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Preface

Writing a textbook is an undertaking that requires strong motivation, strong
enough to carry out almost two years of solid work in this case. My motivation
arose from three sources. The first was the ever-increasing pressure of our German
administration on research institutions and individuals to divert time and attention
from the pursuit of research into achieving politically determined five-year plans
and milestones. The challenge of writing a textbook helped me to maintain my
integrity as a scientist and served as an escape.

A second source of motivation lay in my attempt to understand transport proc-
esses at the solid/electrolyte interface within the framework of concepts developed
for solid surfaces in vacuum. These concepts provide logical connections between
the properties of single atoms and large ensembles of atoms by describing the
physics on an ever-coarser mesh. The transfer to the solid/electrolyte interface
proved nontrivial, the greatest obstacle being that terms such as surface tension
denote different quantities in surface physics and electrochemistry. Furthermore, 1
came to realize that not infrequently identical quantities and concepts carry differ-
ent names in the two disciplines. I felt challenged by the task of bringing the two
worlds together. Thus a distinct feature of this volume is that, wherever appropri-
ate, it treats surfaces in vacuum and in an electrolyte side-by-side.

The final motivation unfolded during the course of the work itself. After 40
years of research, I found it relaxing and intellectually rewarding to sit back, think
thoroughly about the basics and cast those thoughts into the form of a tutorial text.

In keeping with my own likings, this volume covers everything from experi-
mental methods and technical tricks of the trade to what, at times, are rather
sophisticated theoretical considerations. Thus, while some parts make for easy
reading, others may require a more in-depth study, depending on the reader. I have
tried to be as tutorial as possible even in the theoretical parts and have sacrificed
rigorousness for clarity by introducing illustrative shortcuts.

The experimental examples, for convenience, are drawn largely from the store
of knowledge available in our group in Jiilich. Compiling these entailed some
nostalgia as well as the satisfaction of preserving expertise that has been acquired
over three decades of research.

I pondered long and hard about the order of the presentation. The necessarily
linear arrangement of the material in a textbook is intrinsically unsuitable for de-
scribing a field in which everything seems to be connected to everything else. I
finally settled for a fairly conventional sequence. To draw attention to relation-
ships between different topics the linear style of presentation is supplemented by
cross-references to earlier and later sections.



VI Preface

Despite the length of the text and the many topics covered, it is alarming to
note what had to be left out: the important and fashionable field of adhesion and
friction; catalytic and electrochemical reactions at surfaces; liquid interfaces;
much about solid/solid interfaces; alloy, polymer, oxide and other insulator sur-
faces; and the new world of switchable organic molecules at solid surfaces, to
name just a few of a seemingly endless list.

This volume could not have been written without the help of many colleagues.
Above all, I would like to thank Margret Giesen for introducing me to the field of
surface transport and growth, both at the solid/vacuum and the solid/electrolyte
interface. This book would not exist without the inspiration I received from the
beautiful experiments of hers and her group and the almost daily discussions with
her. I should also be grateful for the patience she exercised as my wife during the
two years I spent writing this book.

Jorge Miiller went through the ordeal of scrutinizing the text for misprints, the
equations for errors, and the text for misconceptions or misleading phrases. I also
express my appreciation for the many enlightening discussions of physics during
the long years of our collaboration.

I greatly enjoyed the hospitality of my colleagues at the University of Califor-
nia Irvine during my sabbatical in Spring 2005 where four chapters of this volume
were written. On that occasion I also enjoyed many discussions with Douglas L.
Mills on thin film magnetism and magnetic excitation, the fruits of which went
into the chapter on magnetism. In addition, the chapter on surface vibrations bene-
fited immensely from our earlier collaboration on that topic.

Of the many other colleagues who helped me to understand the physics of inter-
faces, I would like to single out Ted L. Einstein and Wolfgang Schmickler. Ted
Einstein initiated me in the statistical thermodynamics of surfaces. Several parts of
this volume draw directly on experience acquired during our collaboration. Wolf-
gang Schmickler wrote the only textbook on electrochemistry that I was ever able
to understand. The thermodynamics of the solid/electrolyte interface as outlined in
chapter 4 of this volume evolved from our collaboration on this topic.

