flow, which is the difference be-
tween the attachment current and detachment current. The attachment current 
density jatt is given by the rate of successful jumps towards the island per length 
unit. With the jump rate )(T  and the fraction of successful jumps denoted by the 

sticking coefficient si one obtains 

||iiatt /)()( arTsj . (10.79) 
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The sign in (10.79) is chosen such that a current toward the island are counted as 
positive. In equilibrium, the attachment current and the detachment current are 
equal. The detachment current is therefore 

||ieqidet /)( arsj  (10.80) 

The net current density is therefore 

)()(/))()()(( i||ieqiidetattnet rTarrTsjjj  (10.81) 

The second part of the equation is the condition that the net flux from the island 
must be carried away by diffusion. From (10.81), (10.77) and (10.78) one obtains 
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A relation equivalent to (10.81) holds for the net current density at the perimeter 
of the vacancy island, from which follows 
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with so the sticking coefficient at the outer boundary. If the boundary is an ascend-
ing step as for the case of an island in a vacancy island then si = so. By inserting 
(10.83) into (10.82) one obtains )( ir  and by inserting that result into the first 

part of (10.81) one arrives at the following expression for the net current density 
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The number of atoms in the center island therefore decays with a rate 
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 (10.85)  

We have introduced the equilibrium coverages and scaling factor  that relates the 
radii r to y0. If the radii r are chosen to describe hexagonal islands of the same area 
as a circle then
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for hexagonal and square shaped islands, respectively. In (10.85) we have also 
expressed the rate in terms of an activation barrier and a prefactor. For the relation 
between the number of particles in the island and the equivalent radius appearing 
in the centrosymmetric diffusion problem it suffices to calculate N for circular 
islands. 
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Depending on the magnitude of the sticking coefficient, one distinguishes two 
cases that are considered in the next sections. 

10.4.2 Attachment/Detachment Limited Decay 

If s << 1 one can neglect the logarithm in the denominator of (10.85) and obtains  
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The attachment/detachment limited decay is usually discussed by making two 
further assumptions. The assumptions are that ro >> ri and that the Gibbs-
Thomson exponents are small. As Tka B|| 10  at room temperature, the radius r

must be large compared to ten atom diameters to have the latter assumption ful-
filled. This means the island should more than about 1000 atoms.  
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In the attachment/detachment limited case, the decay rate of the number of atoms 
in the island or of the island area is therefore independent of the island size. The 
rate increases as the island becomes very small because of the exponential form of 
the Gibbs-Thomson factor. The independence of the rate on the size is considered 
as being indicative of detachment/attachment limited decay.  
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Fig. 10.22. Excerpts from STM images of a Cu(100) surface taken at 343 K and the decay 
rate as function of time. The inset shows the potential for vacancy migration and incorpora-
tion into an ascending step. The constancy of the rate is indicative of 
detachment/attachment limited decay. The fact that islands C and B decay with the same 
rate as the islands A and B shows that no ES-barrier exists (after Klünker et al. [10.9]). 

An example for attachment/detachment limited decay is Cu(100). Figure 10.22 
shows STM images of an ensemble of islands. All islands decay with same rate, 
which remains constant through their entire life. Since an attachment barrier for 
adatoms would be at variance with theory and furthermore difficult to understand, 
it was concluded that mass transport on Cu(100) proceeds via vacancies [10.9]. 
The attachment of a vacancy to an ascending step, i.e. the filling of the vacancy by 
a step atom involves the motion of atoms over sites of lower coordination, which 
gives rise to an activation barrier (see inset, compare also Table 10.3). The results 
in Table 10.3 assign a higher activation energy to vacancy diffusion compared to 
adatom diffusion, but the formation energy is much lower for vacancies, presuma-
bly because a considerable relaxation of the atoms surrounding the vacancy. The 
islands C and B can decay only via interlayer transport. Their decay rate is the 
same as for the islands A and B, which can send their atoms to an ascending step. 
Hence, there is no ES-barrier for this decay, which is again consistent with mass 
transport through vacancies. The small islands on top of another island decay be-
cause vacancies are generated at the boundary of the island below. The vacancies 
migrate to the boundary of the decaying island where they are filled by an atom 
from the edge. No explicit interlayer transport and thus no ES-barrier is involved 
in the process.  
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10.4.3 Diffusion Limited Decay 

If the sticking coefficients are of the order of one, the terms containing s can be 
neglected in the denominator of (10.85) and one obtains 
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In the limit of small exponents this becomes 
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In most of the past literature, the equation was approximated further by neglecting 
the logarithmic term in the denominator. The decay rate is then 

3/2
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with tf the time where the island vanishes. This is however an oversimplification.  
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Fig. 10.23. Decay rate of the center island depicted in Fig. 10.21 (circles) and of the sur-
rounding vacancy island (squares). The dotted line is the (tf - t)

2/3 time dependence which is 
commonly attributed to diffusion limited decay. The curvature is much too large, however. 
The solid and dashed lines result from a numerical integration of (10.90) with two different 
step line tensions. 
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In reality, the decay rate is a much less curved function. Figure 10.23 shows the 
experimental decay rate of the mean radius of the center island in Fig. 10.21 as 
circles [10.12, 43] together with (10.93) as a dotted line. The latter is fitted to 
match the first and last experimental point. The experimental decay curve is 
hardly distinct from a linear decay save for the last data points before the island 
vanishes. The solid line is the result of a numerical integration of (10.91) with the 
radius of the vacancy island and the line tension taken as ingredients from experi-
mental data [10.44]. The numerical integration describes the initial shape of the 
curve quite well, but the final decay is not well represented. The entire curve is 
well portrayed by a numerical integration if a||  is set heuristically to 0.5 eV. This 
peculiar behavior has been found consistently for all islands on Cu(111). The rea-
son for the failure of the theory is not clear. One possibility is that the curvature is 
due to the elastic energy associated with the strain fields even around homoepi-
taxial islands (Sect. 3.4.1, Fig. 3.18). Another possibility is that the effective 
chemical potential of small islands is larger as they may not retain their equilib-
rium shape during their final decay. Since the decay curve does not deviate much 
from a linear slope for the most part of the lifetime of an island, the shape of a 
decay curve is not a safe indicator for the decay mechanism. A much better indica-
tor is the presence of absence of an influence of the environment on the decay rate 
of an island. 
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Fig. 10.24. Interaction between islands during diffusion limited decay. During the final 
moments of its life, the chemical potential of island "1" becomes very large. If the decay is 
diffusion limited then this large chemical potential transfers immediately into a larger ada-
tom concentration around this island. The normal decay of neighboring islands is 
interrupted by a hick-up (after Schulze-Icking-Konert et al. [10.45]).
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Figure 10.24 illustrates the effect for diffusion-limited decay. The figure shows 
the decay curves of three islands in an ensemble of several islands on a stepped 
surface (see insert). The smallest island denoted as #1 disappears first. During the 
final stages of its life, the island possesses a high chemical potential. In the case of 
diffusion-limited decay, the concentration of adatoms on the terrace next to the 
island perimeter is in equilibrium with the chemical potential of the island and 
therefore becomes suddenly very large at the end of the life. Because of the high 
adatom concentration, neighboring islands interrupt their normal decay and start 
growing for a short while until the dying island has disappeared completely. This 
effect does not occur in attachment/detachment limited decay since there the ada-
tom concentration stays practically unaffected by the chemical potential of a 
single island. The presence or absence of hick-ups is therefore a safe indicator for 
the decay mechanism. 
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Fig. 10.25. Arrhenius plot for the decay rate of islands of a standard size on Cu(111) sur-
faces (after Schulze-Icking-Konert et al. [10.45]). The activation energy is the sum of the 
activation energies for diffusion on the terraces and the formation energy of adatoms 
(10.93). 

By measuring the decay rate of islands at different temperatures, one can deter-
mine the activation energy for the decay process. For diffusion-limited decay with 
adatoms as the transporting particles the activation energy is 

ad
(t)
dact EEE  (10.94) 

with (t)
dE  the activation energy for terrace diffusion and Ead the formation energy 

of an adatom on the terrace from a kink site. In case of attachment/detachment 
limited decay, the activation energy of the attachment process adds to the sum 
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(10.94). In other words, the total activation energy is the energy barrier for a com-
plete detachment process (see inset in Fig. 10.22). Figure 10.25 shows an 
Arrhenius plot for the decay of islands on the Cu(111) surface [10.45] from which 
one obtains Eact = 0.76 eV and a prefactor of about 2.5 1012 s 1.

10.4.4 Extension to Noncircular Geometries 

The quantitative analysis of island decay is one of the few methods to establish 
formation and diffusion energies from experiment. Since it is not always possible 
to prepare surfaces with islands centered in vacancy islands, it should be useful to 
consider the feasibility of quantitative analysis for other geometries. One possibil-
ity is to study the final decay of an island that, by chance, is surrounded by a 
wreath of larger adatom islands. An example is shown in Fig. 10.26. During the 
last stage of the decay, the decay rate of the encircled island is as if the islands 
were placed in a vacancy island whose radius is the mean distance of the sur-
rounding island from the center. The chemical potential of the "vacancy island" is 
approximately than of a straight step. One can define a normalized decay rate as 

j jrr

TkEtrrtr
dt

dN

dt

dN

o,o

Bactioi
norm

with

/exp)(/ln)(
 (10.95) 

The sum extends of the radial distances to the neighboring islands ro,j shown in 
Fig. 10.26.  

ro,j

10nm

Fig. 10.26. STM image of a Au(100) electrode in 50 mM H2SO4 after lifting the reconstruc-
tion by a positive potential sweep (Sect. 4.3.2). The encircled island is smaller than the 
surrounding islands and decays therefore. During the last stage of its decay, the rate is as if 
the islands were placed in a vacancy island of the mean radius defined above (courtesy of 
Margret Giesen). 
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The normalized decay rate defined in (10.95) is time independent and proportional 
to the activation term. Hence, the activation energy follows from an Arrhenius plot 
of the normalized decay rate. If the database consists of a large number of STM 
images of the same area a more elaborate procedure is fruitful. Shapes and posi-
tions of the initial island configuration are transferred into a computer program. 
The sizes of the islands determine their chemical potential and thus define the 
adatom concentrations at the perimeters, modulo the formation energy. These 
concentrations set the boundary conditions for the Laplace equation, which is 
solved numerically. The gradient of the concentration integrated around the pe-
rimeter of each island defines the current away or towards each island, modulo the 
jump frequency. With these currents the size of the islands after the next time step 
are calculated. Again, the chemical potentials are determined from the sizes, and 
so forth. Line tension and the activation term are fitted until the optimum agree-
ment with the experimental decay curves is achieved. The method works very well 
if one takes the size of outer islands in the series of STM frames completely from 
experiment. The method also works well if the islands reside on relatively narrow 
terraces such as shown in the inset of Fig. 10.24, since the steps set defined 
boundary conditions. One can even determine the ES-barrier that way by incorpo-
rating a boundary condition of flux conservation in the spirit of (10.81), rather 
than by fixing the concentration at the step edges [10.45]. A better experimental 
access to the ES-barrier is provided by studying the interlayer mass transport in 
stacks of islands. 

10.4.5 Interlayer Transport in Stacks of Islands 

Once the parameters governing the decay of islands in vacancy islands are known 
the (effective) Ehrlich-Schwoebel barrier can be determined from the decay of 
islands that reside on top of another island. Stacks of islands develop in homoepi-
taxial growth if an ES-barrier exists (Sect. 11.1.3). In brief, the reason is that 
because of the existence of an ES-barrier the adatom concentration on an existing 
island becomes large during growth so that a second island nucleates on top of an 
existing island, and so forth. Figure 10.27 shows the morphology of a Cu(111) 
surface after deposition of about 20 monolayers of Cu at room temperature. The 
surface exposes up to eight layers, and the top four to five layers are organized in 
stacks. The lowest island in the stack can donate its atoms to an ascending step 
and therefore decays without interlayer transport involved. All higher layers in the 
stack can decay only by interlayer transport.  
 The decay of the top layer island is described by (10.85) if the sticking coeffi-
cient to the outer perimeter so is interpreted as the probability to surmount the ES-
barrier relative to the probability for diffusion on a terrace. We denote this prob-
ability as  

TkE Bss /
0

ESe  (10.96) 
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where s0 is the ratio of the prefactors for jumping over ES-barrier (ES)
0  and the 

prefactor for terrace diffusion 0

0
(ES)
00 /s . (10.97) 

The decay rate for the top layer island in a stack is therefore described by 
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TkTkE  (10.98) 

where rtop and r2nd are the time dependent radii of the top layer island and the next 
layer island below, respectively. 

100 nm

Fig. 10.27. STM image of a Cu(111) surface after deposition of about 20 monolayers of 
copper (courtesy of Margret Giesen). The decay of the stacks of islands offers rich opportu-
nities to study interlayer mass transport quantitatively.  

With the time dependence of r2nd(t) taken from experiment and the rest of the pa-
rameters from the experiments on island decay in a vacancy island, the coefficient 
s can be determined by fitting a numerical integration of (10.98) to the experi-
ment. Figure 10.28 shows an Arrhenius plot of results obtained that way [10.46]. 
The activation barrier is determined to be about 0.22 eV. This number is a 
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weighted average over the many possibilities for interlayer transport (Fig. 10.20) 
and therefore an effective barrier. The prefactor s0 is about 1518.
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Fig. 10.28. Arrhenius plot of the sticking factor s, which describes the reduction of inter-
layer mass transport compared to terrace diffusion. The activation energy is the Ehrlich-
Schwoebel barrier EES = 0.224 eV [10.46]. 

10.4.6 Atomic Landslides 

The existence of an ES-barrier is of great importance for the morphology of epi-
taxially grown films as well as for some growth instabilities to be discussed in 
Chapter 11. It was therefore quite a surprise to see that the ES-barrier is bypassed 
under certain circumstances [10.47]. Figure 10.29 shows the decay of a stack of 
two islands on Cu(111). Because of the ES-barrier, the top layer island decays 
with a much slower rate than the islands below. At a particular point in time, the 
boundary of the upper islands appears to touch the boundary of the lower island 
(frame II in Fig. 10.29). Then the decay rate increases by about two orders of 
magnitude. A short time later (frame III) the upper island detaches from the 
boundary of the island below and the decay rate turns back to normal. Finally, the 
upper island touches the boundary of the lower again and the rapid decay contin-
ues until the upper island has disappeared. Because of the rapid decay of the upper 
island atoms accumulate in the island below and its size increases until the upper 
island has vanished.  
 Two things are remarkable about this rapid decay process. One is the large 
increase in the decay rate by a factor that is approximately 1/s, hence as if the ES- 

18 In the original work the factor was quoted, apparently erroneously, as s0 = 3.5.
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Fig. 10.29. Rapid interlayer transport by atomic landslides on Cu(111) at T = 314 K 
[10.47]. The STM images on the left each cover an area of 80 nm 80 nm. Frame (I): The 
upper island in the stack of two resides near the center of the island below and the decay
rate is small due to the ES-barrier. (II) The rate increases by more than an order of magni-
tude when the upper island touches the boundary of the lower island. (III) The upper island 
has detached itself from the boundary of the lower and the decay is slow again. (IV) The 
upper island stays at the boundary of the lower and decays rapidly until it has disappeared. 

(a) (b) (c)

Fig. 10.30. Processes that might cause the observed rapid decay: Process (a) and (b) in-
volve a transfer of atoms from a kink in the upper island to a kink site in the lower island 
[10.48, 49] , process (c) involves merely straight steps in close proximity [10.50].  

barrier had ceased to exist. Secondly, the fact that the upper island remains per-
petually at the boundary of the lower islands requires explanation. The rapid decay 
occurs only when the boundary of the upper island is close to the boundary of the 
lower. The transfer of atoms from the upper island to the lower should immedi-
ately increase the distance between the boundaries, hence the process should 
quench itself. The continuation of the process over a long time connected with the 
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ubiquity of the rapid decay appears to call for a short-range attractive interaction 
between steps that comes on top of the long-range elastic repulsion (Sect. 3.4.2). 
The nature of this attraction is not understood at present. 
 Several propositions have been made for the atomic processes that might lead 
to rapid decay [10.48-50]. All propositions have in common that the transport of 
atoms is directly from the step of the upper island to the step edge of the lower 
island without the formation of an adatom on the terrace as an intermediate step. 
Which of the various processes should be rate determining is difficult to decide as 
not only the magnitude of the activation barrier counts but also the frequency by 
which one or the other configuration is realized and reestablished, as well as the 
completely unknown prefactors that enter the rate.  

10.4.7 Ripening at the Solid/Electrolyte Interface 

The rates of many ripening phenomena on solid electrodes have been found to 
depend on the electrode potential. The thereby induced smoothening of the surface 
has been termed “electrochemical annealing” [10.51] in order to stress the appar-
ent similarity between the effect of the potential and a raise in temperature. Early 
quantitative investigations on electrochemical annealing concern the smoothening 
of rough gold and platinum electrodes [10.52-54]. More recently, the filling of 
STM-induced indentations and the decay of deposited islands were studied on 
Ag(100) and Au(100) electrodes [10.55-57]. Quantitative investigations on struc-
turally well-defined systems include equilibrium fluctuations of monatomic steps 
on Cu and Ag surfaces [10.58-61]. All studies report an approximately exponen-
tial increase of the rate of transport processes with the electrode potential. 
Considering the very different nature of the investigated processes, which involve 
different combinations of atomic processes with different activation energies one 
is lead to the conclusion that there should be a common, rather general cause for 
the exponential dependence, irrespective of the specific process, surface, and elec-
trolyte. In Sect. 4.3.6, we have shown that the common cause rests in the 
thermodynamic conditions of charged electrolyte surfaces held at constant poten-
tial. Because of this thermodynamic constraint, all defect formation energies and 
all activation energies for diffusion are renormalized by an electrostatic energy 
term that involves the difference in charge density on surfaces with and without 
defects (4.81, 4.82).  
 Ostwald ripening in two-dimensions offers an excellent opportunity to study 
the effect of the electrode potential in a quantitative manner. Au(111) and Au(100) 
surfaces are ideal test cases in that regard as the lifting of the reconstruction pro-
duces islands on the surface (Sect. 4.2.3) with a non-uniform size distribution 
which undergoes Ostwald ripening as time proceeds. The inset in Fig. 10.31 
shows an STM image of Au(100) in 50 mM H2SO4 after lifting the reconstruction. 
The image is the same as in Fig. 10.26. The normalized decay rate (10.95) during 
the final decay of islands such as the encircled one is plotted as a function of the 
electrode potential. Beyond a certain threshold, the decay rate increases exponen-
tially with the potential. The activation energy Eact for the decay process is the sum 
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of the formation energy of the diffusing species (here adatoms again) and the acti-
vation energy for diffusion. Following the argument in Sect 4.3.6 the formation 
energy 0 is 

)()()( 0
0

pzc00
zp

 (10.99) 

Here, pz is the dipole moment of the adatom in its ground state, 0 is the charge 
density on a flat (100) surface, 0 is the absolute permeability,  the electrode po-
tential and pzc the potential of zero charge. The activation energy for diffusion is 
correspondingly 

)()()( 0
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EE  (10.100) 
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Fig. 10.31. Normalized decay rate (see text) at room temperature as a function of the elec-
trode potential (with reference to the saturated calomel electrode, SCE). The dotted line is 
the mean of the data points between 300 and 400 mV. The dashed line is calculated in the 
model when fitted to the data point at 700 mV. The solid curve is the sum of the dotted and 
dashed line (see text). The inset is the same as Fig.10.24. It shows a STM image of one 
atom layer high islands on Au(100) in 50 mM H2SO4 that are produced by lifting of the 
reconstruction [10.11]. 



 10  Diffusion __________________________________________________________________________ 542

Here, pz is the difference between the dipole moment of the adatom in the transi-
tion state and the ground state. The potential dependence of the sum of 0 and 

(t)
diffE  is therefore solely determined by the product of the charge density and the 

dipole moment of the adatom in the transition state.  

)()()()()( 0
0

pzc
(t)
diffpzc0

(t)
diff0

zp
EE  (10.101) 

Here zp  is the sum of the dipole moment of the adatom pz and the difference 

between the dipole moments of the adatom in the transition state and the ground 
state pz, hence is the dipole moment in the transition state. The dashed line in 
Fig. 10.31 is calculated with that dipole moment taken from ab-initio theory 

( 144.0zp eÅ) and the experimental charge density [10.11]. According to the 

theory, the islands should not decay at all at lower potentials. The observed finite 
rate does require a different diffusion mechanism. 
 The theoretical considerations in Sect. 4.3.2 that lead to (10.101) and (10.100) 
excluded specific adsorption of ions. Eq. (10.101) remains nevertheless a good 
approximation even in the presence of specific adsorption if the dipole moment in 
the transition state is as large as it is [10.11].  

10.5 The Time Dependence of Step Fluctuations  

10.5.1 The Basic Phenomenon 

Scanning tunneling microscopy has opened our eyes not only to many static struc-
tural and morphological features on surfaces but also to previously unknown 
manifestations of transport processes. One of these manifestations is the appear-
ance of monatomic steps in STM images. Figure 10.32 illustrates the point. At 
290 K steps on the Cu(1 1 19) surface display some kinks as indicated by the white 
arrows as well as several sudden displacements of the step from one scan line to 
the next. The latter features result from the fact that the position of a kink in the 
step has moved through the position of the scan line during the time span from one 
scan line to the next ( sl  102 ms). The frequency of these jumps increases with 
temperature. In Fig. 10.32b taken at 320 K geometric kinks are no longer visible. 
Yet, the jumps in the position of step from one scan line to the next still amount to 
one atom unit. At even higher temperatures, one or more kinks move through the 
scan line in a time span that is short compared to the time required to scan one 
atom length ( at  0.2 ms). The apparent step jumps in the STM image are larger 
than one atom distance and are no longer quantized in integer values of atomic 
units. All information on the spatial structure of kinks is lost in such images 
(Fig. 10.32c). The image would appear the same if a single scan line were scanned 
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Cu(1 1 19): 290 K Cu(1 1 19): 320 K Ag(111): 506 K

5 nm 24 nm5 nm

(a) (b) (c)

x

y

Fig. 10.32. STM images of vicinal copper surfaces (a, b) and (c) of a nominally flat 
Ag(111) surface with some steps. Scan time for the 512 512 pixel images was of the order 
of a minute (courtesy of Margret Giesen [10.12]). 

repeatedly and the results were assembled in an x,t-image rather than an x,y-
image. The distribution of the apparent position of the steps is a Gaussian in that 
case. Steps that appear as in Fig. 10.32 (b) or (c) have been termed frizzy steps.
 There are several methods to investigate frizzy steps in a quantitative manner. 
The simplest is by the width of the Gaussian distribution. Dietterle et al. analyzed 
the step dynamics of Ag(111) electrodes in sulfuric acid electrolytes as a function 
of the potential this way [10.62]. An alternative is to study the time intervals of the 
telegraph noise in images like Fig. 10.32b [10.63]. The frequency of the occur-
rence of particular time intervals between two jumps has two characteristic time 
ranges. For short times, the jumps are due to return events. A kink moves by emit-
ting an adatom to a step site. This atom returns after a brief random walk along the 
step, and the kink is back in its previous position. The long range is due to annihi-
lation and creation of kinks or due to the capture of the adatom by another kink. 
The mathematical analysis of the telegraph noise is complicated [10.63] and ex-
periments are limited to a narrow temperature window where steps display this 
type of noise.  
 By far the most studies of step fluctuations focus on the time structure of the 
mean square displacement of the step position (Sect. 4.3.7) 

2),(),(),;,( ytxytxyyttG . (10.102) 

Because time and spatial structure of the mean square displacement interfere only 
in a very small temperature range (10-20 K), it suffices to study the time depend-
ence. Experimentally it is possible to focus entirely on the time dependence by 
scanning repetitively the same scan line and determine the function G(t) thereby.  

2)0()()( xtxtG  (10.103) 
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The analysis of step fluctuations by means of the G(t)-function is typically per-
formed on vicinal surfaces and works well in a wide temperature range [10.64].  

10.5.2 Scaling Laws for Step Fluctuations 

General considerations 

The time dependence of the mean square displacement and the dependence on the 
step-step distance L obeys universal scaling laws of the form 

tLTcxtxtG )()0()()( 2 . (10.104) 

The exponents  and  depend on the atom transport processes and c(T) is a tem-
perature dependent factor that contains, among other quantities, the diffusion 
coefficient for the relevant process. The G(t)-function can be derived from the 
continuum description of the step position as a function of time as introduced in 
Sect. 4.3.7 (see also 10.3.2). The fluctuations result from the stochastic transport 
of atoms along or to and from step sites which, within the continuum approach, is 
described by a noise term [10.65]. The mathematics of the derivation is however 
rather cumbersome; in particular as different scenarios for mass transport require 
separate treatment. It is much easier and more pleasing (for most of us) to derive 
the t- and L-dependence of G(t) from scaling considerations [10.66]. The results 
not only agree with the exact treatment within factors of the order of one but also 
the meaning of the physical quantities that enter becomes clear from the deriva-
tion19.
 The scaling laws are derived by considering a grand canonical ensemble of 

N  particles that is in equilibrium with a reservoir and exchanges particles with 
the reservoir through a bottleneck (pipe in the seminal paper of Pimpinelli et al. 
[10.66]) (Fig. 10.33). The mean square of the fluctuations of the particles in the 
system after a time t is equal to the number of particles that pass through the bot-
tleneck during that time, 

t
N

tN
b

b2)( . (10.105) 

Here, Nb is the number of particles in the bottleneck and b is their mean residence 
time. The system is the fluctuating step. As a matter of convenience, we chose the 
metric such that distances are in atomic units, the origin of the fluctuations at 
x = 0, and the reference value of y is y = 0. The spatial fluctuations are then written 
as

19 I would like to acknowledge enlightening discussions with D. E. Wolf who introduced 
me to these scaling laws.
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y
Tk

x ~
B2 , (10.106) 

in which 
~

 is the step line tension (cf. 4.95). We consider a fluctuation of the 

length y. The mean square of the number of particles that cause the fluctuation of 
the step with an amplitude x over a length y is 

t
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y
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b3B222
~)( . (10.107) 

This is the starting equation for the consideration of a variety of scenarios with 
different physical realizations of the reservoir and the bottleneck. 

System
Bottleneck

Reservoir

Fig. 10.33. Scaling laws for step fluctuation can be derived by considering the step as a 
system that exchanges particles with an infinite reservoir via a bottleneck.  

Case I - Diffusion along steps 

The fluctuations of steps on metal surfaces are mostly due to the stochastic diffu-
sion processes along the steps (case I in Fig. 10.34). The step acts therefore 
simultaneously as reservoir and bottleneck. The particles are the diffusing species, 
which we take as adatoms at step sites (as opposed to vacancies in steps). The 
number of particles in the bottleneck Nb is the concentration of the adatoms in 

equilibrium (st)
eq  multiplied by the length y

yN (st)
eqb . (10.108) 
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Their residence time is 

(st)
eff

2
b / Dy  (10.109) 

with (st)
effD  the effective diffusion coefficient introduced in Sect. 10.3.3. By insert-

ing (10.108) and (19.100) in (10.107) one obtains 
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The result for the mean square fluctuation in atomic units )(ˆ tG  is therefore 

4/1(st)
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(st)
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4/3

B2 )(~)(ˆ tD
Tk

xtG . (10.111) 

This is the famous t1/4-power law for the step fluctuations that is found mostly for 
steps on metal surfaces. 
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Fig. 10.34. The various scenarios for step fluctuations discussed in the text. 
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By introducing the transport coefficient in atomic units  

TkDL B
(st)
eff

(st)
eq

(st)
T /  (10.112) 

one may write (10.111) in a form that is independent of the nature of the species 
that carry the diffusion current, 
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In 10.3.3, we have derived the transport coefficient for adatoms in the presence of 
kinks in the step and a kink ES-barrier. After inserting (10.69) one obtains for G(t)
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As before, Pk is the kink concentration. For steps running in the direction of dense 
packing )/exp(2 Bkk TkP . Otherwise, Pk is given by the step orientation. We 

note further that the quantity (st)
Tfl

~
/1 L  is a characteristic time constant for the 

fluctuations. The time constant is identical to the relaxation time )(q  of a Fou-

rier-component q of a non-equilibrium protrusion in a step (Sect. 10.2.3) when q is 
expressed in atomic units q̂ .

4(st)
Tfl ˆ)(

~
/1 qqL  (10.115) 

Step equilibrium fluctuations and step relaxations are two sides of the same medal 
[10.24].  

Case II - Terrace diffusion on vicinal surfaces with ES-barrier

The t1/4-power law is not a unique indicator for step diffusion. One more scenario 
leads to the same time dependence. This is fluctuations caused by exchange of 
atoms with terraces when the diffusion on terraces is the rate-determining step and 
if there are other steps in close proximity with a large ES-barrier for interlayer 
diffusion (Fig. 10.34, case II). Because of the ES-barrier, the atoms eventually 
have to return to the same step from which they originated. The number of atoms 
in the bottleneck is then  

LyN (t)
eqb  (10.116) 
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with L the distance between steps and (t)
eq  the equilibrium concentration of atoms 

on terraces. The residence time on the terrace as the bottleneck is  

(t)2
b / Dy  (10.117) 

with D(t) the diffusion coefficient for terrace diffusion. By the procedures de-
scribed above, we obtain for the correlation function 

4/14/14/1(t)(t)
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or in terms of the transport coefficient for terrace diffusion in atomic units (10.30) 
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Case II is distinct from case I by its L-dependence. The exponents  and  are 
both 1/4. The derivation of this correlation function assumes that the diffusing 
atoms on the terrace are repelled from the ES-barrier during their migration path 
before they re-enter the step. This can be the case only if L is small. Eq. (10.119) 
holds therefore only for small L. Yet our simple derivation provides no hint as to 
how small L has to be.  

Case III - Terrace diffusion in the detachment limit

This case holds for fluctuations that are caused by the exchange with terraces if 
the exchange is limited by the detachment process. The detachment of atoms from 
steps occurs at the kink sites. These kink sites are therefore the bottleneck in this 
problem. The number of particles in the bottleneck is 

yPN kb  (10.120) 

and the residence time is  

Akb P  (10.121) 

with A the mean time between the emission (or recapture) of terrace atoms by 

kink sites. By noting that 
~

/Bk TkP  (Sect. 4.3.7, 5.2.1) one obtains 

2/1
2/1

A

k)(ˆ t
P

tG . (10.122) 
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This special case can also be treated by considering that the kinks in the step per-
form a random walk on the step edge [10.67]. The exact equation for G obtained 
that way has an additional factor (2/ )1/2 in it. 

Case IV - Slow terrace diffusion 

Now we have  

2)( yN t
eqb  and )(2 / t

b Dy  (10.123) 

and thus 

3/13/1)()(
3/2

)(~)(ˆ tD
Tk

tG tt
eq

B . (10.124) 

This t1/3 power law was first observed on Cu(39 39 37) surfaces (B-steps) in con-
tact with a HCl electrolyte [10.68]. 

Case V - Exchange of atoms between steps 

If the distance between steps is small, atoms that detach from a step are more 
likely to attach to the adjacent step than to return to the same step. The number of 
atoms in the bottleneck and their residence time are then  

LyNb
(t)
eq  and (t)2

b / DL , (10.125) 

so that  

2/12/12/1(t)(t)
eq

2/1

B )(~)(ˆ tLD
Tk

tG . (10.126) 

This case has the same time dependence as case III, is however distinct by its L-
dependence. 

Case VI - Exchange with terraces and the surrounding bulk phase 

This case is important for surfaces in equilibrium with a surrounding bulk phase. 
The latter can be the bulk material underneath the surface. At high temperatures, 
the bulk possesses a high concentration of vacancies and the exchange of step 
atoms with the substrate by bulk vacancy annihilation can give rise to step fluctua-
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tions. Another possibility is surfaces in equilibrium with a gas phase of its own 
material and, finally, a surface in contact with an electrolyte that contains ions of 
the substrate. We assume that the exchange with the bulk phase is via the atoms on 
the terraces. Otherwise, the situation would be as in case III. An atom that has 
detached from a step can travel a path  before it is immersed into the bulk phase. 
The path length  is given by the diffusion constant and the residence time on the 
surface r.

2/1
r

(t) )(D  (10.127) 

Depending whether  is smaller or larger than the distance between steps one has 
for the number of atoms in the bottleneck (Fig. 10.34, case VI) 

LyN t
eqb

)(  (10.128) 

.)( LyLN t
eqb  (10.129) 

Correspondingly, the step correlation functions for the two situations are 
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DTk

tG 2/1
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2/1

B
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10.5.3 Experiments on Step Fluctuations 

By measuring the time and step-distance dependences one can uniquely establish 
to which case the fluctuation belongs and therefore the prevailing transport 
mechanism causing the fluctuations. Experiments on step fluctuations yield there-
fore important information on transport processes at surfaces and the activation 
energies involved. Frequently the study of step fluctuations is one of the few or 
even the sole method to learn something about a particular transport process. With 
very few exceptions, experiments on step fluctuation were performed using Scan-
ning Tunneling Microscopy (STM) [10.12]. Alternatives are Reflection Electron 
Microscopy (REM) [10.69] and Low Energy Electron Microscopy (LEEM). Fig-
ure 10.35 shows STM data from the first reported study of its kind with steps on 
Cu(1 1 19) surfaces [10.64]. Plotted is the mean square deviation of the distance 
between two adjacent steps on the surface. For uncorrelated step motion, this is 
equivalent to twice the mean square displacement for a single step. Step fluctua-
tions can safely be regarded as uncorrelated as long as the amplitude of the 
fluctuation is small compared to the distance between steps and if the relevant 



  10.5  The Time Dependence of Step Fluctuations __________________________________________________________________________ 551

diffusion mechanism does not involve exchange between steps (as in case V). At 
the temperature of 362 K conventional x,y images are completely dominated by 
the time structure of the fluctuations. The important aspect of the y-coordinate is 
only that is corresponds simultaneously to an increase in time. Conventional and 
x,t images (time images) yield the same result. The G(t) function shows the t1/4-
time dependence expected for fluctuations dominated by mass transport along the 
step edge. Figure 10.36 shows the Arrhenius-plot of G(t) obtained from several 
different Cu vicinal surfaces [10.70]. The plot extends over three orders of magni-
tude. The very large fluctuations at high temperatures require large step 
separations and are therefore obtained only from images of the Cu(1 1 79) surface 
for which the mean step separation is about 100 Å. The fact that all data points fit 
to the same Arrhenius-plot demonstrates that the fluctuations are independent of 
the mean step separation. The fluctuations are therefore really of the type I. The 
activation energy is Eact = 0.324 0.008 eV. 
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Fig. 10.35. The mean square separation in atom units between two steps on Cu(1 1 19) in 
x,t-images (bottom and left scale) and in x,y-images (top and right scale) [10.64]. 

The activation energy can be further evaluated with the help of (10.114). For steps 
on (100) surfaces oriented along the direction of dense packing the activation en-

ergy for the kink concentration Pk and for 
~

/BTk  is the kink energy (Sect. 5.2.1) 

which is k = 0.128 eV for Cu(100) steps (cf Sect. 4.3.7, Fig. 4.23). The formation 

energy of an adatom from a kink site EA is approximately twice the kink energy. 
Depending on the existence of a kink ES-barrier the activation energy is either 
(10.114) 
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The existence of a kink ES-barrier on Cu(100) surfaces is still under debate 
[10.71]. Hence, we have to leave the result as it stands. 
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Fig. 10.36. Arrhenius-plot of the magnitude of the step fluctuations [10.70]. 

Interesting transitions from one time dependence to another have been observed 
for steps on Ag(111) surfaces. Figure 10.37 shows log/log plots of G(t) for 
Ag(111) surfaces in vacuum and in contact with an electrolyte. In vacuum, one 
finds  = 1/4 for temperatures below 450 K. As for most metal surfaces, the pre-
vailing mass transport leading to step fluctuations is diffusion alongside steps. 
Between 450 K and 500 K the slope changes to  = 1/2. Since the fluctuations do 
not depend on the step-step distance L, the slope is indicative of case III: exchange 
of atoms with terraces with the detachment/attachment being the rate-determining 
step [10.12]. A similar change in slope has also been found on Cu(21 21 23) 
[10.24]. 
 When surfaces are in contact with an electrolyte (here an aqueous electrolyte 
containing H2SO4 and CuSO4) the step fluctuations depend on the potential. At 
negative potentials with respect to the saturated calomel electrode (SCE) the fluc-
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tuation function G(t) is proportional to t1/4 as in vacuum and for the same reason 
(Fig. 10.37b). At +80 meV, the step fluctuations have increased in magnitude and 
the time dependence obeys a t1/2-power law. Now the magnitude of fluctuations 
depends on the step-step distance with an exponent that is, within the error  = 1/2 
(Fig. 10.38a). Evidently, we have now a transition to scenario described as case VI 
where the steps exchange atoms with terraces and the terraces with the surround-
ing bulk phase, and where the diffusion length  is larger than the step-step 
distance L (10.131). The surrounding bulk phase is the electrolyte, which entails 
that the surface must exchange atoms with the Ag+-ions in solution. A view on the 
potential dependence of the magnitude of the fluctuation in Fig.10.38b shows that 
this exchange with the electrolyte occurs shortly before dissolution of the silver 
electrode. The initiation of the dissolution process itself can be seen in STM as a 
sudden recession of the steps when the potential is raised over a certain limit. The 
experiments demonstrate that the transport processes leading to fluctuations and 
the eventual dissolution follow the same kinetic path: atoms detach from kink sites 
to become adatoms on terraces from where they leave as solvated ions. 
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Fig. 10.37. The time dependence of the mean square displacement G(t) of B-steps on 
Ag(111) (a) in vacuum and (b) in a 50 mM H2SO4 electrolyte to which 1 mM CuSO4 was 
added (courtesy of Margret Giesen, [10.12]). The electrode potentials are with reference to 
a saturated calomel electrode (SCE). In both cases the exponent  changes from  = 1/4 to 

 = 1/2, albeit for different reasons. 