With Georgi Staikov I had fruitful discussions on nucleation theory and various
aspects of electrochemical phase formation which helped to formulate the chapter
on nucleation and growth. Guillermo Beltramo contributed helpful discussions as
well as several graphs on electrochemistry. Hans-Peter Oepen and Michaela
Hartmann read and commented the chapters on magnetism and electronic proper-
ties. Rudolf David contributed to the section on He-scattering. Claudia Steufmehl
made some sophisticated drawings. In drawing the structures of surface, I made
good use of the NIST database 42 [1.1] and the various features of the package.

Last but not least I thank the many nameless students who attended my lectures
on surface physics over the years. Their attentive listening and the awkward ques-
tions it led to were indispensable for formulating the concepts described in this
book. Finally, I beg forgiveness from my colleagues in Jiilich for having been a
negligent institute director lately.

Jiilich, May 2006 Harald Ibach
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1. Structure of Surfaces

Surface Physics and Chemistry flourished long before anything was known about
the atomic structure of surfaces. Chemical, optical, electrical and even magnetic
properties were investigated systematically, sometimes in great detail and not
without lasting success. The concept of an ideally terminated bulk structure with
its assumed physical properties frequently served as a base for the rationalization
of the experimental results. Examples are the postulation of specific electric prop-
erties that would arise from the broken bonds at surfaces of semiconductors and
the high chemical activity that might be associated with defects on the surface.
Quantitative understanding on an atomic level could not be achieved however
without knowledge the crystallographic structure of surfaces. Vice versa, a tutorial
presentation of our present understanding of the physics of surfaces and interfaces
requires the fundament of facts, concepts and the nomenclature that has evolved
from the analysis of surface structures. The first chapter of this treatise is therefore
devoted to the structure of clean and adsorbate covered surfaces, the important
defects at surfaces and the structural elements of the solid/electrolyte interface.

As for Solid State Physics in general, the quantitative understanding on an
atomic level greatly benefits from the periodic structure of crystalline matter since
the periodicity reduces the electronic and nuclear degrees of freedom from 10%
per cm’ to the degrees of freedom in a single unit cell. However, at surfaces the
reduction in the degrees of freedom by periodicity is less, as the three-dimensional
symmetry is broken. Near surfaces, material properties may differ from the bulk in
several monolayers below the surface. The surface unit cell of periodicity there-
fore necessarily contains more atoms than the corresponding unit cell of the bulk
structure. Not infrequently, the unit cell of a real surface is substantially larger
than the surface unit cell of a terminated bulk, which increases the number of at-
oms in the surface unit cell further. For example, the surface cell of the clean
(111) surface of silicon contains 49 atoms in one atom layer and the restructuring
involves 4-5 atom layers! Solving a bulk structure with that many atoms per unit
cell is not an easy, but nowadays tractable problem, but structure analysis at sur-
faces has to be performed in the presence of the entire bulk below the surface. It is
still one of the greatest successes of surface science that after decades of research
and literally thousands of papers the structure of the Si(111) surface was eventu-
ally solved.

Substantial advances in surface crystallography are owed to the experimental
and theoretical achievements in Low Energy Electron Diffraction (LEED) and
Surface X-Ray Diffraction (SXRD). Scanning Tunneling Microscopy (STM) and
other scanning microprobes contributed by providing qualitative images of sur-
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faces, which reduced the number of possibilities for surface structure models.
Presently, the structures of more than 1000 surface systems are documented, and
the number keeps growing [1.1].

1.1 Surface Crystallography

1.1.1 Diffraction at Surfaces

The first section of this volume is devoted to the essential elements of surface
crystallography: Laue-equations, Ewald-construction, and symmetry elements.