The exponential increase of the fluctuations with the potential can be understood 
in a similar way as the increase in the speed of Ostwald ripening. An important 
contribution to the magnitude of the fluctuations comes from the equilibrium con-

centrations of adatoms on terraces (t)
eq  (10.131). With (10.99) this concentration 

depends on the surface charge density as 
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 (10.125) 

where pz is the dipole moment of the adatom and )(0  is the charge density on 

the surface (see also Sect. 4.3.6). In a small potential range, the charge density 
increase can be written as the product of the capacitance and the variation of the 

potential  so that an exponential increase results for (t)
eq  and for the magnitude 

of the fluctuations. As for Ostwald ripening of Au(100) electrodes the effect is so 
dramatic because of the large dipole moments of adatoms. 
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Fig. 10.38. Step fluctuations of silver Ag(33,33,31) and Ag(19,19,17) electrodes in a 
50 mM H2SO4 electrolyte with 1 mM CuSO4; (a) the dependence on the step-step distance 
together with the time exponent  = 1/2 (Fig. 10.37b) shows that the fluctuations are of the 
type VI. (b) In the range where the exponent is  = 1/2 the magnitude of the fluctuations 
increases exponentially with the potential. Hence, the activation energy for the process 
must decrease approximately linearly with the potential (courtesy of Margret Giesen, 
[10.12]). 



11. Nucleation and Growth  

In the last two decades, the interest has shifted away from plain surfaces to the 
properties of special systems that involve surfaces, interfaces, thin films and 
nanostructures. Those systems are prepared by using classical, mostly single crys-
tal surfaces as templates on which other materials are deposited from UHV, a gas 
phase or a liquid. Atomic level control is required in the manufacturing process, 
which inevitably involves growth processes. The importance of growth phenom-
ena on the entire field covered in this volume is emphasized by the fact that the 
phrases epitaxial growth, epitaxially grown films or epitaxy have been used in all 
but two of the preceding chapters. It is therefore about time to explain these 
phrases and devote a chapter to this topic.  
 The word epitaxy stems from the Greek words  and  ("epi" and "taxis") 
meaning "on", "on top" and "positioning", "line-up" (of soldiers), respectively. 
Growth on a substrate of the same material is called homoepitaxy; growth on a 
substrate of a different material is named heteroepitaxy. If material is deposited 
onto a flat, step-free surface then the deposited atoms first have to aggregate into 
stable nuclei that can grow by capturing further atoms. The formation of nuclei 
requires a surface concentration of atoms that exceeds the equilibrium concentra-
tion, a supersaturation. If the growth is layer-by-layer, then nucleation has to 
repeat after completion of each layer. Growth on vicinal surfaces on the other 
hand is nucleationless: the deposited atoms attach to the step edges and the growth 
is by step advance. Thus, the field is naturally divided into growth that requires 
nucleation and growth that does not.  
 Like always in thermodynamics it is important to realize which quantity is kept 
constant by external parameters. This holds also for the thermodynamics of nu-
cleation. In epitaxial growth in UHV by Molecular Beam Epitaxy (MBE) the flux 
of particles towards the surface is externally controlled and typically kept con-
stant. The deposition temperature is usually chosen such that no re-evaporation 
occurs, which means the net flux towards the surface and thereby the mean growth 
rate is controlled externally. The same condition of constant flux may apply to 
Chemical Vapor Deposition (CVD) from the gas phase. While the flux is kept 
constant, the supersaturation may vary. The supersaturation is high before nuclea-
tion has occurred and decreases dramatically after stable nuclei are formed. The 
mean supersaturation is typically high in those experiments. 
 In deposition from a liquid phase, in Liquid Phase Epitaxy (LPE) including 
electrodeposition or electroplating, and possibly also in CVD the supersaturation 
is controlled by external parameters, e.g. the by the electrode potential while the 
flux of atoms to the surface (in electrochemical deposition the ion current) varies.  
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11.1 Nucleation and Growth Under Controlled Flux 

11.1.1 Nucleation 

By way of introduction we consider a series of three STM images of an Ag(111) 
surface on which several monolayers of Ag atoms have been deposited (Fig. 11.1). 
The three images differ in temperature while the flux of atoms during deposition 
was kept constant. Between 300 K and 360 K the density of (top layer) island 
decreases from 30 to 2 per frame, and the island sizes increase accordingly.  

T = 300K T = 340K T = 360K

Fig. 11.1. 190 nm  190 nm STM images of Ag(111) after deposition of a few monolayers 
of Ag at different temperatures with the same flux. The lower density of islands at higher 
temperatures is due to the faster diffusion (courtesy of Margret Giesen, unpublished). 

To understand this temperature dependence we consider a surface exposed to a 
constant flux of atoms. Re-evaporation is neglected1. The deposited atoms diffuse 
about on the surface the faster, the higher the temperature is. When two atoms 
meet, they temporarily form a cluster. Depending on the temperature, this two-
atom cluster may already be a stable nucleus for further growth, that is, its decay 
time would be longer than the mean time until a next adatom arrives and attaches 
to the cluster. At higher temperatures, a cluster of two atoms may not be stable 
and would decay before the next atom arrives. Then possibly a cluster of three or 
four atoms could be stable in the sense described above. The largest cluster, which 
is not quite stable, is called the critical cluster. Its size depends primarily on the 
temperature, but also on the flux since the flux determines the mean time between 
atoms arriving at a particular cluster: the higher the flux, the smaller the critical 
size. As clusters up to the critical size come and go their mean concentration is in 
equilibrium with the lattice gas of adatoms. The formation of those clusters from 
adatoms is formally a homonuclear reaction of the type 

1 Silver at 300 K evaporates one atom every 1025 years! 
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(i)(1)(1))1( ... AAAA  (11.1) 

where A(1) denotes the adatoms and A(i) a cluster of i adatoms. Equilibrium re-
quires that the chemical potentials on both sides are identical, whence we have the 
relation (cf. Sects. 4.3.4 and 5.4) 

iB
(i)

1B
(1) ln)ln( TkETkEi . (11.2) 

Here E(1) and E(i) are the ground state energies of the adatoms and the cluster of i
atoms, and 1 and i are the fractional coverages per surface site which we ad-
dress as densities in the following. In writing the equilibrium condition above, we 
have assumed that the coverages are small and we have neglected vibration con-
tributions to the chemical potentials. From (11.2) we obtain the coverage with 
clusters containing i atoms 
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e)(e)( 11i . (11.3) 

This equation is called Walton relation after D. Walton [11.1]. We note that Ei is 
positive because of the formation of bonds between the atoms. The number of 
bonds depends on the size and shape of the cluster. On an fcc (100) surface e.g., 
clusters which are squares or nearly squares are particular stable while clusters 
with 2, 3, 5, 7,… atoms are least stable.  
 We now establish the rate equation for the adatom density after a flux of atoms 
F is turned on at t = 0. (F is defined as the number of arriving atoms per surface 
site and time). At t = 0 the time derivative of the density of adatoms on the surface 
is equal to the flux. During an initial period, the steady state sequence of clusters 
up to the critical size is quickly generated by consuming adatoms. After this initial 
period, adatoms are consumed only in as much they are captured by clusters of the 
critical size and stable clusters. We have therefore the rate equation 

i1s1
1

d

d
F

t
. (11.4) 

Here,  describes the rate of successful attachments to a cluster if a terrace site 
adjacent to the cluster is occupied. This rate is of the order of the jump diffusion 
rate. It is lower if a barrier for attachment exists or if under growth condition at-
oms are evaporated back into the lattice gas from a fraction of sites at the cluster 
perimeter, e.g. from straight steps. The attachment rate can also be higher than the 
jump rate if the critical cluster is large so that the number of sites from which at-
tachments can occur becomes large. Evidently, the solution of (11.4) calls for a 
steep rise in the density of adatoms and a subsequent decay to a small number 
when stable clusters are formed. At that stage, i is practically zero because 1 is 
small (11.4). Equation (11.4) then has the stationary solution 
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The number of stable nuclei increases by adding a single atom to a critical nu-
cleus. The growth rate of the density of stable nuclei is therefore 
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We have inserted the stationary solution for 1. Equation (11.6) can be integrated 
directly. The solution for i > 1 is 
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We have replaced the product of the flux and time by the total coverage  with 
atoms (in any form) 

Ft . (11.8) 

For i = 1 one obtains 

3
1

s 3
F

. (11.9) 

As expected, the density of stable nuclei, and thus the density of islands on the 
surface, depends on the ratio of the flux and the diffusion constant. The exponent 
is the smallest for i = 1 and raises up to one for i . The diffusion constant 
varies exponentially with the temperature. This explains why the island densities 
in Fig. 11.1 decrease so rapidly with temperature.  
 According to (11.7) and (11.9), the density of nuclei and therefore the density 
of two-dimensional islands should increase linearly with the total coverage. This is 
however, an artifact of the simple ansatz. To show that, let us consider the case 
where the critical nucleus is the adatom itself (i = 1). The model assumes that two 
adatoms have a finite chance of meeting each other independently where they are 
deposited. In reality, two atoms that are deposited on opposite sides of an already 
existing island or with even several islands between them have practically no 
chance to meet. They will attach to one of the already existing islands, which 
means, that nucleation stops completely after some time; merely the already exist-
ing islands grow. 
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the rate equations (11.9) the Monte-Carlo simulation produces a somewhat smaller expo-
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We illustrate the point with a simple Monte-Carlo simulation in which the critical 
nucleus is assumed to be i = 1. The Monte-Carlo simulation is performed on a 
square surface with a maximum of four bonds to neighboring atoms in the spirit of 
the TSK-model (Sect. 5.2). Condition for a successful jump is that the number of 
bonds becomes larger or stays equal after the jump. This condition is equivalent to 
a low temperature as bonds, once established do not break again. Allowed jumps 
are both along the <10> and the <11> directions. The latter provision ensures the 
formation of compact islands despite the low temperature. 
 Figure 11.2 shows the result of the simulation for a ratio /F = 5 104. The 
adatom density rises quickly initially, passes through a maximum at less than 
1/100 of a monolayer and drops down to a very small value afterwards. The den-
sity of stable nuclei increases up to a saturation level of s  0.057 and is not 
proportional to the total coverage . The functional dependence of the island den-
sity on the ratio /F  (Fig. 11.3) is approximately described by (11.9). The 
slightly smaller exponent (  0.29) is partly because of stochastic coalescence of 
islands. As remarked before the prefactor in equation (11.9) is not well reproduced 
by the Monte-Carlo simulation. 
 Equation (11.9) has sometimes been employed to determine the diffusion coef-
ficient for adatoms on surfaces (after establishing the size of the critical nucleus 
from the dependence of the density of nuclei on the flux). The method has several 
shortcomings. One stems from the fact the (11.9) is only crudely recovered in 
simulations. The details depend on the model employed. Another shortcoming is 
that the simple nucleation theory does not consider repulsive interactions between 
the adatoms that arise from surface state confinement discussed in Sect. 8.3.4 or 
from elastic repulsive interactions (Sect. 3.4.2). 
 Equation (11.9) defines a mean distance between the stable nuclei as 

6/12/1
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ssnucl 3
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F
d  (11.10) 

This mean distance or nucleation length nucld  is a useful quantity for qualitative 

considerations. For example, nucleation on the terraces of a stepped surface occurs 

if the terrace width is larger than the nucleation length nucld . On perfectly regular 

vicinal surfaces, nucleation on all terraces would occur simultaneously below a 
certain temperature, while above that temperature the deposited atoms would mi-
grate to the step edges, leading to step flow growth. On real vicinal surfaces, the 
width of a terrace may accidentally exceed the nucleation length and nucleation 
occurs on that particular terrace. Figure 11.4 shows an example. The image was 
obtained after evaporation of 50 monolayers at 313 K with a flux of 0.08 s 1. The 
distance between the islands on the terrace is nearly equal and corresponds to a 
nucleation length of about 60 nm. If one identifies  with the jump rate on ter-

race one obtains from Table 10.2 -111s106.1 . From Fig. 11.2 we take that 
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the nucleation saturates at a coverage of about 0.1. The calculated nucleation 

length is then nm49nucld , which is in good agreement with the experiment. 

Fig. 11.4. STM Image (195 nm 195 nm) of a vicinal Cu(111) surface on which the width 
of one terrace has accidentally exceeded the nucleation length (courtesy of Margret Giesen, 
unpublished). Nucleation occurs on that terrace, followed by nucleation of further islands 
on top of each other as the growth proceeds because of the Ehrlich-Schwoebel barrier on 
Cu(111) surfaces (Sect. 10.3).  

11.1.2 Growth Without Diffusion  

Because of the importance of cold-deposited films in practical applications, but 
also for its tutorial value it is useful to study the case of hit and stick growth, i.e. 
the case where the deposited atoms stay put at the sites where they have arrived. 
There has been some debate in the past as to whether accommodation of the ki-
netic energy of the arriving atoms may possibly take some time during which the 
arriving atoms, powered by their kinetic energy, may jump from the site of arrival 
to other sites in the vicinity. The effect has been observed for dissociative adsorp-
tion of oxygen molecules as the atoms from one molecule are found at some, 
though small distance apart [11.2]. Molecular dynamic calculations on the other 
hand, show that metal atoms evaporated onto a metal surface have no transient 
mobility [11.3].  
 Figure 11.5 displays a schematic side view of a cold-deposited film with a 
mean total coverage of about two monolayers. The morphology of such films can 
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be characterized by various measures: the fractional coverages with single atoms 

in the layers, the total coverage n in each layer n, and the fraction )open(
n  in each 

layer that is open to further exposure. These coverages are easily calculated in a 
Monte-Carlo simulation. The result is plotted in Fig. 11.6 for a total mean cover-
age up to six monolayers. The fractional coverage with single atoms in the first 
layers starts at zero, rises up to about 7% and drops quickly thereafter as the first 
layer gets filled (Fig. 11.6a). With increasing filling of the first layer, single atoms 
are deposited in the second layer. The fraction of single atoms in the second layer 
rises up to a maximum of about 5.5% and eventually drops to zero as the second 
layer is filled. Each consecutive curve peaks at a lower value and the curve be-
comes broader since the consecutive layers fill more gradually. The reason is that 
the second layer cannot fill up completely unless the first layer is filled, the third 
layer not unless the second is filled, and so forth. Each layer fills more gradually 
than the layer immediately below. This is demonstrated in Fig. 11.6b. Figure 11.6c 
shows the fractional area that is open. The layer denoted as "0" is the substrate 
itself. 

Fig. 11.5. Schematic side view of a cold-deposited film. The atoms stay in the sites where 
they have arrived. The checkerboard-patterned squares symbolize single atoms. 

One can easily show that the fractions of open areas in each layer )open(
n  obey a 

Poisson distribution. The increase in coverage in the nth layer is the flux per site 
multiplied with the fractional open area in the layer below. 
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The sum of the growth rates in all layers is the flux itself 
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This equation is fulfilled by the ansatz 
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Fig. 11.6. Coverages with single atoms in layers (a), total coverages in layers (b) and the 
open part of layers versus the total coverage (c) when diffusion of atoms is completely 
suppressed. For simplicity, the simulation assumes a simple cubic structure with nearest-
neighbor bonds (Kossel crystal), but the general result does not depend on the model. 
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Combining (11.13) and (11.11) yields  
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From (11.13) and (11.11) the total coverage in each layer is obtained in closed 
form as 
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With the exception of the concentration of single atoms all curves in Fig. 11.6 are 
represented by the analytical expressions (11.15) and (11.16). We note that these 
two expressions are derived under the sole assumption that an atom, which has 
arrived in layer n, stays in that layer. No assumption is made about diffusion in the 
layer. The expressions for the fractional open areas and the total coverage are 
therefore salient also for large diffusivity within a layer and a large Ehrlich-
Schwoebel barrier (Sect. 10.3) that prevents interlayer transport. The morphology 
of the surface is quite different in that case, however. We return to this issue 
shortly.  
 From (11.15) one calculates easily the mean roughness of the surface. The 
mean layer n  open to further deposition is as it must be 
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The last step follows from differentiating 
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Proceeding further one obtains 
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Braced with (11.18) and (11.19) one obtains for the root mean square roughness 
(rms-roughness) wrms in units of the step height 

Ftnnnnnhw 222
rms )(/ . (11.20) 
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The rms-roughness therefore increases with the square root of the total coverage. 
Equation (11.20) is obeyed even if the mean coverage is below a monolayer. We 
are not dealing with an asymptotic behavior in this case. This becomes apparent 
also from the simulation. Figure 11.7 displays the rms-roughness as obtained from 
a Monte-Carlo simulation in a double logarithmic plot that extends over two or-
ders of magnitude in total deposition (0 < Ft < 10). Figure 11.7 displays also the 
step density a function of the exposure. Here, the condition of no diffusion enters 
significantly. As the coverage increases, the asymptotic value of four atomic step 
lengths per surface site is approached gradually. 
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Fig. 11.7. Log/log-plot of rms-roughness and step density on surfaces versus coverage. The 
rms-roughness is in units of the atomic step height h. The step density is in atom length per 
surface site. The limit of four length units per site is asymptotically approached as the cov-
erage increases. The condition of no diffusion is important only for the step density. 

11.1.3 Growth with Hindered Interlayer Transport 

As seen from the step density in Fig. 11.7 the condition of no diffusion produces a 
lateral roughness on the scale of a single atom and the rms-roughness of the height 
is given by the Poisson distribution of open layers (11.15). The Poisson distribu-
tion is maintained even in case of rapid intralayer diffusion as long as the Ehrlich-
Schwoebel barrier (Sect. 10.3) blocks interlayer diffusion. The intralayer diffusion 
has a large effect on the lateral scale of morphological features on the surface. If 
the growth process begins with a flat surface template then the lateral length scale 

in the first deposited layer is given by the nucleation length nucld  which was de-

fined by (11.10) for the case of single-atom critical nuclei. As growth progresses, 
atoms are deposited on the open parts of the template from where they diffuse to 
the perimeter of the nuclei, effecting their lateral growth so that the nuclei turn 
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into larger two-dimensional islands. As these islands grow, an increasing fraction 
of the atoms arrives on top of the islands, which leads to nucleation in the second 
layer. Simultaneously, the uncovered template area shrinks. Fewer atoms are de-
posited directly on the template. Consequently, the lateral growth of the islands 
slows down. The procedure repeats in the third, fourth, fifth, etc. layer. In the end, 
pyramids cover the surface whose lateral distance is established by the nucleation 
in the first layer and whose height is determined by the deposited amount. In case 
of rapid diffusion along the perimeter of the 2D-islands, their shape approximates 
the equilibrium shape of islands modulo some distortions caused by the varying 
distances to the adjacent pyramids. Figure 11.8 shows an STM image of a Pt(111) 
surface after deposition of 40 monolayers of Pt at 440 K in the presence of a CO 
ambient pressure [11.4]. CO adsorbed at the step edges enlarges the Ehrlich-
Schwoebel barrier. All pyramids are alike, save for the distortions caused by the 
random distribution of stable nuclei in the first layer. A salient feature of the shape 
of the pyramids is a steep slope near the bottom, a smaller slope in the middle and 
again a steep slope before the pyramid ends with a flat top. Except for the flat top, 
the shape of the pyramids is entirely determined by the size and shape of bottom 
layer and the number of deposited layers in combination with the condition of 
blocked interlayer diffusion. From (11.15) with (11.11) we obtain the recursion  
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The linear dimension of the layers in the stack therefore obey 
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where R0 is the linear dimension of the island at the bottom. By using this recur-
sion, the linear dimensions of the layers are easily calculated for any given total 
exposure Ft. In the limit of very large exposures, the Poisson distribution in 
(11.21) is approximated by a Gaussian and the functional dependence of the linear 
dimension as well as the height function can be expressed in closed form in terms 
of the error function [11.5]. 
 Figure 11.8b shows a top view on the stack of 2D-islands for a total exposure 
of 40 monolayers calculated with (11.22). To simulate the experimental island 
shapes the islands are drawn as hexagons with rounded corners. Figure 11.8c 
represents the calculated cross section of the pyramid. With the exception of the 
sharp tip, the calculated shape and the number visible layers are akin to the ob-
served pyramids. The sharp tip follows from the assumed complete blocking of 
interlayer transport. It is easily seen that even a mild relaxation of the blocking 
condition must lead to flat tops. The very small islands at the top have an ex-
tremely high Gibbs-Thomson chemical potential (Sect. 10.4.1) causing a high 
concentration of adatoms on the terraces. The high 2D-pressure of adatoms leads 
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to a downward current even in presence of an Ehrlich-Schwoebel barrier. The 
current is the larger, the smaller the islands are. The very small islands forming the 
tip therefore decay rapidly leaving the top of the pyramids flat. The experimen-
tally observed flat tops in Fig. 11.8 (and in Fig. 11.4) therefore result from the 
finiteness of the Ehrlich-Schwoebel barrier. In combination with Monte-Carlo 
simulations or alternatively with the help of the analytical solutions of the Ost-
wald-ripening problem for a stack of islands (Sect. 10.4.5) the magnitude of the 
Ehrlich-Schwoebel barrier can be determined from experimental data (see cf. 
[11.4]). 
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Fig. 11.8. (a) STM image of a Pt(111) surface after deposition of 40 ML of platinum at 
440 K in the presence of 1.9 10-9 mbar CO which increases the Ehrlich-Schwoebel barrier 
(after M. Kalff et al. [11.4]). (b) Top view on hexagonal symmetric pyramids as calculated 
from (11.22) for an infinitely high Ehrlich-Schwoebel barrier. The solid lines mark the 
steps. (c) Cross section through the calculated shape.

11.1.4 Growth with Facile Interlayer Transport 

Thermodynamics predicts that homoepitaxial growth should proceed in a layer-
by-layer fashion (Frank-van-der-Merwe growth, cf. Sect. 4.2.5). One might there-
fore expect that homoepitaxial growth under a constant flux of atoms should 
render that growth mode if intralayer and interlayer diffusion is fast. This is not so, 
however large one chooses the ratio of diffusion and flux '/F! The reason rests in 
the increasing nucleation length dnucl for large ratios '/F (11.10). The more rapid 
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Fig. 11.9. Growth with unhindered interlayer transport and moderately rapid diffusion 
( '/F = 105). (a) Coverage in layers 1-5 vs. the total coverage, (b) fraction of open area in 
layers 0-4, (c) rms-roughness and step density.   
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the diffusion, the larger the islands become before they coalesce. Even though the 
mean diffusion length in the time required for completing a monolayer is necessar-
ily larger than the nucleation length and therefore larger than the size of the 
islands (if ' is of the order of the diffusion jump rate), nucleation in the next layer 
is not suppressed. Because of the nature of the random walk, atoms arriving near 
the center of an island have a much higher chance to meet each other and to form 
a stable nucleus than to diffuse to the perimeter of the island where they would 
contribute to the lateral growth of the island. Consequently, one has always three 
layers open in homoepitaxial growth under constant flux. This is illustrated with 
results obtained from Monte Carlo simulations in Fig. 11.9. The critical nucleus is 
again assumed to be a single atom and the ratio of attachment rate and flux is cho-
sen '/F = 105. Fig. 11.9a displays the coverage in each layer n as a function of 
the total coverage (=Ft) up to the equivalent of five monolayers. The overlap in 
layer coverages is clearly visible and becomes more pronounced as the total cov-
erage increases. Even more instructive is the development of the coverage of open 

layers ( )(open
n ), which shows that two to three layers are open at any total cover-

age (Fig. 11.9b). Figure 11.9c shows the rms-roughness and the step density. The 
step density has an asymptotic limit that depends on the ratio '/F. The rms-
roughness rises continuously. Here, the slope depends on the ratio '/F. Step den-
sity and rms-roughness exhibit damped oscillations with minima and maxima at 
full and half monolayer coverages, respectively. The damping is smaller the faster 
the diffusion is.  
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Fig. 11.10. Calculated intensities for a beam of He-atoms reflected in anti-phase condition 
from a growing surface.  

The oscillations in the step density, in the rms-roughness and other related oscilla-
tions can be observed experimentally ex-situ by Surface X-Ray Diffraction
(SXRD) and in-situ by Reflection High Energy Electron Diffraction (RHEED) 
(Sect. 2.2.2), Medium Energy Electron Diffraction (MEED) and Helium Atom 
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Scattering (HAS) (cf. Sect. 7.3). The oscillations observed in Helium scattering 
are particularly easy to interpret as a flat surface reflects the He-atoms like a mir-
ror [11.6]. If the reflection angle is chosen such that the interference is destructive 
for He-atoms reflected from two terraces separated by a monolayer height (anti-
phase condition) then the intensity in the direction of mirror reflection is 
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Figure 11.10 shows the calculated intensities for several '/F using the coverages 
of open layers obtained by Monte-Carlo simulation. For the case '/F = 0 (alterna-
tively complete blocking of interlayer transport, but rapid intralayer transport) an 
analytical expression for the intensity is obtained by inserting the Poisson distribu-

tion (11.15) for (open)
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The solid line in Fig. 11.10, although resulting from Monte-Carlo simulations with 
'/F = 0 equals the exponential decay obtained analytically (11.24). 

 An example of an experimental result is shown in Fig. 11.11 with the data of 
Kunkel et al. referring to homoepitaxy of Pt on Pt(111) at three different tempera-
tures [11.7]. At 621 K (Fig. 11.11a), the temperature is high enough to overcome 
the Ehrlich-Schwoebel barrier and the growth is layer-by-layer. At variance with 
the calculation, the intensity minima are not at zero. The effect results from the 
finite angular resolution of the scattering experiments, in other words, from the 
finite coherence length or transfer width. Equation (11.23) describes the intensity 
at exactly the mirror reflection angle. As we are dealing with interference, inten-
sity cannot disappear. Rather, the angle-integrated reflected intensity stays 
constant. If the intensity is zero at the mirror reflection angle because of the anti-
phase condition, it appears on both sides of the mirror angle. The angular separa-
tion is the smaller the larger the terraces are. From a certain terrace width 
onwards, the angular spread of the He-beam and the finite acceptance angle of the 
detector render the observation of oscillations impossible and the intensity is given 
by the mean reflectivity of the terraces. The zero offset of the intensity in 
Fig. 11.11a therefore stems from terraces that are larger than the transfer width of 
the instrument.
 At temperatures around 400 K Kunkel et al. observed a continuous decay in the 
reflected intensity as expected for blocked interlayer transport (11.24). The decay 
is not is not quite as rapid as predicted for the reasons discussed above. At even 
lower temperature (275 K) the oscillations return, albeit strongly damped indicat-
ing an approximate layer-by-layer growth. The phenomenon has been called 
reentrant layer-by-layer growth. Interlayer transport is less effectively suppressed 
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at those low temperatures since the islands assume a ramified shape because of 
slow diffusion along the step edges. The long perimeter and the many kink sites 
with presumably lower Ehrlich-Schwoebel barriers (cf. Sect. 10.3.4) may permit 
some interlayer transport even at those low temperatures. An alternative interpre-
tation is that the atoms have a high chance to arrive at positions directly at the step 
edge from where they are downward funneled into the next layer below [11.8, 9]. 
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Fig. 11.11. Experimental data for deposition of Pt on Pt(111) after Kunkel et al. [11.7]. The 
deposition rate was between 1/40 and 1/36 monolayers per second. (a) Layer-by-layer 
growth, (b) growth with blocked interlayer transport, (c) reentrant layer-by-layer growth at 
low temperatures.
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11.2 Nucleation and Growth 
under Chemical Potential Control

In nucleation and growth of solid phases under chemical potential control, the 
concentration of adatoms on the surface rather than the flux towards the surface is 
kept constant during the nucleation process. The chemical potential of adatoms is 
either controlled by the concentration of reactive particles in the surrounding 
phase as e.g. in Liquid Phase Epitaxy (LPE) and frequently also in Chemical Va-
por Deposition (CVD), or by the potential of the solid electrode as in 
electrodeposition (electroplating). A necessary condition for a constant surface 
concentration during a nucleation process is the rapid exchange of atoms or mole-
cules with the surrounding phase while the net flux towards the surface remains 
flexible. Two issues are of prime interest in this context. One is the size and shape 
of the nuclei, in particular whether the nuclei are two- or three-dimensional. This 
question is most straightforwardly answered with the help of a thermodynamic 
approach. The second issue is the nucleation rate to which we attend later.  

11.2.1 Two-Dimensional Nucleation 

For simplicity, we consider first two-dimensional homoepitaxial growth. As the 
concentration of adatoms is typically very small, the surplus chemical potential 
beyond equilibrium associated with the adatoms is well described by the non-
interacting lattice gas model (cf. Sects. 5.4.1, 4.3.4). 

)/ln()/ln( eqBeqB TkTk  (11.25) 

The concentration can be expressed either as the number of atoms per area , or as 
the fractional occupation of sites . The ratio / eq or / eq is called supersatu-
ration. If the surrounding phase that controls the supersaturation on the surface is 
an ideal gas then the supersaturation equals the ratio of the pressure to the equilib-
rium vapor pressure of the material (p/peq). The chemical potential difference 
described by (11.25) is addressed as supersaturation potential. For surfaces in 
contact with an electrolyte the supersaturation potential is directly related to the 
overpotential  (with respect to the Nernst potential) 

ze  (11.26) 

Here, z is the charge number of the ions and e the elementary charge. Positive 
metal ions are deposited for electrode voltages potential  negative of the Nernst 
potential, whence the modulus in (11.26).  
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To simplify the discussion of two-dimensional nucleation we assume nuclei in the 
form of round 2D-islands so that the additional free energy of an island consisting 
of g atoms compared to the flat surface is 

2/1
s22 grF gg , (11.27) 

with  the step line tension and s the area of an atom. The Gibbs free energy 
associated with that island is 

ggGg
2/1

s )(2 . (11.28) 

The Gibbs free energy of islands depends therefore on the size as well as on the 
supersaturation potential (Fig. 11.12).  
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Fig. 11.12. Gibbs free energy of 2D-nuclei (islands) as function of size (schematic). The 
shape of the curve depends on the supersaturation . Nuclei beyond the critical size given 
by the condition d Gg/dg = 0 grow.  

Islands grow if the addition of atoms reduces Gg, they decay when Gg becomes 
smaller by removing atoms. The condition  
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defines the critical nucleus. This critical nucleus is a different entity than the criti-
cal nucleus of the kinetic approach described in Sect. 11.1.1, as the latter did not 
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depend explicitly on the supersaturation. The number of atoms in the critical nu-
cleus here is 

2

2

* sg . (11.30) 

The Gibbs free energy of the critical nucleus is 

/2
scritG . (11.31) 

This critical energy plays the role of an activation barrier for nucleation and is 
therefore the decisive quantity in nucleation processes. 

11.2.2 Two-Dimensional Nucleation in Heteroepitaxy 

In heteroepitaxial growth, additional terms contribute to the energy of nuclei. The 
mismatch of the lattice constants between substrate and deposit gives rise to strain 
energy if nuclei grow pseudomorphic. Further contributions arise from the surface 
and interface tensions (Fig. 11.13). To first order, the elastic energy is proportional 
to the area A of the nucleus and the square of the misfit strain mf (Sect. 3.3.2) 

2
mfelast ACU . (11.32) 

The constant C characterizes the elastic properties of the monolayer. If one as-
sumes the monolayer to behave as an elastic isotropic film then  
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Fig. 11.13. The figure illustrates the additional contributions to the energy of a nucleus in 
heteroepitaxial growth: Uel is the elastic energy due to the misfit strain, s, i and dep are the 
substrate surface tension, the interface tension, and the surface tension of the deposit, re-
spectively.  
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Here t is the thickness of a monolayer, Y is the Young modulus and  is the Pois-
son number (3.63). In introducing these quantities, we must remember that the 
elastic constants as well as the natural lattice constants of monolayers may deviate 
considerably from bulk systems so that (11.33) yields merely a crude estimate 
when bulk quantities are inserted. In addition to the elastic energy, which is pro-
portional to the area, there are contributions that scale with the perimeter and the 
aspect ratios of the shape (cf. Sect. 3.4). However, for nucleation these contribu-
tions play only a minor role. They become important for the shape, in particular of 
3D-nuclei, as we shall see shortly.  
 The energy associated with the differences in the surface tension is  

)( sideptension AF . (11.34) 

We have considered this term earlier in the context of the various growth modes in 
Sect. 4.2.5. Layer-by-layer growth (= Franck-van-der-Merwe growth) is preferred 
energetically if Ftension < 0, growth in three-dimensional islands (= Vollmer-
Weber-growth) if Ftension > 0. Two-dimensional nucleation is therefore of interest 
if Ftension < 0. With (11.32) and (11.34) the Gibbs free energy becomes 
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The additional energetic terms contribute to the effective supersaturation potential. 
Without further ado, we obtain the energy of the critical nucleus as 
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The elastic energy is positive definite. The surface tension term can be either posi-
tive or negative. The sum of the two terms can also be either negative or positive. 
If it is negative,  must exceed a minimum value in order to have nucleation at 
all,

)( 2
mfsideps C . (11.37) 

If the lattice mismatch is small or the adsorption is not very site-specific, the elas-
tic energy becomes small. If furthermore the sum of the tensions is negative then 

Gcrit is finite and possibly small even when the supersaturation  is zero.  
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 11  Nucleation and Growth __________________________________________________________________________ 576

Consider e.g. the growth of Ag(111) ( dep  1.2 N/m) on W(110) ( s  4.0 N/m)! If 
one neglects the interface tension and inserts the line tension from Table 4.2, one 
obtains the energy of the critical nucleus as Gcrit = 0.11 eV at  = 0. Thus, a 
silver layer should grow on tungsten with arbitrarily small supersaturation even at 
room temperature. Experiments corroborate this conclusion.  

11.2.3 Three-Dimensional Nucleation 

The three-dimensional nucleation that occurs in Volmer-Weber and in Stranski- 
Krastanov growth (Sect. 4.2.5) is considerably more complicated. The crystalline 
anisotropy of the surface tension becomes an important factor as it determines the 
shape and the overall energy of the nuclei. The energy of a nucleus is therefore not 
simply proportional to its volume and its surface but depends on the ratios of the 
heights to the lateral extensions and on the type and relative size of the facets. 
Likewise, does the strain energy in a pseudomorphic nucleus depend on the aspect 
ratio since the misfit strain relaxes when the height of the nucleus becomes large. 
Last, not least the crystalline anisotropy of the elastic constant should not be ne-
glected if one is interested in quantitative statements. Size, shape and energy of 
the nuclei are therefore system specific, depend on the supersaturation itself and 
may change as more material is deposited. With these caveats in mind, it is never-
theless illuminating to study nucleation in the simplest of all physical 
"realizations" of nucleation, which is nucleation in the Kossel-model. A Kossel-
crystal represents atoms as cubes that are bonded to each other by their six faces 
(Fig. 11.14). The surfaces of substrate and deposit have surface energies s and 

dep, respectively, and the interface energy per atom is i. The energy required to 

dep

i

s

Fig. 11.14. 2D- and 3D-nuclei of a Kossel-crystal where the atoms are represented by cubes 
with bonds between the faces. Surface energies per atom of substrate and deposit are s and 

dep, i is the interface energy per atom. 
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break a bond of a substrate material is therefore 2 s. Its cohesive energy is 
Ecoh = 6 s. A realistic number for s is therefore 0.5-1.0 eV if the Kossel-crystal 
should represent a real solid. Figure 11.14 shows 2D-and 3D-nuclei of 9 and 27 
atoms, respectively. As we are interested in the energies of the critical nuclei, we 
compare only energies of square planar and cubic 3D-nuclei. We need not con-
sider double-layer 2D-nuclei, e.g., as (for a Kossel-crystal) their energy is 
necessarily larger than the energy of single-layer nuclei and scales in the same 
way with the number of atoms. 
 The Gibbs free energies of a square 2D-nucleus containing g atoms is 

gggG )(4 sidep
2/1

dep
(2D)  (11.39) 

The first term stand for the boundary energy, the second for the surface/interface 
energies. We can also introduce the elastic energy of a homogeneously distorted 
nucleus into the model by adding a term that is proportional to the area, hence to 
the number of atoms. For 2D-nuclei, the elastic energy has the quality of an inter-
facial energy and it can be viewed as being part of it. For 3D-nuclei, we need to 
add an extra term el to account for the elastic energy. We keep in mind, however, 
that the elastic energy el is much smaller than the other energies. Consider for 
example the epitaxial growth of Ge(100) on Si(100). The misfit strain is mf is 
4.2%. With the elastic constant Y = 1.03 1011 N/m of Ge and the Poisson number 

 = 0.27 one obtain el = 0.035 eV. 
 The Gibbs free energies of a 3D-nucleus containing g atoms is  

ggG )()5( el
3/2

sidep
(3D) . (11.40) 

We see that the energies dep, s, i, and el now enter in a qualitative different man-
ner! This has noteworthy consequences for the dependence of the preferred 
nucleation mode on the energies. For an easier discussion, we normalize critical 
energy and supersaturation as 

depdepcritcrit /~/
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GG . (11.41) 

The critical energies and critical number of atoms in the nuclei are 
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We discuss several scenarios, depending on the magnitudes of the energies. 