Elastic scattering of X-rays or particle waves from infinitely extended three-
dimensional periodic structures undergoes destructive interference, which leaves
scattered intensity only in particular directions. The conditions under which dif-
fracted intensity can be observed are described by the three Laue-equations, which
can be expressed in terms of a single vector equation

k-ky=G, (1.1)

in which k and k, are the wave vector of the scattered and incident wave, respec-
tively, and G is an arbitrary vector of the reciprocal space. At the surface, the bulk
periodicity is truncated and the three Laue-equations reduce to two equations con-
cerning the components of the incident and scattered wave vectors parallel to the
surface.

ky—ko, =Gy (1.2)

G, is a vector of the reciprocal lattice of the two-dimensional unit cell at the sur-
face. Diffracted beams are therefore indexed by two Miller-indices (h,k). The
reduction to two Laue-equations has the consequence that scattering from a sur-
face lattice leads to diffracted beams for all incident k, unlike for bulk scattering
where diffracted beams occur only for particular wave vectors of the incident
beam. As for the bulk, the Laue-condition is best illustrated with the Ewald-
construction. Figure 1.1 shows the Ewald-construction as it is typical for LEED: A
beam of low energy electrons (energy E, between 20 and 500 eV, corresponding

to a wave vector k =5.12nm'11/E0/ eV ) with normal incidence is diffracted

from the surface lattice. Depending on the energy, the {01}, {11}, {02}... beams
are observed in the backscattering direction, providing direct information on the
surface reciprocal lattice.

Early experiments used a Faraday cup for probing the diffracted beams [1.2].
More convenient is the experimental set-up introduced by Lander et al. [1.3],
which is displayed in Fig. 1.2. The equipment was primarily designed for a quali-
tative quick overview on the diffraction pattern.
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Fig. 1.1. Ewald-construction for surface scattering. The magnitude and orientation of kg
(normal incidence) is representative of a LEED-experiment. Diffracted beams occur if the
wave vector of the scattered electron ends on one of the vertical rods (crystal truncation
rods) representing the reciprocal lattice of the surface. Diffracted electrons are therefore
observed for all energies of the incident beam: The scattering intensity is particular large if
the third Laue-condition concerning the perpendicular component of the scattering vector
(indicated by ellipsoids) is approximately met.

Later the same equipment has been used also for the quantitative analysis of dif-
fracted intensities by monitoring the spots on the screen with the help of a video
camera and specially developed image processing software (Video-LEED).

Like all other experiments using low energy electrons, LEED gains its surface
sensitivity from the relative large cross section for inelastic scattering. The prime
source of inelastic scattering is the interaction with collective excitations of the
valence electrons electron, the plasmons (Sect. 2.2.2, 8.1). The mean free path of
electrons in the relevant range is of the order of 1 nm. All elastically backscattered
electrons therefore stem from the first few monolayers of the crystal. This is the
reason that intensity is observed even for energies for which the third Laue equa-
tion for the vertical component of the scattering vector K = ky—k is not fulfilled.
The few monolayers, from which the diffraction originates, however, suffice to
impose a weak Laue-condition on the vertical component of the scattering vector
K. In Fig. 1.1 this weak Laue condition is indicated by the ellipsoids. Figure 1.3
displays the measured diffracted intensity of the (10) beam from a Cu(100) surface
[1.4] together with the position of the expected intensity maxima according to the
third Laue-condition. The experimental intensity curve indeed displays pro-
nounced maxima, but only very roughly where they are expected from single
scattering (kinematic scattering) theory. Surely, the complexity of the various
features in the intensity curve cannot be explained based on single scattering
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Fig. 1.2. Instrument for low electron energy diffraction. Diffracted electrons are observed
on a fluorescent screen. The grids serve for various purposes. Grid 1 establishes a field free
region around the sample, grid 2 repels inelastically scattered electrons so that they cannot
reach the screen, grid 3 prevents the punch-through of the high voltage applied to the screen
to the field at grid 2.

events. Multiple elastic scattering of the electron has to be taken into account (dy-
namic scattering theory). The difficulty to describe multiple elastic scattering of
electrons theoretically has been a major impediment in the development of surface
crystallography. As Fig. 1.3 demonstrates [1.4-6], theory is now able to describe
the observed intensities quite well. A quantitative structure analysis is performed
by proposing a model for the structure and by comparing experimental and theo-
retical LEED intensities as a function of the atom position parameters (trial and
error method). Comparison of theory and experiment is quantified in the Pendry
R-factor R, which is defined on the basis of the logarithmic derivative of the in-
tensities / with respect to the electron energy E.