Case I: dep = s, i = 0, el = 0

This case corresponds to homoepitaxy. The energies and size of critical nuclei are 
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In Fig. 11.15a the energies are plotted as solid and dashed lines and the critical 
sizes as dash-dotted and dotted lines, for 2D- and 3D-case respectively. The thin 
horizontal line marks a boundary g* = 10 below which the model is not meaning-
ful. According to Fig. 11.15a two-dimensional nucleation is preferred. 
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Fig. 11.15. Gibbs free energy and size of the critical nucleus versus supersaturation in the 
Kossel-model. Energies are normalized to dep (see text for discussion). 
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Case II: dep > ( s i), el = 0 

This case corresponds to heteroepitaxy for which according to the Bauer-criterion 
Vollmer-Weber growth should occur under equilibrium conditions (Sect. 4.2.5). 
As an example, we choose dep > 2( s i). The energies and sizes of the critical 
nuclei are 
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These functions are plotted in Fig. 11.15b. For small supersaturations 3D-
nucleation is the preferred growth mode; 2D-nucleation takes over at larger super-

saturations. If elastic energy is added, the pole for (3D)
crit

~
G  shifts away from the 

origin of ~ . The crossover to 2D-nucleation shifts to lower supersaturations. 

Case III: dep < ( s i), el = 0 

This case covers the growth of low surface tension material on substrates with a 
high surface tension. The equilibrium growth mode is the Frank-van-der-Merwe 
growth. As an example we choose dep = 0.5( s i). The energies of the critical 
nuclei are 
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The functional dependences are shown in Fig. 11.15c. 2D-nucleation is preferred 
for all relevant supersaturations.  

Case IV: i s > 0

This scenario corresponds to a situation where the deposit rather creates a surface 
of its own than to form bonds with the substrate, a situation of complete non-
wetting. We choose dep = i s  as an example and obtain 
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The result is plotted in Fig. 11.15d. Three-dimensional nucleation is preferred as 
expected.

11.2.4 Theory of Nucleation Rates 

This section considers the rate at which atoms or, speaking in general terms, 
monomers are incorporated into stable nuclei when the external source keeps the 
surface concentration constant. The thermodynamic picture developed above 
yields an expression for the equilibrium number of clusters containing g-atoms (or 
monomers) 

Tk

gG

g nn B

)(

0
eq)( e  (11.48) 

where n0 is the number of possible nucleation sites on a given surface20. We keep 

in mind in the following that eq)(
gn  is the equilibrium number for a fixed super-

saturation potential. With the notion that clusters grow continuously once they 
have surpassed the critical size (Fig. 11.12) one might infer that the growth rate is 
the number of critical nuclei multiplied by the flux of monomers into those nuclei. 
Accordingly, the growth rate I should be proportional to  

(eq)
*gnI  (11.49) 

In reality, the problem is more complex. All cluster of arbitrary size are assembled 
from monomers. The critical cluster containing g* monomers is generated by add-
ing one monomer to the (g* -cluster, the (g* -cluster is generated by adding a 
monomer to the (g* -cluster, and so forth. Adding one monomer to a cluster of 
g monomers not only generates a (g* -cluster; it also removes one cluster from 
the ensemble of clusters of size g. These statements are cast into mathematics by 
considering the growth rate of the number of clusters with g monomers, 

gggggggg
g

nEnCnEnC
t

n
1111 . (11.50) 

20 We note that in homogeneous nucleation, e.g. water condensation, n0 is replaced by the 
number of existing monomers as these monomers are the condensation sites.
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Cg and Eg are the condensation and evaporation rates into and from clusters of the 
size g, respectively. In words, the number of clusters of size g increases by con-
densing monomers into clusters of size g 1 and by evaporating monomers from 
clusters of size g+1; the number of clusters of size g is reduced by evaporation or 
by condensation of monomers. The overall condensation process requires a stream 
that carries monomers from clusters of size g to g+1. The reverse process involves 
evaporation from clusters of size g 1. We can therefore define a condensation 
current at the cluster of size g as  

11 ggggg nENCI . (11.51) 

Equation (11.50) can be written as the difference between the currents Ig-1 and Ig,

gg
g

II
t

n
1 . (11.52) 

In the very beginning of a nucleation process the number of clusters of all sizes 
changes rapidly. Under the condition of constant supersaturation, a steady state is 
reached quickly however with all Ig identical and positive. One is primarily inter-
ested in this steady-state nucleation. We discuss two solutions to this problem. 
One involves a mapping of the problem onto the statistical problem of a random 
walker. The other one is based on an ingenious steady-state solution of coupled 
rate equations. Both solutions turn out to be numerical (almost) identical although 
it is not obvious why that should be so. 

Solution based on the statistics of a random walker

The solution focuses on the nucleation current into the critical cluster. The current 
can be written as the product of the attachment rate *gC  to the critical cluster, the 

number of critical clusters in steady state (st)
*gn , and the probability Pno(g*) that a 

cluster will never return to the critical stage, once a monomer has been added,  

*)(no
st)(
** gPnCI gg . (11.53) 

It can be shown that the steady state number of clusters of any size g are given by 
the equilibrium number multiplied by the probability Pret(g) that the cluster of size 
g returns to the state of a monomer,  

*)(ret
eq)(
*

(st)
* gPnn gg . (11.54) 

For the (non-elementary) proof, the reader is referred to the study of White 
[11.10]. The return probability Pret(g) is 
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The ratios of evaporation and condensation rates are > 1 for clusters smaller than 
the critical size, = 1 for clusters of the critical size and < 1 for clusters larger than 
the critical size. 
 The condition that the incorporation of a monomer into the critical cluster must 
be a permanent one is identical to the requirement that the cluster never returns to 
the critical size g*. This no-return probability is 

1
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The total rate I by which monomers nucleate is therefore 
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e*)(*)( 0retno* . (11.57) 

For a numerical solution of the expression for the probabilities, one needs the 
ratios of evaporation and condensation for cluster of size g*. With reference to the 
discussion on Ostwald ripening (Sect. 10.4.1), we can write the evaporation cur-
rent density at the perimeter of the cluster as 

Tk
g srsj B

GT

e)()( (eq)(eq)
nevaporatio  (11.58) 

where )((eq)
gr  is the equilibrium concentration of monomers at the periphery of 

a cluster of radius rg (possessing the Gibbs-Thomson chemical potential), s is a 
sticking coefficient and  a jump frequency. The equilibrium concentration at the 
periphery of the cluster can be expressed in terms of the equilibrium concentration 

on a flat surface )((eq)  and the Gibbs-Thomson chemical potential of the clus-

ter (11.58). The current density for condensation is 

Sssj )((eq)
oncondensati  (11.59) 

with  the actual concentration on the surface and S the supersaturation. The ratio 
of evaporation and condensation is therefore 
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For spherical (3D) and circular (2D) clusters (11.60) can be reduced to a very 
simple expression. With the identity  

SS ln
1

e  (11.61) 

and

grg /)( sGT  , STkr sg ln/ B*  (11.62) 

for the 2D-case and 

grg /2)(GT  , STkrg ln/2 B*  (11.63) 

for spherical clusters, one obtains 
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where  is 1/2 for circular 2D-clusters and 1/3 for spherical clusters. With (11.64) 
the products and sums in (11.55) and (11.56) are easily evaluated in terms of g*

and S. Good numerical accuracy is achieved when the upper limit  is replaced by 
a number of the order of 10 100 above g*.

Solution based on coupled rate equations

The derivation of the steady state condensation current by playing with the set of 
rate equations (11.51) is much more elementary, thanks to some ingenious tricks. 
Our presentation follows the very tutorial papers of McDonald [11.11, 12].  
 The steady state condition requires that all Ig in (11.51) are identical, hence 
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The problem in calculating the nucleation current is that the steady state numbers 
(st)
gn  are unknown. They differ from the equilibrium numbers (eq)

gn  except in the 

limit of zero current. For zero current, we have 

(eq)
11

(eq)
gggg nEnC . (11.66) 

Using (11.66), equation (11.65) can be cast into the form 
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We rearrange this set of equations to 
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By summing up the left and the right hand sides one obtains 
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We see that the rearrangement has spirited away all of the unknown steady state 
numbers save for those of the clusters of size one, the monomers, and size G. At 
first sight, not much seems to be gained from that; however, we remember that we 
have imposed the condition of constant supersaturation. The number of monomers 
is therefore independent of the magnitude of the nucleation current, whence  

1/ (eq)
1

st)(
1 nn . (11.70) 

To take care of the second term in the nominator of (11.69) we invoke a kind of 
Maxwell demon and request that this demon keeps the supersaturation constant by 
breaking up clusters of size G into monomers to feed them back into the system. 
This artifice, invented by Szilard, maintains the steady state in the system while 
keeping the number of monomers in the system finite and constant. It also imposes 
the boundary condition  

0st)(
Gn . (11.71) 

When G is significantly larger than the critical size g* the resulting current I be-
comes independent of the choice of G which is the a posteriori justification for the 
artifice. With (11.70) and (11.71), the current is expressed solely in terms of equi-
librium properties and condensation rates, 
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The further evaluation of the sum (11.72) is straightforward. For not too small 
critical clusters, we can convert the sum into an integral.  
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G is maximal at the critical size g* (Fig. 11.12). The exponential function has 
therefore a sharp maximum at g*. The integral is evaluated by expanding G
around the maximum at g* and by retaining the first two non-vanishing terms. 
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The linear term vanishes by definition of G(g*). The second derivative of G is 
necessarily negative. With the abbreviation  
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the inverse nucleation current becomes 

x
nC

I TkQx

g

Tk

de
e

B
2B

crit

2/

1*

G

1 (11.76) 

Because of the sharp peak of the integrand at x = (g  g*) = 0 the boundaries can 
be extended to infinity. The final solution for the current is 
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The first prefactor in (11.77) is known as the Zeldovich-factor Z [11.13]. By com-
paring (11.77) with (11.57) we note that this factor (if everything is correct!) 
should be identical to the product of the two probabilities Pno(g

*) and Pret(g
*),  
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This is a remarkable result, far from being obvious. In order to test the equality 
(11.78) we calculate Z for spherical 3D-clusters and circular 2D-clusters. The 
second derivative of G for 2D-clusters is obtained from (11.28). The second 
derivative of G for 3D-clusters is obtained from the analogous equation for 
spheres. It is convenient to replace the line tension and the surface tension by the 
supersaturation S. The results are then  
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As before,  and  are line and surface tension of the nuclei and s and  are the 
surface area of an atom and the atom volume, respectively. The second forms of 
the Zeldovich-factors are conventionally quoted; the first forms are convenient for 
the intended numerical comparison; the third forms are useful for calculations of 
the dependence of nucleation prefactors on experimental parameters. 
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Fig. 11.16. Zeldovich-factors for critical clusters of size 10 and 100 calculated from the 
random walk theory of White [11.10] with (11.55), (11.56) and (11.64) and from the ana-
lytical expressions (11.79) and (11.80).  
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Figure 11.16 shows the Zeldovich-factors calculated numerically from (11.55, 
11.56) with the help of (11.64) as symbols. The solid lines are obtained from 
(11.79) and (11.80). For g* = 100 numerical and analytical results are identical 
within the numerical accuracy. For the smaller critical cluster, there is a small 
deviation presumably because the replacement of the sum (11.72) by the integral 
(11.73) and the approximation made in solving the integral work better for larger 
critical clusters. The numerical agreement was already noticed by White [11.10], 
but remains mysterious in view of the completely different mathematics. From the 
standpoint of a physicist, the agreement of the two approaches is pleasing though. 

11.2.5 Rates for 2D- and 3D-Nucleation 

This section condenses what we have learned about nucleation rate theory into 
expressions for 2D- and 3D-nucleation and discusses the result in the perspective 
of experimental data. We focus on homoepitaxial growth of element crystals. The 
monomers are then adatoms of the same type as the substrate atoms. We first re-
write (11.77) into a current density J by replacing the number of nucleation sites 
by their number per area ns. For a perfect surface, one can identify the concentra-
tion of nucleation sites with the concentration of sites for adatoms. 

Tk
g ZnCJ B
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s* e  (11.81) 

This equation is now further evaluated for several cases. 

Case I: 2D-nucleation and surface diffusion

The condensation rate Cg* is calculated as for the case of Ostwald ripening (10.80, 
11.59) 
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Here, a|| is the atom diameter, s is a sticking coefficient, 0 is the prefactor for 
diffusion, Ed is the activation energy for diffusion and  and eq are the actual and 
the equilibrium coverage with adatoms per site next to the critical nucleus. The 
dependence of the equilibrium coverage on r* can be neglected so that eq(r*) can 
be replaced by eq( ). By definition, the coverage  is the product of the equilib-
rium coverage eq( ) and the supersaturation S. The equilibrium coverage eq( )
is given by the energy EA to create an adatom from a kink site (Sect. 1.3.2, 
eq. 1.33), so that  
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After inserting (11.82), (11.83), (11.79) and (11.31) we obtain from (11.81)  

.
4

)1(ee2

withe

2/1

B
2

s
2

3

0s
||

sdiff)(2D,
0

diff)(2D,
0

diff)(2D,

BB

Ad

B

2
s

Tk
sn

a
J

JJ

TkTk

EE

Tk

 (11.84) 

For clarity, we have abstained from reducing fractions. The behavior of the nu-
cleation current as function of the supersaturation potential is dominated by the 
exponential term since the supersaturation potential  enters as a factor (!) to the 
temperature there. This calls for an extremely steep increase in the rate in a small 
chemical potential range. Experimentally this increase has the appearance of a 
sudden onset of nucleation. Compared to that, the variation of the other factors on 
the supersaturation potential is small. This holds even for the exponential term 
exp( /kBT) that arises directly from the supersaturation. In many relevant cases, 

 is smaller or comparably with kBT so that the term depends only weakly on .
During the onset of nucleation, the prefactor J0 is practically independent of 
and is therefore rightly treated as a constant prefactor in the analysis of experi-
mental data. Equation (11.84) permits the calculation of that prefactor from 
parameters obtained from other experiments; here from studies of Ostwald ripen-
ing (Sect. 10.4) and island equilibrium fluctuations (Sect. 4.3.8).  

Case II: 2D-nucleation and direct growth from the ambient phase

We consider the case when atoms are directly incorporated into the edge of a 
growing 2D-nucleus from the ambient phase without intermediate surface diffu-
sion. The condensation rate should be given by the number of sites next to the step 
edge multiplied with the flux onto these sites from the ambient phase. For vapor-
phase deposition, one can make the ansatz that the rate is the flux per area multi-
plied by the area of the atoms adjacent to the step edge. The flux density can be 
taken from kinetic gas theory (2.3). With that, one obtains 
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Here, a is an atomic dimension and m is the mass of the deposited atoms. The 
pressure in the ambient phase is replaced by the product of the equilibrium pres-
sure peq and the supersaturation. 
 The equilibrium pressure contains the cohesive energy of the solid as an activa-
tion term (Sect. 5.1.3, eq. 5.17). Since Ecoh is of the order of several eV the 
activation term is many orders of magnitude smaller than the corresponding factor 
in (11.84) that stemmed from the equilibrium concentration of monomers and their 
diffusion towards the nucleus. Nucleation by direct deposition from the gas phase 
onto the edges of a growing 2D-cluster cluster is therefore negligible for homoepi-
taxial growth from the vapor phase. The argument may not hold for deposition 
from a high-pressure gas or from an electrolyte solution. It is therefore useful to 
consider the relative importance of nucleation by surface diffusion and direct 
deposition on more general grounds. The derivation of the rate equation (11.84) 
requires that the incorporation process does not significantly reduce the concentra-
tion next to a growing nucleus. Each critical nucleus captures atoms by the rate 

s
diff)(2D,

0
-1
capt / nJ (11.86) 

which sets the time scale for diffusion. During the time between two capture 
events, the atom can diffuse the distance (measured in atom units) 

2/1
BD0cap

2/1
capD )/exp()ˆ(ˆ TkEDL  (11.87) 

with 0 and ED the prefactor and the activation energy for diffusion, respectively. 
The atoms within a distance DL̂  from the perimeter of the nucleus have a chance 
to arrive at the perimeter before the next capturing event takes place. The area of a 
circle with the radius DL̂  therefore feeds the nucleation process by diffusion. If 
the nucleus grows from the ambient phase directly it captures atoms at most by its 
own area 2*)ˆ(r . Hence, nucleation via diffusion requires  

**)ˆ(ˆ 22
D grL  . (11.88) 

This places an upper bound on ED for diffusion-controlled nucleation. 

)*/ln( 0sBBD JhgTnkTkE . (11.89) 

We have replaced 0 by kBT/h. With this condition, we can calculate the upper 
limit for the diffusion activation energy from the experimental value of J0. For 
electrodeposition of silver typical experimental values of J0 are in the range be-
tween 1010 cm 2s 1 and 1015 cm 2s 1 [11.14]. Assuming g* = 100 and T = 300 K, 
one obtains upper limits of ED = 1.1 eV and 0.6 eV, for J0 = 1010 cm 2s 1 and 
J0 = 1015 cm 2s 1 respectively. Since activation energies for diffusion on terraces 
are typically below this range, nucleation should occur via surface diffusion.  
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It is difficult to decide experimentally between diffusion controlled and direct 
nucleation from the ambient phase since all basic relations, as e.g. the dependence 
of the growth rate on the overpotential, are either identical or experimentally in-
distinguishable. Guided by the interpretation of electrochemical deposition 
experiments on the growth of step bunches researchers in the 1970-ties were in-
clined to give preference to nucleation by direct attachment (see [11.14] for 
details). In the light of our present understanding, the arguments are not compel-
ling, however. More importantly, studies on step fluctuations on Ag(111) 
electrodes in 1mM CuSO4+0.05 M H2SO4 close to the point of dissolution have 
shown that steps exchange atoms with the terraces and the terraces with the elec-
trolyte (Fig. 10.37) [11.15, 16]. Direct exchange with the electrolyte could be 
excluded at least for this system, as it would lead to a different time dependence of 
the fluctuations (Fig. 10.34).  

Case III: 3D-nucleation in the Kossel-model

In Sect. 11.2.2, we have calculated Gcrit in the Kossel model for various cases 
and have argued for either 2D- or 3D-nucleation depending on the value of Gcrit.
Since Gcrit enters the activation energy of the nucleation rate (11.81) the argu-
ment should be sound. It is nevertheless interesting to compare 2D- and 3D-
nucleation rates quantitatively. We consider the example of homoepitaxial growth. 
Because of the argument above, we focus on attachment by surface diffusion. The 
nucleation rate for 2D-growth is  

TkTkTk

EE

n
Tk

sJ B

2

BB

Ad 4

s

2/1

B
2

3

0
K)(2D, e

32
)1(ee

8
. (11.90) 

Here,  is the parameter representing the step energy per atom. The corresponding 
equation for the growth of 3D-nuclei via surface diffusion is 
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To be reasonably consistent with experiment the parameter  should now represent 
the surface energy per atom.  