2
_ z (Ytheory B Yexp )
P 2
z (Ytheory + Yexp)

(1.3)
— Ilog
1+ (IlogVOi)2
with
ol
Liog = ToE, (1.4)
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Fig. 1.3. Intensity of the (10) beam diffracted from a Cu(100) surface vs. beam energy for
normal incidence. Experiment and theory are plotted as solid and dashed curves, respec-
tively. The positions of the maxima according to the simple single scattering theory are
indicated as vertical bars.

Here, V; is the imaginary part of the inner potential (approximately the width of
the intensity peaks on the energy scale) and the sum is over all energies and dif-
fracted beams. The agreement between theory and experiment in Fig. 1.3
corresponds to an Rp-factor of 0.08. In general, R-factors below 0.20 are consid-
ered as good.

Compared to LEED, X-ray scattering has the definite advantage that X-rays are
scattered only once. The scattering amplitude is therefore the Fourier-transform of
the scattering density [1.7] and intensities are easily calculated for any given struc-
ture. Schemes for direct structure determination via the Patterson function can be
employed. Surface sensitivity is achieved by working under condition of grazing
incidence. Since the photon energy is well above all electronic excitations the
complex refraction index 7 for X-rays is described by the dielectric properties of
the free electron gas in the high frequency limit. The real part of n is therefore
smaller than one. Total reflection of the X-ray beam occurs at grazing incidence if
the angle between the beam and the surface plane ¢ is smaller than a critical angle
o,. Typical values for ¢ are between 0.2° and 0.6° for an X-ray wavelength of
0.15 nm [1.8]. Under condition of total reflection the X-ray intensity inside the
solid drops exponentially with a decay length A of about 10 nm. All diffraction
information therefore concerns no more than about 50 atom layers. Information of
just the surface layer is contained in diffracted beams of a surface superlattice. The
intensity of such beams is sufficiently large for detection and stands out from the
diffuse background. The technique is called Grazing Incidence X-Ray Diffraction
(GIXRD). Figure 1.4 shows the structure factor (the modulus of the scattering
amplitude as due to the structure) as a function of the perpendicular component of
the scattering vector [1.9] (a) for a bare Cu(110) surface and (b) for a Cu(110)
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surface covered with oxygen. The parallel component of the scattering vector is
chosen to fulfill the (01) surface diffraction condition. The full line is calculated
using the structural parameters, which gave the best fit to all measured structure
factors (about 150). Note that comparison between experiment and theory is made
for the intensity outside the L=1 peak that results from the third Laue condition.
The intensity in that peak contains mostly information about the structure of the
bulk inside the decay length A.

(a) bare Cu(110) (b) Cu(110) + O

100 |

-
o

—
o
—_

Structure factor (arb. units)
Structure factor (arb. units)

Fig. 1.4. Structure factor along the (01) crystal truncation rod as a function of the vertical
component of the scattering vector L expressed in units of the reciprocal lattice vector (a)
for a bare Cu(110) surface and (b) for a Cu(110) surface covered with oxygen [1.9]. The
insets display a top view on the first two layers of surface atoms (see also Sect. 3.4.3). The
structure with oxygen is the so-called added row structure where every second row is
formed by a chain of oxygen atoms (dark circles) and Cu-atoms. Experimental data and
theory for the optimized geometry data are shown as circles and solid lines, respectively.

The applicability of single scattering theory also provides the possibility to use the
elastic diffuse X-ray intensity for an analysis of non-periodic features on surfaces,
such as defects or strain fields associated with domains of adsorbates [1.9, 10].
Furthermore, vacuum is not required, which makes X-ray scattering a technique
suitable also for studies on the solid/liquid interface [1.11] if the liquid layer is
thin enough.

The question which of the two methods LEED or SXRD is the method of
choice depends on circumstances. In principle, both methods can provide equally
precise atom positions for a large number of atoms per unit cell. The scattering
cross section for X-rays scales with the square of the atom number Z. Light ele-
ments contribute little to X-ray scattering and data are not sensitive to the position
of light element. LEED does not suffer from that to the same extent. Because of
the larger momentum transfer in the direction of the surface normal, LEED has a
better sensitivity to the vertical atom coordinates, while SXRD is more sensitive to
the lateral position. X-ray scattering experiments require extremely flat surfaces
because of the grazing incidence condition while LEED is more forgiving with
respect to sample quality. At present, most of the surface structure determinations
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are based on the quantitative analysis of LEED-intensities. However, the balance
may tip as improved synchrotron sources become more available.