Numerical examples

It may be refreshing at this point to introduce some numbers into the game and 
calculate the growth rate for the various mechanisms with a particular example in 
mind. We choose the Ag(111) surface, as for this surface the sum of the energies 
Ed +EA, the prefactor and the line tension are known from experiment 
(Ed +EA = 0.71 eV, 0 = 1 1012 s 1 [11.17], a||  = 0.23 eV [11.18]).   
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We consider first deposition from the vapor phase. The condition of constant su-
persaturation requires that the exchange flux of atoms between the vapor phase 
and the surface is much larger than the flux into nuclei. This calls for substrate 
temperatures where the vapor pressure of the substrate is appreciable. At 
T = 950 K e.g. the equilibrium pressure of silver is 1.3 10 4 Pa (Fig. 5.1) corre-
sponding to a flux of 1014 atoms cm 2s 1, which is large enough to divert atoms 
into nuclei at a considerable rate without disturbing the steady state concentration 
of adatoms on the surface. 
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Fig. 11.17. 2D-nucleation rates on Ag(111) for two different step line tensions a||  and 
temperatures to represent typical situations for MBE-growth (T = 950 K) and electrodeposi-
tion (T = 300 K), dashed and solid line respectively. The curves are calculated from (11.84) 
with Ed +EA = 0.71 eV, 0 = 1 1012 s 1 [11.17], a||  = 0.23 eV [11.18] and a||  = 0.04 eV 
[11.14]. The latter represents the step line tension of Ag(111)-electrodes near the Nernst 
potential in 6 M AgNO3. The flags mark the supersaturation at the points of onset.

The dashed line in Fig. 11.17 shows the result as obtained from equation (11.84). 
Table 11.1 lists characteristic parameters of the nuclei for an arbitrarily chosen 
fixed nucleation rate of J = 106 cm 2s 1. The critical number of atoms g* = 60 is in 
a range where the continuum model should be applicable. The same calculation 
for T = 300 K yields g* = 3 (actually a fractional number) which is outside the 
realm of the continuum model. Moreover, the condition of constant supersatura-
tion cannot be maintained in that case as the vapor pressure of silver is essentially 
zero. Hence, from a very different standpoint, we recover that vapor-phase growth 
at room temperature is under constant flux, not constant supersaturation. This is 
different in electrodeposition. Nucleation experiments on silver electrodes show 
that the step line tension is much smaller than in vacuum. Values of a||  = 0.04 eV 
and a||  = 0.035 eV have been quoted for Ag(111) and Ag(100) in AgNO3 solu-
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tion, respectively [11.14]. The smaller values for the line tension are qualitatively 
consistent with the fact that the Nernst potential is far to the positive of the pzc 
(Sect. 4.3.5, eq. 4.76). The solid line in Fig. 11.17 is obtained for Ag(111) when 
Ed +EA  and 0 are taken as for surfaces in vacuum. The prefactor of 
J0  1015 cm 2s 1 thereby obtained is about four orders of magnitude larger than 
measured on Ag(111) electrodes (Table 5.3 in [11.14]) leading to the not unrea-
sonable suggestion that diffusion may be hindered by the presence of the 
concentrated electrolyte. The reduction in the diffusion coefficient (or the higher 
activation energy) is still well below the estimated limit for attachment by diffu-
sion. 

Table 11.1. Characteristic nucleation parameters for nucleation via surface diffusion calcu-
lated for a fixed nucleation rate of J = 106 cm 2s 1; a||  is the step line tension, J0 the 
prefactor, g* the size of the critical nucleus in atoms, Z the Zeldovich-factor,  the super-
saturation potential, and S the supersaturation.

System T/K a|| /eV J0/cm 2s 1 g* Z /eV S

Ag(111) 950 0.23 4.5 1023 58 0.029 0.0498 1.84 

Ag(111) 300 0.23 1.6 1019 3 0.45 0.211 3450 

Ag(111) 300 0.04 4.3 1014 46 0.024 0.00972 1.46 

Kossel2D 300 0.23 8.1 1019 3 0.35 0.256 19400 

Kossel3D 300 0.6 1.6 1034 3 0.61 1.105 4 1018

Kossel2D 950 0.23 1.1 1024 55 0.024 0.0622 2.14 

Kossel3D 950 0.6 4.1 1027 11.5 0.14 0.709 5750 

Table 11.1 also compares 2D- and 3D-nucleation with the help of the Kossel 
model. The free parameter is the energy  per face of the elemental cubes. To be in 
keeping with the experimental data on silver  is taken as 0.23 eV for 2D-
nucleation where it represents a step line tension and as 0.6 eV in 3D-nucleation 
where it represents a surface energy per atom. The table shows that 3D-nucleation 
is very unfavorable compared to 2D-nucleation. This result was already obtained 
in 11.2.3 by comparing critical Gibbs energies, but is accentuated here because of 
the different values for   in the two cases.  
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11.2.6 Nucleation Experiments at Solid Electrodes 

The solid/electrolyte interface is an ideal playground for controlled studies on 
nucleation since the chemical potential of the deposit is given the overpotential 
multiplied by the elementary charge and the charge number of the ions (11.26). If 
the electrolyte is of high enough concentration, its resistance is low and the 
chemical potential can be varied within nanoseconds. It is therefore possible to 
create a single nucleus by a applying a short pulse of a voltage above threshold, or 
a small number of nuclei, at will. With a continuing smaller applied overpotential, 
these nuclei grow. Experiments are frequently performed with the double pulse 
technique, which is illustrated in (Fig. 11.18). 
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Fig. 11.18. Illustration of the double pulse method (see text for discussion, after Budevski 
et al. [11.14]). 

A constant overpotential  that is large enough to continue growth of an existing 
nucleus is superseded by a short overpotential pulse, large enough to initiate nu-
cleation on a defect free surface. A single nucleus can be generated by matching 
time duration and amplitude of the pulse. Once generated, the nucleus grows un-
der condition of constant supersaturation. The number of added atoms per time is 
proportional to the length of the perimeter. Assuming circular islands with a radius 
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r̂  (in atom diameters) the rate by which adatoms on the surface are attached to the 
island perimeter is (cf. 11.84) 
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As before, s is the sticking coefficient, (T ) is a jump frequency, ze the charge of 
the ion as it is discharged on the surface, and the overpotential. The Gibbs-
Thomson pressure can be neglected, as we are interested in the growth rate when 
the island is of macroscopic dimensions (several micrometers). After substituting 
the radius by the number of atoms in the island N
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which after integration yields  
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We have neglected a brief induction period in the integration. After the induction 
period, the current I = zedN/dt rises proportional to the time as long as the island 
growth is unhindered, 
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In the electrochemical literature, the prefactor in (11.96) is mostly expressed in 
terms of the exchange current density j0 and a diffusion length s [11.19]. This 
latter form would be meaningful if the exchange of adatoms on the surface with 
ions in solution would be rate determining. To be consistent with the basic as-
sumption of our discussion on the nucleation theory we have considered the limit 
where the exchange with the solution is infinitely fast (constant chemical potential 
on the surface) and the growth rate is limited by the attachment rate. 
 The linear rise of the current is shown in the right panel of Fig. 11.18. The rise 
continues until the boundary of the growing island (colored in dark gray in 
Fig.11.18) touches the boundary of the crystal face (light gray) on which it is 
growing. Upon contact with the boundary of the crystal, the current drops sharply 
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first, then more smoothly when a larger portion of the growing island has merged 
with the boundary of the crystal. Depending on the initial position of the nucleus, 
the current may increase a little before it eventually turns down to zero when the 
monolayer island fills the surface completely. Experiments of this kind permit the 
determination of the growth speed as function of the overpotential. Furthermore, 
the number of nuclei generated by the pulse can be determined from the number of 
peaks in the current. An alternative to counting the peaks in the current is to let 
nucleated cluster grow until they become visible in a microscope. The dependence 
of the nucleation rate on the overpotential is thereby measured. By plotting the 
logarithm of the nucleation rate versus the inverse of the overpotential or the 
square of the overpotential 2D- and 3D nucleation are distinguished. Figure 11.19 
shows the nucleation rate on an Ag(100) electrode [11.14, 20]. The linear slope in 

the )(ln
1

J -plot proves 2D-nucleation (11.84, 11.90). Assuming square shaped 

crystals, the step energy per atom a||  is determined to 31 meV (11.44). The criti-
cal sizes vary between 28 atoms at | | 1 = 85 V 1 and 70 atoms at | | 1 = 135 V 1.
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Fig. 11.19. Nucleation rate on Ag(100) electrodes in 6 M AgNO3 as function of the inverse 
of the overpotential | |. The linear dependence proves 2D-nucleation (11.84, 11.90) 

Nucleation on surfaces is a stochastic process. At small overpotentials when nu-
cleation is a rare event the number of nucleation events m in a given time span 
obeys Poisson statistics,  
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The stochastic generation of nuclei can be observed directly in the current when a 
perfect single crystal electrode is held at constant overpotential slightly below the 
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onset of rapid nucleation. Figure 11.20 shows a recorder trace of nucleation events 
on Ag(100) electrodes at the overpotential of  = 6meV where nucleation is a 
rare event. 
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Fig. 11.20. Recorder trace of current pulses due to the stochastic nucleation events on 
Ag(100) in 6 M AgNO3 at  = 6 mV(after Obretenov et al. [11.21], see also [11.14]). 
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Fig. 11.21. Oscillogram of the cathodic current for multilayer growth on a perfectly flat 
Ag(100) surface in 6 M AgNO3 (after Bostanov et al. [11.19, 22]. At any time, the current 
is proportional to the total step length on the surface. Comparison to Fig. 11.9 instructs us 
that the minima mark the completion of monolayers. 
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Multilayer growth can be investigated nicely by analyzing the current at constant 
overpotential. Figure 11.21 shows a redrawn oscillogram of the current when an 
Ag(100) electrode in 6 M AgNO3 is held at constant overpotential  = 14 mV. At 
this relatively high overpotential, nuclei are generated progressively and they con-
tinue to grow on the surface. At any time, the current is proportional to the total 
length of steps on the surface. The initial increase is quadratic in time. While a 
direct Monte-Carlo simulation of the nucleation process is impossible because of 
the extremely small adatom concentration, one may compare to the step length in 
Fig. 11.9 obtained by Monte-Carlo simulations that referred to constant flux and to 
a critical nucleus of size g* = 1. The initial increase in the step length in 
Figs. 11.9c and the damped oscillations are rather similar to the current shown in 
Fig. 11.21. According to Fig. 11.9 the total step length should pass through a 
maximum near 50% coverage of the first monolayer, show a first minimum at 
monolayer coverage, and undergo a series of oscillations thereafter, a result that 
presumably transfers to the situation here. The comparison has to be taken with a 
grain of salt, however, because of the different thermodynamic conditions in the 
two cases. 

11.3 Nucleation and Growth in Strained Systems  

Experimental studies on nucleation and growth in strained systems have revealed 
a large variety of phenomena [11.23]. Many of them came rather unexpected. 
Some have found applications in technology. Again, tunneling microscopy, and 
lately force microscopy played a key role in the experiments as scanning probe 
techniques are able to image individual clusters with atomic resolution. Nearly all 
observations have been made under the thermodynamic condition of constant flux. 
This boundary condition of constant flux makes it intrinsically difficult to decide 
whether a particular structure results from kinetics or represents equilibrium. Of-
ten enough both aspects are intertwined in a complex way, which has occasionally 
triggered heated debates in the literature. Out of the many examples, we discuss a 
few tutorial ones where the role of kinetics and equilibration is believed to be 
understood. 

11.3.1 2D-Nucleation on Strained Layers

Under constant flux, the density of nuclei is determined by the ratio of flux and 
diffusion constant (11.7). Since the activation barrier for diffusion is very sensitive 
to changes in the interatomic distances, the density of nuclei changes with the 
strain in substrate surface layer. A tutorial demonstration of the effect of strain 
was published by Meyer et al. for Ni-layers deposited on Ru(0001) [11.24]. The 
Ni-layers on Ru(0001) grow in (111) orientation. The nearest neighbor distances 
of ruthenium and nickel are 2.7 Å and 2.49 Å, respectively. Because of the large 
lattice mismatch, nickel grows pseudomorphic only in the submonolayer regime. 
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After completion of the first monolayer, additional Ni-atoms are incorporated into 
the first layer. This leads to a reconstruction with domains in which most of the 
Ni-atoms reside alternatively in fcc- or hcp-sites. Upon deposition of further lay-
ers, the Ni-film contracts to approximately the bulk lattice constant, which causes 
a height corrugation pattern. Figure 11.22 shows an STM-image of a nominally 
2.5 ML films that displays patches of 1, 2, 3, and 4 monolayer thickness after 
annealing. The thicknesses are marked by white numbers. Upon further deposition 
of 0.05 ML of nickel, 2D-nuclei are generated. Their density is the highest on the 
monolayer film and decreases as the Ni-film grows thicker. This suggests an in-
crease of the diffusion constant with the film thickness. The lines where steps 
existed on the Ru(0001) substrate (white dashed lines) are decorated with an extra 
dense row of nuclei. While the experiments of Meyer et al. nicely demonstrate the 
effect of strain on nucleation, they are not amenable to quantitative analysis be-
cause the strain in the film has lateral and vertical components, is not uniform and 
its magnitude is not known quantitatively. 
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Fig. 11.22. STM-image (courtesy of R. J. Behm) of an annealed Ni-film on a Ru(0001) 
substrate onto which an additional amount of 0.05 monolayers of Ni was deposited at 
300 K. Image size is 400 nm 400 nm. The numbers indicate the thickness of the Ni-film in 
monolayers. The dashed lines mark some of the steps on the underlying ruthenium sub-
strate, ascending from left to right. The higher nucleation density on thinner films is 
indicative of a smaller diffusion coefficient (after Meyer et al. [11.24]). 

Inspired by nucleation experiments of Ag on Ag(111), on Pt(111) and on a 
monolayer of Ag on Pt(111) of Brune et al. [11.25] Ratsch et al. calculated the 
binding energies of Ag-atoms in fcc and bridge sites on uniformly strained Ag-
films [11.26]. Their results are displayed in Fig. 11.23. Both binding energies 
increase linearly with positive strain albeit with a different slope. The increase in 
the binding energy with larger lateral interatomic distances is a consequence of the 
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non-directional metallic bond that can be understood in terms of the embedded 
atom model. According to this model, a major part of the binding energy of an 
adatom on a metal surface is the embedding energy, which depends on the collec-
tive charge density at the position of the atom. For larger lateral distances between 
the surface atoms, the adatom is drawn closer to the surface so that it is located in 
a larger electron density and is therefore more strongly bound. Because of the 
nonlinear functional dependence of the embedding energy with the charge density, 
the effect strain on the binding energy is larger the more the atom is immersed into 
the surface; hence, the larger shift in the binding energy for the fcc-site compared 
to the bridge site. The activation energy for diffusion is roughly equal to the dif-
ference of the energy in the bridge site and the fcc-site and increases therefore 
with positive strain (lower panel of Fig. 11.23).  
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Fig. 11.23. Top panel: Total energy of silver atoms in the fcc-sites and bridge-sites of an 
Ag(111) film as function of the surface lattice constant. Bottom panel: Differences in the 
energies of bridge and fcc-sites, the activation energy for diffusion (after C. Ratsch et al. 
[11.26]). 

The dependence of the diffusion barrier on the strain has some interesting conse-
quences on the nucleation process when a lattice mismatched thin film exhibits a 
regular pattern of dislocations at the interface to the substrate. The STM image in 
Fig. 11.24a shows the dislocation network of a two-monolayer Ag-film on a 
Pt(111) surface [11.27]. The dislocations are displayed as black lines. They sepa-
rate small and medium sized triangular areas in which the silver atoms reside in 
hcp-sites from larger hexagonal areas where the atoms sit in fcc-sites. Nucleation 
upon further deposition of silver follows the registry of the pattern (Fig. 11.24b). 
Nucleation occurs only within the distorted hexagons because atoms have a higher 
binding energy in the fcc-sites. The dislocation lines act as repulsive barriers for 
diffusion, which promotes nucleation in the center of the fcc-areas.  
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hcp
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Fig. 11.24. (a) Dislocation network of a two-monolayer Ag-film on Pt(111). Within the 
distorted hexagons, the Ag atoms reside in fcc-sites. (b) Nucleation of the next silver layer 
follows the dislocation pattern; nucleation occurs in the center of the fcc-areas (courtesy of 
Harald Brune [11.27]). 

11.3.2 3D-Nucleation on Strained Layers

A system that has been studied extensively, both for technological relevance and 
fundamental interest, is the growth of Ge and GexSi1-x alloys on Si(100). The 
growth is of the Stranski-Krastanov type: the first layers grow pseudomorphic, 
after that 3D-nucleation takes place. The nuclei display a rather interesting and 
complex shape, which changes with coverage from square-shaped huts over rec-
tangular huts to domes. Figure 11.25 shows STM images of these hut and dome 
clusters. The names "hut" and "dome" are somewhat misleading as they suggest a 
larger height to width ratio than the clusters actually have. The huts are formed 
from four {105}-facets. Hence, the angle with the surface is merely 11.3°. The 
domes have somewhat steeper sides. The {113}-facets form angles of 25.2° with 
the surface plane. 
 It is probably as much a mission impossible as a fruitless endeavor to attempt a 
complete understanding of this nucleation phenomenon. Nevertheless, several 
qualitative and semi-quantitative models have been proposed. The huts are ini-
tially square-shaped, consistent with the fourfold symmetry of the surface and the 
principle of minimization of the surface energy. The comparatively low surface 
energy of the {105}-facets results from a specific reconstruction that involves a 
combination of vacancies and dimer bonds to minimize the number of dangling 
bonds [11.29]. The rate determining step in hut growth is the nucleation of steps 
on {105}-facets which grow from bottom to the top. The activation energy for the 
step-nucleation process increases with the length of the step. This leads to self-
limited growth and also to a bifurcation of the aspect ratio since steps nucleate 
easier on already shorter sides of the huts [11.30, 31].  
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Fig. 11.25. (a) Hut cluster of Ge formed on a pseudomorphic Ge-layer on Si(100). The 
facets display {105}-orientation. (b) A multifaceted dome cluster (courtesy of Bert Voigt-
länder, see also [11.28]).  

The transition to domes is induced by the elastic deformation energy. The steeper 
sides of the dome allow for a better relaxation of the strain in the 4% lattice-
mismatched Ge-cluster which reduces strain energy. The balance of elastic energy 
relaxation and the surface energy of three different facets has been modeled by 
Daruka et al. in a two-dimensional model for the cluster shapes [11.32]. Fig-
ure 11.26a shows the cross section through the model cluster displaying a (100)-
surface designated as "0" and two more facets, a flatter one and a steeper one des-
ignated as "1"and "2", respectively. Depending on the ratio of the projected 
lengths L1/L0 and L2/L0, the cluster assumes one of the 6 forms denoted by the 
numbers 1, 2, 3, 1', 2', and 3'. Which form is the most stable one depends on the 
total surface energy and the elastic relaxation energy. The surplus surface energy 
of the cluster (per length perpendicular to the plane of drawing) is  

2p21p1s 22 LLE  (11.98) 

where p1 and p2 are the projected surface energies as defined in (4.45). For the 
calculation of the elastic relaxation energy the reader is referred to the original 
literature [11.32, 33]. The result of the calculation of Daruka et al. can be con-
densed into a phase diagram spanned by the coordinates r = p1/ p2 and a reduced 
volume Vred. The reduced volume is defined as  
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where V is the volume per length perpendicular to the plane of drawing, xx is the 
misfit stress parallel to the surface,  the Poisson number,  the shear modulus of 
the substrate and 1 is the angle of facet 1 with the (100) plane (Fig. 11.26a). The 
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reduced volume Vred can be taken as a measure of the amount of deposited germa-
nium. 
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Fig. 11.26. (a) Basic shape of a three-facet cluster to model the growth of Ge on Si(100). 
(b) Phase diagram for p2 > 0. (c) Phase diagram for p2 < 0. The form of the most stable 
cluster is indicated by the numbers 1, 2, 3, 1', 2' and 3'. The number 0 stands for a flat layer. 