1.1.2 Surface Superlattices

Notation

The positions of surface atoms differ from the bulk because of the broken symme-
try and the broken bonds. The modifications are referred to as relaxations if the
surface unit cell remains that of the truncated bulk. If the surface unit cell is dif-
ferent, then the corresponding changes in the structures are addressed as
reconstructions. The lattice of an adsorbed phase with a unit cell larger than the
surface cell of the truncated bulk is called a superlattice, the associated structure a
superstructure. Adsorbate superstructures frequently go along with a reconstruc-
tion of the substrate. The nomenclature therefore is not unambiguous.

Base vectors of the unit cell of superstructures and surface reconstructions are
expressed in terms of the base vectors of the unit cell of the truncated bulk. With
s; and §, as vectors spanning the surface unit cell of a truncated bulk lattice, the
lattice vectors of the actual unit cell on the surface, @; and a,, are described by the

matrix ¢
a t, t,H S
( 1]{11 UJ( 1) a5
a, by Inp)\S2
+ + —+———-Q + + O + +
c(2x2) I oo
2 1 s2 I‘\/Esz \
|
+ O -F=+ O + 1 + O + + +
1 1 o o
5 , ! 0=45 (2x2ras; 4
1 I V2s, i
+ B —¢ + + O + + + +

51 25,

Fig. 1.5. Illustration of the notation of the ¢(2X2) unit cell of the surface lattice and its
alternative notation as ﬁ xﬁ R45°.

In most cases, this unambiguous notation introduced by E. A. Wood in 1964
[1.12] is unnecessarily complicated and inconvenient. If the surface lattice vectors
are just multiples of the lattice vectors §; and s, unit cells are denoted as (2x1),

n.n

(2%x2), (3x1), etc. Centered and primitive unit cells are denoted by adding a "c

nn

and a "p" to the notation, e.g. p(2x2) and c(2x2). This type of notation is not al-
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ways unique: The c(2x2) lattice on a (100) surface of a cubic crystal can also be
noted as +2x+/2 R45° in which the R45° stand for a rotation by 45° (Fig. 1.5).

. . . 1 1. . ..
The unambiguous matrix notation [l 1] is rarely used in that case, as it is more

difficult to quote.
A few common adsorbate superlattices are displayed in Fig. 1.6 together with
their notation.

p(2x2)

(2x2) (v/3x+/3)R30°

Fig. 1.6. Typical adsorbate superlattices on surfaces together with their trivial notation.
Substrate and adsorbate atoms are displayed as black and grey, respectively.

Diffraction pattern of superlattices

The existence of a superlattice on a surface is most easily discovered in a diffrac-
tion experiment because the larger unit cell produces extra, fractional order spots
in the diffraction pattern between the normal (k) spots of the truncated bulk lat-
tice. The determination of the base vectors of the unit cell frequently requires the
consideration of domains. For example, the diffraction pattern of a (1x2) unit cell
on a (111) or (100) surface of a cubic material has half order spots in terms of the
Miller-indices of the substrate at (h +1/2), (h £3/2), etc.. The equivalent second
(2x1) domain, which is rotated by 90°, has spots at (1/2 k), (3/2 k), etc. (Fig. 1.7).
The pattern is distinct from the pattern of a (2x2) lattice since the latter would
produce reflexes also at (£1/2, £1/2), (£3/2, £3/2), etc., which are absent in the
diffraction pattern of the (1x2), (2x1) superlattice (Fig. 1.7).
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(2x1) + (1x2) c(2x2)
@ ¢ @ ¢ O @ @) @)
@ ¢ @ ¢ O @ @ @
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Fig.1.7. Diffraction pattern of two domains of a (1x2) superlattice and a c(2x2) superlattice
on a (100) surface of a cubic material.