The phase diagrams in Fig. 11.26 show the stability ranges for six different cluster 
forms and the flat layer designated by the number 0. The panel (b) and (c) are for 
the cases p2 > 0 and p2 < 0, respectively. By following the dotted line in panel (b) 
one comes closest to the experimentally observed shapes. At small total cover-
ages, one is in the range where the pseudomorphic flat layer is stable. For higher 
coverages, the transition to the form 1' allows for some relaxation of the elastic 
energy. It is intuitively clear that a better elastic relaxation is achieved when the 
cluster assumes the form with the steeper facet but at r = p1/ p2 = 0.2 the surface 
energy of facet "2" is much higher so that the balance is in favor of the "hut"-
cluster. Only with further increasing volume and correspondingly further increas-
ing total strain energy, a transition to forms with the steeper facets takes place. For 
larger surface energies p1 of the less steep facet the pseudomorphic layer trans-
forms directly into clusters with the steeper facet.  
 The qualitative agreement of the prediction of the model along the line 
r = p1/ p2 = 0.2 with the experimental observation lends some credibility to the 
notion that the observed cluster shapes are equilibrium shapes. However, we 
should not shut our eyes to the oversimplifications of the model: it is two- 
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dimensional, considers only two facets and neglects elastic anisotropy. On the 
experimental side, we have no clues as to the surface energies of the various fac-
ets. Furthermore, alloy formation between germanium and silicon cannot be 
excluded.  

11.4 Nucleation-Free Growth  

Crystals may grow continuously without nucleation if monatomic steps persist on 
the growing surface. There are two possibilities for persisting steps: Surfaces with 
screw dislocations and vicinal surfaces (see Sect. 1.3.1, Fig. 1.41 and Fig. 1.30). 
The importance of screw dislocations for the growth of crystals was first discussed 
by Frank [11.34]. The quantitative theory of spiral growth was developed by Bur-
ton, Cabrera and Frank [11.35, 36]. Presently, the interest focuses on vicinal 
surface because they offer unique possibilities for the engineering of thin film 
systems that are structurally characterized on an atomic level. Ideally, the growth 
on vicinal surfaces proceeds as step flow growth: the atoms land on the terraces, 
diffuse to the steps and are incorporated there whereby the steps advance. In the 
following section, we look into the details of that process.  

11.4.1 The Steady State Concentration Profile

We consider an ideal vicinal surface with equally spaced, perfectly straight steps 
separated by terraces of width L. If one assumes that the steps stay straight at all 
times, the problem reduces to a one-dimensional one (Fig. 11.27a). The surface be 
exposed to a flux F of atoms, which after deposition diffuse to the step edges. The 
step edges themselves are assumed perfect sinks for atoms approaching from both 
sides (no Ehrlich-Schwoebel barrier). The concentration of adatoms at the step 
positions is therefore equal to the equilibrium concentration eq. We also allow for 
a re-evaporation of the deposited atoms. The rate by which the coverage 
changes is  

e2

2

d
2

x
aF

t
 (11.100) 

Here, F is defined as the flux per adatom site, d and e are the hopping and the 
evaporation rate, a is the distance between adatom sites, and x is the coordinate 
along the surface. The origin of x is chosen to be at the center between two steps. 
We are interested in the steady state solution  

e2

2

d
20

x
aF

t
. (11.101) 
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The general solution of (11.101) is a linear combination of the hyperbolic cosine 
and sine functions. For the specific boundary condition of steps being perfect 
sinks the solution is  

)2/cosh(

)/cosh(

)2/cosh(

)/cosh()2/cosh(
)( eq

d
2 aL

ax

aL

axaLF
x  (11.102) 

with  

de / . (11.103) 

In the limit of zero evaporation ( 0 ) the solution is simply a parabola, regard-
less of the boundary conditions at 2/Lx . For the boundary condition chosen 
here, the solution is 

)4(
8

22

d
2eq xL

a

F
. (11.104) 

The solutions for various ratios of evaporation rate and diffusion rate are shown in 
Fig. 11.27. For larger evaporation rates, the profile acquires a flat top since the 
evaporation is the faster the larger the coverage is.  
 As discussed in Sect. 10.3, transport across a step is frequently hindered by the 
Ehrlich-Schwoebel barrier. The rate of incorporation of atoms into the growing 
step from the upper terrace is smaller in that case. The boundary condition that 
determines the steady state profile becomes asymmetric. Instead of a boundary 
condition on the concentration, we have the condition that the flux must be con-
tinuous. The flux across the step edge given by the hopping rate over the ES-
barrier must match the diffusion flux towards the step. 

2/dES)2/(
L

aL  (11.105) 

Here ES is the hopping rate over the ES-barrier that is assumed to exist at 
x = +L/2 and a is the distance between atom sites. The general solution of 
(11.101) with such boundary conditions becomes rather clumsy. The analytical 
expression for the coverage is simple if one assumes a high ES-barrier ( ES = 0) at 
x = +L/2 and zero evaporation rate ( d = 0), 

22

d
2eq )2/(

2
)( LxL

a

F
x . (11.106) 

This parabola has its apex at x = +L/2, so that the concentration gradient and thus 
the flux towards the descending step is zero. 
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Fig. 11.27. (a) The one-dimensional model for step flow growth. (b) Coverage profiles for 
several  = ( e/ d)

1/2. Coverages are shown in reduced units defined as red = 8 d /F. The 
equilibrium coverage is assumed to be negligibly small. For small e the profile is parabola, 
for larger evaporation rates the profile acquires a flat top. 

11.4.2 Step Flow Growth

We calculate the advancement of individual steps due to the atom flow from the 
upper and lower terrace towards the steps. We denote steps and the upper adjacent 
terraces by the index n (Fig. 11.28b). The step n advances with the speed 

2/2/d
2

1nn LL
n a
t

x
. (11.107) 

In the absence of an Ehrlich-Schwoebel barrier one obtains from the symmetric 
concentration profile (11.104)  

22
1nnn LL

F
t

x
. (11.108) 

On an ideal vicinal surface, all steps advance with the same speed. Equation 
(11.108) appears trivial, has however an important and nontrivial implication. If 
the step n should be lagging behind for any reason, the terrace width Ln+1 increases 
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and the terrace width Ln decreases by the same amount L. According to (11.108) 
the speed by which the step n progresses stays the same. Hence, there is nothing to 
stabilize the initially regular step array. Incidental fluctuations increase in time and 
the surface becomes macroscopically rough as growth proceeds. The roughness 
resulting from a fluctuating step density is illustrated in Fig. 11.28a.

Ln+1

L

(a)

(b)

(c)

Ln

Fig. 11.28. Stable and unstable step flow growth. (a) Without Ehrlich-Schwoebel barrier, 
(b) with Ehrlich-Schwoebel barrier and (c) if the attachment rate from the upper terrace is 
larger (negative ES-barrier). The arrows mark the direction of the mean adatom current. 

In case of a high Ehrlich-Schwoebel steps advance only by attachment of atoms 
from the lower terrace next to the step edge. The steps advance with the rate that is 
proportional to the width of the lower adjacent terrace (11.106. 
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t

x
n

 (11.109) 

If now the step lags behind for some reason the lower terrace increases in width 
and the speed of the step increases, and vice versa. The Ehrlich-Schwoebel barrier 
therefore stabilizes equal terrace widths (Fig.1.28b). An initially ideal vicinal sur-
face stays ideal. An initial irregular step array should turn into one with equal 
step-step distance, according to the one-dimensional model at least. 
 In case of a negative Ehrlich-Schwoebel barrier or if an attachment barrier ex-
ists for atoms from the lower terrace, the attachment is mostly from the upper 
terrace. Assuming for the purpose of illustration that only atoms from the upper 
terrace are incorporated into the steps the concentration profile is 
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x . (11.110) 
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The step n advances then with the speed  

nL
n FLa
t

x
n 2/d

2  (11.111) 

If the step n lags behind, the terrace width Ln now becomes smaller and the speed 
reduces even further. A regular vicinal surface is therefore unstable with respect to 
step bunching (Fig.11.28c).  
 The result of this section can be summarized by considering the direction of the 
mean current flow of adatoms on the surface. In the absence of an Ehrlich-
Schwoebel barrier and an attachment barrier (symmetric concentration profile), an 
equal number of atoms diffuses to the step edges from either side. The mean ada-
tom current is therefore zero (arrow in Fig. 11.28a). In case of an Ehrlich 
Schwoebel barrier the mean adatom current is oriented upwards (arrow in 
Fig. 11.28b). Ideal step flow growth occurs only then. If the Ehrlich-Schwoebel 
barrier is negative or if an attachment barrier exists, the mean current is oriented 
downwards leading to step bunching. 

11.4.3 Meander-Instability of Steps 

The simple one-dimensional model of step flow growth takes it for granted that 
steps move as rigid entities with the same speed everywhere along the step. This is 
too a simplistic viewpoint. In 1990, Bales and Zangwill predicted that an initially 
ideal vicinal surface should be subject to a step meandering instability [11.37]. 
Because of that discovery, meandering instabilities in the course of step flow 
growth are quite generally addressed as Bales-Zangwill instabilities. The first 
experimental evidence for a meandering instability came from Helium-diffraction 
experiments of Schwenger et al. on copper vicinal surfaces in 1997 [11.38]. Later 
the same group published STM images of copper surfaces with uniformly mean-
dering steps and performed a detailed analysis of the characteristic wavelength of 
meandering as function of the temperature [11.39, 40]. Since then several theoreti-
cal papers have dealt with the topic using analytical approaches as well as 
computer simulations.  
 Fig. 11.29 shows an STM image of a Cu(21 21 23) surface after deposition of 
600 monolayers of copper at 313 K. The Cu(21 21 23) surface is vicinal to 
Cu(111) with a terrace width of 21+2/3 atom rows (Sect. 1.3.1). The initially 
straight steps (on the scale shown in the figure) show an in-phase meandering with 
a more or less uniform wavelength that depends on the temperature and the flux of 
atoms [11.39, 40]. Because of the large amplitude of the meander, the steps dis-
play nearly straight segments in directions of dense atom packing at 60° off the 
original horizontal step orientation. Some segments of the steps resemble therefore 
the island equilibrium shapes on Cu(111) surfaces (Sect. 4.3.3).  



 11  Nucleation and Growth __________________________________________________________________________ 608

Fig: 11.29. STM image (400 nm 400 nm) of a Cu(21 21 23) surface after deposition of 600 
monolayers of copper at 313 K (courtesy of M. Giesen, from the thesis of G. Schulze Ick-
ing-Konert [11.45]). 

The development of a quantitative theory of the meandering instability is still 
under debate [11.41-44]. With the concepts developed earlier in this volume, it is 
nevertheless straightforward to elucidate the origin of the instability. The consid-
erations below are equivalent to a linear stability analysis. Let us assume that 
steps on a vicinal surface have a sinusoidal undulation (Fig. 11.30) and ask the 
question under what circumstances the amplitude of the undulation grows. For 
simplicity, we assume a perfectly blocking Ehrlich-Schwoebel barrier so that the 
diffusion current is only towards the ascending step (block-arrows in Fig. 11.30a). 
The dashed lines connecting the two steps divide the terrace between the two steps 
into regions of equal terrace area. The vertical solid lines divide the step lengths 
into equal segments. Because of the difference in length  between the convex and 
the concave parts of the step, the convex part (denoted as #1 in Fig. 11.30a) is fed 
by a larger adatom current than the concave part (denoted as #2). The amplitude of 
the undulation must therefore grow in time. This is the origin of the instability. 
Against that growth works the diffusion process that transports atoms from re-
gions of high chemical potential (convex curvature) to regions of low chemical 
potential (concave curvature). 
 In order to cast these qualitative statements into a quantitative model we de-
scribe the undulation as  

qytxtyx sin)(),( 0 . (11.112) 
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Fig. 11.30. (a) Illustration of the diffusion flux on a vicinal surface with sinusoidal steps in 
presence of an Ehrlich-Schwoebel barrier. (b), (c) Visual aids for the derivation of (11.112).  

The number of atoms per time that arrive in section #1 exceeds the number of 
atoms arriving in section #2 by the amount 

s/2dd FLtN  (11.113) 

where F is the flux of deposited atoms per site, L the distance between the steps, 
and s the area per adatom. From Figs. 11.30b and 11.30c we take  

qtxL )(2 0  and N
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x d
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so that 
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The second term in (11.115) describes the decay of the profile by diffusion 
(Sect. 10.2.3). The q-dependence of (q) obeys a power law of the type 

qTcq )()(1 . (11.116) 
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The exponent  depends on the type of diffusion process that dominates the pro-
file decay. For terrace diffusion with the detachment from the step being rate 
determining finally, the exponent is  = 2 (cf. Sect. 10.2.2, eq. 10.42). For profile 
decay via terrace diffusion with terrace diffusion being rate determining, the ex-
ponent  is  = 3. This case was (implicitly) discussed as case IV in Sect. 10.5.2 
in the context of step fluctuation. For diffusion along the step edge one has  = 4 
(10.47). For the case  = 2 one has the stability criterion for the flux 

2)(2

1

LTc
F . (11.117) 

If the flux is larger, the amplitude of the undulation grows exponentially with a 
rate that is proportional to q2.

Wave vector q
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Fig. 11.31. Growth speed of a uniform sinusoidal deformation of the steps on a vicinal 
surface as function of the wave vector q when diffusion along steps dominates the equili-
bration process (  = 4). 

In the other two cases, the growth rate is always positive for small q and passes 
through a maximum at qmax. The steps are stable only for wave vectors beyond a 
critical wave vector qc. Figure 11.31 shows the growth rate vs. q for the case 

 = 4. For large exposures, the fastest growing mode wins over all other modes 
and dominates the morphology. The observed undulations such as shown in 
Fig. 11.29 reveal a defined wave pattern.  
 The wave vector of maximum growth speed and the critical wave vector are 
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q  (11.118) 
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For diffusion along steps, we can express the time constant and the coefficient 

c (T) in terms of the one-dimensional transport coefficient (st)
TL  and the step stiff-

ness 
~

 (10.47).  

~
)( 2

s
(st)
T4 LTc  (11.120) 

After converting the transport coefficient into the product of the mean diffusion 

coefficient (st)
effD and the concentration of diffusing adatoms (st)

eq , one obtains the 

wavelength of the mode with the fastest growth as 
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4
TkaFL

D
 (11.121) 

The considerations above predict a meandering instability for arbitrary small 
fluxes at any temperature. To become observable in real systems the surface must 
be free of defects on a length scale that exceeds max. For the instability shown in 
Fig. 11.29, this would imply less than one defect per 105 surface atoms, which is 
rarely achieved. Quantitative observations on max versus temperature and flux 
where therefore performed at lower temperatures in the range 4 < max < 40 nm 
[11.40]. These quantitative studies performed on Cu(1 1 n) vicinal surfaces have 
not confirmed the predicted scaling of max with the flux as F 1/2 (11.121). The 
experimental data would rather be consistent with max F 1/4. This indicates that 
the specific mechanism outlined above is probably not operative on copper sur-
face. Recent theories have attributed the meandering instability on Cu-vicinals to a 
process of one-dimensional nucleation at the step edges [11.39, 40, 44, 46]. 
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Surface Brillouin Zones for fcc
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Equilibration of islands  511ff. 
of protrusions in steps   511ff. 

Equilibrium fluctuations, spatial  195ff. 
Equilibrium fluctuations of island 
 shapes  185, 201ff. 

 of steps (time)  542ff. 
ESD (electron stimulated desorption) 
ESCA (electron spectroscopy for 
 chemical analysis )  82 
Euler-Bernoulli assumption  133 
Evanescent waves  326 
Ewald-construction  3 

for vicinal surfaces  52 
for RHEED  82 

Exchange bias  455, 473 
 coupled ferromagnets  475 
 current density  594 
 process, diffusion  493 

Fabry-Perot interferometer  416 
Face centered cubic crystals  12ff. 
Facets, definition  174 
Fano line shape  366 
Fe(100) with Ag layer  132, 416 
Fe(110) layers  457 
Fermi-function  105 
Fermi-level  103 

 pinning  117 
surface, nesting  322, 420 

Ferromagnetic resonance (FMR)  451 
Film resistivity  429 

 stress  134 
FIM (field ion microscope)  55, 491ff. 
Final state effect  410 
Flame annealing  102 
Flash-filament technique  273 
FMR (ferromagnetic resonance)  451 
Force dipoles  140 

 monopoles  146 
Forced kinks  49 
Fowler-isotherm  255ff. 
Frank-van-der-Merwe growth  171 
Frenkel-Kontorova model  40 
Friction, electron-phonon  368 

Friedel-oscillations  113 
Frozen magnon model  489 
Frozen phonon method  319 
Frumkin-isotherm  255ff. 
FTIR (Fourier-transform infrared)  
 363 
Fuchs-Kliewer surface phonons  325
Fuchs-Sondheimer theory  431ff. 

GaAs photocathode  453 
GaAs(110) surface state bands 397 
GaAs(111) surface structure  28 
Ge(100) surface structure  25 
Ge(111) surface structure  25 
Geiger-counter  392 
Getter  76 
Giant magnetoresistance  413, 476ff. 
Gibbs dividing plane  154 

 free energy of electrons  417 
 thermodynamics  154 

Gibbs-Thomson equation  183 
, in 2D  186, 527 

Gibbs-Wulff theorem  183, 527 
Gilbert-damping  486 
GIXRD (grazing incidence X-ray 
 diffraction)  5 
GMR (giant magnetoresistance)  413, 
 476ff. 
Gouy-Chapman-model  121 
Gruber-Mullins model  218f. 

shape  178 

Halbkristallage  46 
HAS (helium atom scattering)  339 ff, 
 569 
Heat of adsorption  260ff. 
Heisenberg-Hamiltonian  459, 471, 483 
Height correlation function  201 
Helium atom scattering (HAS)  339ff. 
Hellman-Feynman theorem  320 
Helmholtz-capacitance  121 

 free energy, definition  153 
, ideal gas  209 
, statistical definition  208 
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Herring-Mullins equation  183, 508 
HF-dip 69 
Hick-ups (in Ostwald ripening)  533 
Hierarchy of equilibria  149ff. 
Hillocks  50 
Holes, electron  109 
HOMO (Highest Occupied Molecular 
 Orbital)  285 
Hook's law  126 
HOPG (Highly Ordered Pyrolytic  
 Graphite)  416 
Hopping process, diffusion  493 
Hut-cluster  600 
Hydrocarbon adsorption  291ff. 
Hydrogen adsorption  300ff. 

bonding  59, 292 
, diffusion coefficient  301 
termination  69 

 vibration modes  302 
Hydrophilic surfaces 68 
Hydrophobic surfaces 68 
Hysteresis loops  446, 474ff. 