Centered unit cells and unit cell containing glide planes can be identified because
they give rise to systematic extinctions. The extinctions of reflexes (h, k) are cal-
culated from the surface structure factor Sy,.

S = Y expl-in(h'u, +k'v,)] (1.6)

Here, /' and k' are the Miller-indices of the superlattice, u,, and v, are the compo-
nents of the vector r, pointing to the atom ¢ in the unit cells in terms of the base
vectors a, and a,.

r,=u,a +v,a, (1.7)

We consider the c(2x2) superlattice as an example. Because of the (2x2) lattice,
the Miller-indices of the superlattice &' and k' in terms of the Miller-indices of the
substrate lattice & and k are h'=2h and k'=2k. The components u, and v, are
u; = v, =0 and u, = v, = 1/2. The structure factor is therefore

=0 if 2(h+k) uneven
Sy =14+ (=120 = ) (1.8)
=2 if 2(h+k) even

The c(2x2) structure is therefore identified by characteristic extinctions in the
half-order spot of the (2x2) lattice. In particular, these extinctions occur for all
half-order spots along the (/1 0) and (0 k)-directions (Fig. 1.7).

Point group symmetry of sites

A very important element of the surface structure is the symmetry of various sites
on surfaces, important, because the local symmetry of an atom or molecular com-
plex determines the classification of the eigenvalues of the electronic quantum
states as well as the selection rules in spectroscopy. The fact that the surface plane
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is never a mirror plane reduces the number of possible point groups on surface to
those, which have rotation axes and mirror planes perpendicular to the surface.
These point groups are C, C,,, Csy, Cy4y, Cgy, C3, Cy4, Cq. Figure 1.8 illustrates the
most important point groups C, C,,, Cs,, C4, together with the point groups C; and
C,. For the purpose of analyzing and classifying spectroscopic data, it is useful to
have the character tables of the point groups at hand. Characters tables for C, C,,,
Cs,, C4y, and Cg, are listed in Table 1.1.

Cs

Fig. 1.8. The point groups C,, Cy,, Cs,, C4y, C3, and C,4. The upper four point groups are
illustrated with a diatomic molecule like CO or NO (black and gray circle). The species
representing C; and C, are hypothetical. The point groups C,, C,,, Cs,, and C,, are fre-
quently encountered with molecules like CO, NO, or NH;.
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Table 1.1. Character tables of surface point groups. The upper left corner notes the point
group. The first column are the irreducible representations, the following columns are the
characters of the classes of the group. The last column describes to which irreducible repre-
sentation the translations along the x, y and z-axes and the rotations around these axes
belong. This is important since the translations and rotations of a molecule turn to vibra-
tions when the molecule is adsorbed. (see Sect. 7.2.2).

Cs | Oxz Cov | C2 Ox Oy
A+ 41 z, x, Ry Ar +1 +1 +1 +1 z
A" +1 -1  yRyR. A, +1 +1 -1 -1 R;
B +1 -1 +1 -1 xR,y
B +1 -1 -1 +1 y R«
Csv | C: © Cs | Cs C& o, oy
Ar 1 1 +1 Z Ar +1 +1 +1 +1 +1 z
A +1 +1 -1 R; A2 +1 +1 +1 -1 -1 R;
E +2 -1 0 xyRxRy By +1 -1 +1 +1 -1
B +1 -1 +1 -1 +1
E +2 0 -2 0 0 X,y,Rx Ry
Cev | Ce 062 063 Oy Og
A +1 +1 +1 +1 +1 +1 =z
A +1 +1 +1 +1 -1 -1 R;
By +1 -1 +1 - +1 -1
B +1 -1 +1 -1 -1 +1
Ei +2 +1 -1 -2 0 0 X, ¥, Rx, Ry
E- +2 -1 -1 +2 0 O
C | Co Cs | Cs
A +1 +1 zR; A +1 +1 zR;
B +1 -1 x V)RR E +1 -1 xyRwR
Ca | Cs CF
A +1 +1 +1 ZzR;
B +1 -1 +#1
E +2 0 -2 XxyRsRy
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Space groups

Space groups combine translations with point symmetry operations. In three di-
mensions, the combination of the 14 Bravais-lattices with the 32-crystallographic
point groups yields the 230 crystallographic space groups. In two dimensions,
only 17 space groups exist. Three important ones are illustrated in Fig. 1.9.

p1gi p2mg p4g
0 %0
o L X o%
OQQQ

m

Fig. 1.9. Illustration of common space groups at surfaces. All structures contain a combina-
tion of translation and mirror symmetry, a glide plane. The p2mg structure contains an
additional mirror plane perpendicular to the glide plane.