Ice, structure of  59 
Image potential  113f., 355 

 states  392ff., 401ff. 
Impact scattering of electrons  360ff. 
Induced charge density  382 
Inhomogeneous broadening  330 
Initial state effect  410 
Interface capacitance  97, 163 

 free energy  152ff. 
 resistance  478 

Interlayer transport 518, 536 
, growth with hindered   565ff. 

Inverse photoemission  391ff. 
Ion getter pump  76 
Ionization gauge  79 
Ir(100)  15, 30 
Ising-model  225ff. 
Island equilibrium shapes  185 

 density in nucleation  559 
, Ising model  225ff. 

 diffusion  503f. 

Isobars  254ff. 
Isosters  254ff. 
Isotherms  254ff. 
Isotherms for bromine on Au(111)  271 

 for iodine on gold  270 
 for SO4   272 
 for upd  268 
 for xenon on graphite  259 

Isotropy condition  128 
Itinerant ferromagnets  463 

Jahn-Teller effect  26 
 distortion  395 

Jellium edge  382 
model  113 

Jump diffusion coefficient  496, 507 
 length  496 

Kerr-effect  452 
Kerr-ellipticity  458 
KESE (Kink Ehrlich-Schwoebel Effect) 
 522 
Kinematic scattering  3 

 theory  360 
Kink Ehrlich-Schwoebel barrier  522 
Kinks, definition  46 

, probability for a   198, 212ff. 
Kohn anomaly  321ff. 
Kossel-crystal  563,576ff. 
Kramers-Kronig analysis  381 

Lamé-constant  128 
Langmuir Isobars  261 

 Isotherms  254 
Laplace equation  324, 379, 506, 528
Lattice gas models  233ff. 
Laue-equations  2 
Law of mass action  49 
LDA (Local Density Approximation) 
 320 
Lead particles, equilibrium shape  180 
LEED (low energy electron diffrac-
 tion)  1 
LEED instrument  4 
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LEEM (low energy electron micros-
 copy)  550 
Legendre-transformation  161, 173 
Lennard-Jones potential  247, 315 
Lifting of reconstruction  99, 164 
Light line  326 
Linear stability analysis  608 
Line defects  33ff. 

 stiffness  184ff. 
 tension  184ff. 

Lippmann-equation  162 
Liquid phase epitaxy (LPE)  555, 572 
Local density approximation (LDA) 320 
Localized modes  330ff. 
Lone pair orbital  290 
Love-waves  319 
LPE (liquid phase epitaxy)  555, 572 
LUMO (lowest unoccupied molecular 
 orbital)  285 

Magic heights, of islands  419 
 orientations  178 

Magnetic anisotropy, films  455ff. 
 circular X-ray dichroism (MCXD)  

 453 
 coupling across interlayers  479 
 excitations  482ff. 

Magnetocrystalline anisotropy  446ff. 
Magnetoelastic energy  449 
Magnetooptic Kerr-effect (MOKE)  
 452, 458 
Magnetostatic spin waves  485 
Magnetostriction  449 
Magnons  482ff. 
Mass transport  520ff. 
Maxwell-construction  258 

 relations  164ff. 
MBE (Molecular Beam Epitaxy)
 555 
MCXD (magnetic circular X-ray di-
 chroism)  453 
Meander instability  607 
Mean field approximation  235, 256 

, in magnetism  461 

Mean free path of electrons 3, 85 
MEED (Medium Energy Electron Dif-
 fraction) 569 
Mermin-Wagner theorem  459 
Metal-induced gap states (MIGS)  400 
Metals, free electron gas model  103ff. 
MFM (tunnel magneto resistance)
 454 
MIGS (metal induced gap states)
 400 
MLXD (magnetic linear X-ray dichro-
 ism)  454 
Mo(110), Li adsorption  296 

 surface phonon dispersion  322 
MOKE (Magneto-Optic Kerr Effect) 
 452 
Molecular beam epitaxy (MBE)  555 
Mounds  50 
Mott-detector  452 
Multipole plasmons  381ff. 

Nanowires  437ff 
Neél-walls  467f. 
Nernst-potential  265 
Nesting vector  322, 420 
Neutrality level  116 
NH3 adsorption  303 
Ni(100), Cu-layer  45 

, N adsorption  304 
, reconstruction  307 
, surface stress  167
, adsorbate band structure  407ff. 

Ni(110), H-vibration modes  302 
Ni(111), isobar for CO  256 

, C2H2 adsorption  294 
, C6H6 adsorption  295 
, CO, NO adsorption  287 
 surface stress 167

NO adsorption  287f. 
No-crossing rule (steps)  216 
Nozzle  339 
Nucleation  555ff. 

, chemical potential controlled 
, flux controlled  556ff. 
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Nucleation length  560 
rates, theory  580ff. 

Nucleationless growth  603ff. 
O2-adsorption  288ff. 
Order-disorder transition  241 
Ostwald-ripening  525ff. 

, on electrode surfaces  540ff. 
Oxide-layer, natural on Si  63, 308 

Pattern formation  144ff. 
Particle-hole symmetry  243 
Partition function, definition  208 

, rotational  209 
, vibrational  209, 235 

Pauli principle  103 
 repulsion 245 

Pd(100), adsorbed hydrogen  241, 244, 
 283 

, CO-desorption  281 
PED (photoelectron diffraction)
 307, 412 
PEEM (photoemission electron micro-
 scope)  454 
Peierls-transition  321 
Periodic boundary conditions  385 
Phase diagram, square lattice  244 

 transitions  240ff. 
Phonon entropy of steps  223ff. 
Phonon dispersion, schematic  310, 313 
Phonon, soft   315ff.  
Photoemission process  83 

 spectroscopy  386ff. 
Photoelectron diffraction (PED)  412 
Physisorption, definition  245 
Plasmon excitations  85 
Point groups  10, 334 
Point defects  46ff. 

, thermodynamics  187f. 
Poisson-equation  117 
Poisson-Boltzmann-equation  122 
Poisson-distribution  562 

number, definition  128 
, table of  132 
, sound velocity  318 

Poisson statistics  595 
Pokrovsky-Talapov shape  178 
Polaritons  327 
Polishing jig  66 
Potential of zero charge  99, 124 
Prefactor in diffusion  500ff. 
Preparation of samples  88ff. 
Profile decay  510 
Promoters  300 
Pt(100), surface structure  16 

, adsorbed xenon  247 
, diffusion of Pd  494 

Pt(110), O2-adsorption  289 
Pt(111), CO vibrations  286, 372 

 island equilibrium shape  185 
, Rayleigh-wave dispersion  329 
, step dipole moment  189 

, surface stress  167
, xenon adsorption  248f., 263 
, xenon desorption  279 

Pyramid growth  567 
pzc (potential of zero charge)  99, 124 

Quadrupole mass spectrometer  80 
Quantum conduction  437ff. 

 corral  421 
 jumps  442 
size effect  385, 403, 412ff. 

 well  413 

Random walk of atoms 495ff. 
 step positions  199 

Random phase approximation (RPA) 84, 
 381 
Rare gas desorption  278ff. 
Rayleigh-wave  317ff. 
RCA-cleaning  68 
Reaction coordinate, dissociation  253 
Reconstruction, adsorbate induced  30, 
 305 

, definition  7 
 by soft phonons 305, 315ff. 

Redhead ansatz  275 
Redox reactions  110 
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Reentrant layer-by-layer growth  570 
Reference electrode  95 
Reflection absorption infrared spectros-
 copy (RAIRS)  362ff. 
Reflection high-energy electron 
 diffraction 81, 569 
REM (reflection electron microscopy)
 550 
Remanence  446 
Rest atoms  24 
Reststrahl region  326 
Rh(100), diffusion on  493 
RHEED (reflection high-energy electron 
 diffraction )  81, 569 
RHE (reversible hydrogen electrode) 97 
RIARS (reflection infrared absorption 
 spectroscopy)  362ff. 
Rotary pumps  73 
Rough surfaces, definition  173 

, self diffusion on  508ff. 
Roughening temperature  177, 214 

 transition  177, 214 
, electrochemical  193 
, models for  221ff. 

Roughness (rms)  564f. 
RPA (random phase approximation)  84, 
 381 
Ru(0001), 3d electron spectra  411 

, with Ni-layers  597 
, with lead particles 180 

SACP (selected area channeling pat-
 terns)  67 
Sagittal plane  311 
SAW (surface acoustic waves)  319 
SBZ (surface Brillouin zone)  311 
Scaling laws (step fluctuations)  544ff. 
Scan curve, He-scattering  341 
Scanning microprobes  55ff. 
Scattering, inelastic of electrons  351ff 

,  of helium atoms  339ff. 
SCE (saturated calomel electrode)  99 
Schrieffer-model  437 
Search light effect  412 

Segregation  92, 238ff. 
Selection rules, tunneling spectroscopy 
 374ff. 

, photoemission spectroscopy  390 
Selection rules, vibration spectroscopy 
 using electrons  333ff. 
SEM (scanning electron microscopy) 
 453 
Semiconductors, band structure  106ff. 
SEMPA (scanning electron microscopy 
 with polarization analysis)  453 
SERS (surface enhanced Raman spec-
 troscopy)  369ff. 
SEXAFS (surface extended X-ray 
 absorption fine structure)  307 
SFG (sum frequency generation)
 369 
Shape asymmetry  455 
Shockley-states  384 
Shockley-partial dislocation  44 
Shuttleworth relation  161 
Si, surface termination  68ff. 
Si(100), C6H4 adsorption  293 

 growth of Ge  600ff. 
 surface structure  25 

Si(111) surface structure  21 
Sine-Gordon equation  41, 471 
Singular surfaces (facets)  174 
SiO2/Si interface  308 
Site visiting maps  494 
Sites, adsorption   10, 284ff. 
Skimmer  339 
Slow collision effect  344f. 
Smoluchowski-effect  114, 189 
Solid on solid model  223 
Solitons  42 
Solvation shell  59 
Sound velocity  129 
Space charge layers  116ff. 

, conduction in  435ff. 
SPALEED (spot profile analysis low 
 energy electron diffraction)  54 
Space groups  12 
Specifically adsorbed ions  59, 161 
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Specific adsorption of ions  269ff. 
SPLEED (spin polarized low energy 
 electron diffraction)  452 
SPLEEM (spin polarized low energy 
 electron microscopy)  453 
SPEELS (spin polarized electron energy 
 loss spectroscopy)  453 
Spin-polarized electron diffraction  452 

microscopy  453 
 tunneling microscopy  453,457 

Spin valves  478 
 waves  482ff. 

SPSTM (spin polarized scanning tunnel-
 ing microscope)  55, 454 
Sputtering  90ff., 239 
sp3 hybrids  106 
Standard potentials  111 
Stern-layer  59, 121 
Step bunching  194, 607 

dipole moment  189, 540 
 edge barrier  519 
 flow growth  560, 603ff. 
 free energies, table of  233 
 line tension,  175, 423 
 stiffness  199, 213 

, Ising model  228 
Steps, on charged surfaces  188ff. 

, notation  33ff. 
Step-step interactions  194, 215, 424 
Sticking coefficient  253 

, desorption spectra  277 
, in Ostwald ripening  528, 538 

Stirling approximation  208, 231 
STM (scanning tunneling microscopy)
 1, 55ff. 
Stoner-excitations  482ff. 

 -gap  482 
Stoney-equation  135 
Strain fields of defects  139ff. 

 tensor  125 
Strained layers, elastic energy  129ff. 

 systems, nucleation and growth  597ff. 
Stranski-Krastanov growth  171, 576, 
 600 

Stress in thin films  132ff. 
Stress tensor  126 
Stripe domains  145 
Strong ferromagnets, definition  482 
Structure factor  5 
STS (scanning tunneling spectroscopy)
 399 
Sum frequency generation (SFG)  371ff. 
Supercell  153 
Superlattice, definition  7 
Supersaturation  572ff. 
Superstructure, definition  7 
Surface acoustic waves (SAW)  319 

 Brillouin zone  311, 613f. 
 charge density  192 
 crystallography  2 
 enhanced Raman effect (SERS)  

 369ff. 
 excess numbers  157 
 lattice dynamics  312ff. 
 magnetization  465 
 phonons  309ff. 
 plasmons 379ff. 
plasmon dispersion  381ff. 

 resonance  310
 states  116, 383ff. 
state bands, Si, Ge  395f. 

 ZnS structures  397 
 selection rule  116 
 stiffness  182, 509 
 stress  134, 155, 167 

, central force model  305, 315 
, experiments  132ff. 
, chemical potential with   515 

 tension 161ff., 175ff., 423 
 tension, projected  175, 423, 601 

Surfing condition  358 
SXRD (Surface X-Ray Diffraction)  1, 
 569 
Synchrotron light 388ff. 
Szilard-artifice  584 

Tamm-states  384 
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Temperature programmed desorption  
 274 
Terrace step kink model  211ff. 

 width distribution  219 
Thermal desorption spectroscopy  273ff. 
Three-electrode arrangement  95ff. 
Time structure in scanning probes  57 
TiN(111), table step line tension  205 
Tip-surface interactions  56 
TMR (tunnel magnetoresistance)
 454 
TOM (torsion oscillation magnetometry)  
 451 
Topping-model  296ff. 
TPD (temperature programmed desorp-  
 tion)  74 
Transfer matrix method  216 
Transfer width  570 
Transition state  498 

 theory  498ff. 
Transport coefficient  507, 546ff. 

, diffusion along steps  512 
TSK-model (terrace step kink) 211ff 
Tunnel-magnetoresistance (TMR)  454 
Tunneling spectroscopy  373ff. 

 spectrum of surface states  399, 406 
Turbomolecular pumps  73ff. 
Two photon photoemission  392ff. 

UHV-technology (ultra-high vacuum)  
 71 ff. 
Underpotential deposition  97, 264ff. 
UPD (underpotential deposition)  97, 
 264ff. 
UPS (ultraviolet photoemission spec-
 troscopy)  388ff. 

Vacancies  50 
Vacuum gauges  78ff. 
Van-der-Waals gas model  236 

 interactions  245 
Vapor pressure of solids  210f. 
Vibration spectroscopy, electrons 347 

Vibration spectroscopy, helium atoms 
 339ff. 

, optical techniques  362ff. 
, tunneling spectroscopy  373ff. 

surface chemistry  330ff. 
Vicinal surfaces, notation 33 
Voigt's notation  127 
Vollmer-Weber growth  171, 576 
Voltammograms  97ff. 
VSFG (vibration sum frequency spec-
 troscopy)  369 

W(100) structure  18, 31 
, H adsorption  31 
, N adsorption  304 

W(110), C6H6 adsorption  350 
 surface phonon dispersion  322 
with Fe(110) bilayer  457 

Wafers  64 
Walton relation  557 
Water, structure of layers  60 

 adsorption  289ff. 
 dissociation  111 

Weak ferromagnets, definition  482 
Wood's notation  7 
Work function  114, 166 
Working electrode  95 
Wulff-construction  173 
Wurtzite structure  19 

Xenon  247, 259, 279, 346 
XHV (extreme high vacuum)  71 
XPS (X-ray photoemission spectros-
 copy)  82, 388 
X-ray limit in ion gauges  79 

Young-Dupré-equation  170 
Young's modulus, definition  128 

, table of  132 

Zeldovich-factor  585 
Zinkblende structure 19 



List of Common Acronyms 

2PPE (Two-Photon PhotoEmission)

AES (Auger Electron Spectroscopy)
AFM (Atomic Force Microscope)
ASOS-model (Absolute (height difference) Solid On Solid)
ATG-instability (Asaro-Tiller-Grinfeld)
ATR (Attenuated Total Reflection)

CMA (Cylindrical Mirror Analyzer)
CVD (Chemical Vapor Deposition)

DAS-model (Dimer Adatom Stacking fault)
DGSOS-model (Discrete Gaussian Solid On Solid)

EAM (Embedded Atom Model)
EELS (Electron Energy Loss Spectroscopy)
EMT (Effective Medium Theory)
ESCA (Electron Spectroscopy for Chemical Analysis ) 

FIM (Field Ion Microscope)
FMR (Ferro Magnetic Resonance)
FWHM (Full Width at Half Maximum)
FTIR (Fourier-Transform InfraRed)

GIXRD (Grazing Incidence X-Ray Diffraction)
GMR (Giant Magneto Resistance)

HAS (Helium Atom Scattering)
HOMO (Highest Occupied Molecular Orbital)
HOPG (Highly Ordered Pyrolytic Graphite)
HREELS (High Resolution Electron Energy Loss Spectroscopy)

KESE (Kink Ehrlich-Schwoebel Effect)

LDA (Local Density Approximation)
LEED (Low Energy Electron Diffraction)
LEEM (Low Energy Electron Microscopy)
LPE (Liquid Phase Epitaxy)
LUMO (Lowest Unoccupied Molecular Orbital)

MBE (Molecular Beam Epitaxy)
MCXD (Magnetic Circular X-ray Dichroism)
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MEED (Medium Energy Electron Diffraction)
MFM (Tunnel Magneto Resistance)
MIGS (Metal Induced Gap States)
MLXD (Magnetic Linear X-ray Dichroism)
MOKE (Magneto-Optic Kerr Effect)

PED (Photo Electron Diffraction)
PEEM (Photo Emission Electron Microscope)
pzc (potential of zero charge)

REM (Reflection Electron Microscopy)
RHEED (Reflection High Energy Electron Diffraction)
RHE (UnderPotential Deposited)
RIARS (Reflection Absorption InfraRed Spectroscopy)
RPA (Random Phase Approximation)

SACP (Selected Area Channeling Patterns)
SAW (Surface Acoustic Waves)
SBZ (Surface Brillouin Zone)
SCE (Saturated Calomel Electrode)
SEM (Scanning Electron Microscopy)
SEMPA (Scanning Electron Microscopy with Polarization Analysis)
SERS (Surface Enhanced Raman Spectroscopy)
SEXAFS (Surface Extended X-ray Absorption Fine Structure)
SFG (Sum Frequency Generation)
SPALEED (Spot Profile Analysis Low Energy Electron Diffraction)
SPLEED (Spin Polarized Low Energy Electron Diffraction)
SPLEEM (Spin Polarized Low Energy Electron Microscopy)
SPEELS (Spin Polarized Electron Energy Loss Spectroscopy)
SPSTM (Spin Polarized Scanning Tunneling Microscope)
STM (Scanning Tunneling Microscopy)
STS (Scanning Tunneling Spectroscopy)
SXRD (Surface X-Ray Diffraction)

TDS (Thermal Desorption Spectroscopy)
TMR (Tunnel Magneto Resistance)
TOM (Torsion Oscillation Magnetometry)
TPD (Temperature Programmed Desorption)
TSK-model (Terrace Step Kink)

UHV (Ultra-High Vacuum)
UPD (UnderPotential Deposition)
UPS (Ultraviolet Photoemission Spectroscopy)

VSFG (Vibration Sum Frequency Spectroscopy)

XHV (eXtreme High Vacuum)
XPS (X-ray Photoemission Spectroscopy ) 
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