1.2 Surface Structures

Many materials, notably metals, have a surface lattice, which corresponds to the
bulk crystallographic (hkl) plane. Merely the atomic distances vertical to the sur-
face plane are changed to a larger or lesser degree, depending on the material, the
surface orientation, and the type of bonding. The surfaces of some 5d-transition
metals, however, reconstruct to form large, sometimes even incommensurate sur-
face cells. Reconstructions are also typical for covalently bonded semiconductors.
This section presents the surface structures of common materials [1.1].

1.2.1 Face Centered Cubic (fcc) Structure

Many metal elements crystallize in the face-centered cubic (fcc) structure. Among
them are the coinage metals copper (Cu), silver (Ag), gold (Au), as well as the
catalytic important metals nickel (Ni), rhodium (Rh), palladium (Pd), iridium (Ir)
and platinum (Pt). Surfaces of these metals have been studied intensively since the
early days of Surface Science. We therefore begin the presentation of surface
structures with the low index surfaces of fcc-crystals. Following the convention in
crystallography, we denote a set of equivalent faces by braced indices, e.g. {100},
and particular faces like (100), (010), or (001) by indices in parenthesis. The three
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most densely packed, and therefore the most stable {111}, {100}, and {100} sur-
faces of unreconstructed fcc-crystals are depicted in Fig. 2.1. The packing density
is the highest for the {111} surfaces, followed by the {100} and {110} surfaces.
The coordination numbers of surface atoms are 9, 8 and 7 for the {111} , {100}
and {110} surfaces, hence the number of broken bonds are 3, 4 and 5 per surface
atom.

Fig. 1.10. {111}, {100}, and {100} surfaces of fcc-crystals; bottom row displays side
views.

The open structure of the {110} surface has the peculiar feature that atoms in the
surface layer have nearest neighbor bonds not only to the next, but also to the third
layer. Vice versa, the second layer atoms have one broken bond oriented perpen-
dicular to the surface plane. Hence, this surface has 5 broken bonds per surface
atom, but 6 broken bonds per surface unit cell. In a nearest neighbor model, each
broken bond on a surface corresponds to 1/12 of the cohesive energy E.. Accord-
ingly, the surface energies per surface unit cell are E/4, EJ/3, and E /2, for the
{111}, {100} and {110} surface, respectively. Since the atom packing density also
decreases in that sequence, the three surfaces differ by a lesser amount in their
surface energy per area. In units of E./a,’, in which a, is the lattice constant, the
energies of the {111}, {100} and {110} surfaces are 0.577, 0.666 and 0.707, re-
spectively. The actual differences between the surface energies are even smaller
because of next nearest neighbor and many-body contributions to the surface en-
ergy.

The surface layer of the {111} surface has a six-fold rotation axis and three
non-trivial mirror planes. Together with the second layer underneath the symmetry
reduces to a three-fold rotation axis. The highest symmetry of a molecular species
site on that surface is therefore C;,. However, if the adsorbate species has a six-
fold rotation axis and interacts only with the first layer atoms the effective point
group symmetry is Cq,. The {100} surfaces have four-fold symmetry and two non-
trivial mirror planes. The highest symmetry of an adsorbate is thus Cg4,. The {110}
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surface has a two-fold axis and two mirror planes. The highest point group sym-
metry is C,,.

Unreconstructed surfaces as depicted in Fig. 1.10 are found on o-cobalt (a-Co),
Ni, Cu, Rh, Pd, and Ag. Atoms in the surface layer assume a position as in the
bulk save for a possible relaxation of the vertical distance between the surface
layer and the layer underneath. This relaxation is very small (1-2%) for the {100}
and {111} surfaces, hardly outside the error of the best structure determinations.
The relaxation is larger for the {110} surfaces, and even the distance between the
second and the third layer differs notably from the bulk. Table 1.2 lists mean re-
laxations on the {110} surfaces for a few materials.

Table 1.2. Relaxation of the distance between the surface layer and the second layer Ad,,
and the second and the third layer Ady; for several {110} surfaces.

Material Ad, Ady;
Cu{110} ~9% 3%
Ag{110} 8% 0%
Ni{110) 9% +3.5%
Pd{110} 5% +1%
Rh{110} 7% +2%

Most surfaces of the 5d-transition metals Ir, Pt and Au reconstruct. The nature of
the reconstruction is such that the surface plane of the reconstructed surface con-
tains more atoms per area than an unreconstructed surface. The guiding principle
therefore appears to be to compensate the loss of coordination caused by the "bro-
ken bonds" at the surface by increasing the effective coordination in the surface
plane. The 5d-metals resort to this method because the stiffness of the 5d-orbitals
induced by the two nodes prevents compensation by relaxation of the interatomic
distances. Relativistic effects on the late S5d-metals and the associated contraction
of the s-shell may also play a role. Some authors have attributed the propensity to
reconstruct to the large tensile stress on the 5d-metal surfaces [1.13]. However,
later experimental [1.14] and theoretical [1.15] investigations concerning the re-
constructions on {100} and {110} surfaces did not confirm this view. When
attempting to understand the reconstruction phenomenon on bare metal surfaces
one should keep in mind that the energy gain in the reconstruction is very small.
Investigations on the gold/electrolyte interface show that the difference in the free
energy for the reconstructed and unreconstructed Au(100) surface is 0.05 N/m
[1.16] which amounts to less than 4% of the surface energy [1.17].

The reconstructed {100} surfaces of Ir, Pt and Au all involve a nearly hexago-
nal packing of atoms in the surface layer. For Iridium this leads to a (5x1)
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Fig. 1.11. Top and side view of the (5x1) reconstructed Ir(100) surface in which the surface
layer consists of a buckled quasi-hexagonal overlayer of atoms. The buckling depends on
the lateral position of the surface atom with respect to the second layer atoms and amounts
to 0.48 A at the maximum [1.18]. The dashed rectangle indicates the unit cell. The {100}
surfaces of platinum and gold feature the same quasi-hexagonal arrangement of atoms in
the first layer, but the surface layer is more densely packed and incommensurate with the
substrate.

fce-sites hcp-sites fcc-sites

g

Fig. 1.12. Reconstruction on the Au(111) surface by an uniaxial compression of the surface
layer. The position of the surface atoms with respect to the second layer change from fcc-
sites, to bridge sites, to hep-sites, to bridge-sites and back to fcc-sites. The height corruga-
tion induced thereby is easily seen in an STM-image (Fig. 1.13).
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Fig. 1.13. (a) STM-image of a reconstructed Pt(100) surface [1.19]. On Pt(100) as well as
on Au(100), the surface layer is slightly rotated with respect to the substrate causing an
incommensurate structure. (b) STM-image of reconstructed Au(111) [1.20]. The height
corrugation of the primary reconstruction (Fig. 1.12) is seen as white stripes. The superim-
posed secondary "Herringbone"-reconstruction reduces the elastic strain energy in the
substrate [1.21].

reconstruction (Fig. 1.11) so that the density of atoms in the surface layer is 6/5 of
the unreconstructed surface. Even higher atom densities (~125%) are realized with
the quasi-hexagonal but incommensurate overlayers on Pt(100) and Au(100)
[1.22-24].

Of the {111} surfaces of 5d-metals, only the Au(111) reconstructs. The recon-
struction involves an uniaxial compression of the surface layer along a(l 10> -

direction by about 4.5% to a (1x22) unit cell (Fig. 1.12).

Fig. 1.14. The (1x2) reconstruction on {110} surfaces of Ir, Pt and Au.
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Superimposed on the (1x22) reconstruction is a secondary reconstruction, the
"Herringbone" reconstruction which helps to reduce the elastic energy in the sub-
strate [1.21] (see also Sect. 3.4.3). The reconstructions on the {110} surfaces of Ir,
Pt and Au are of a different nature: By removing every second row of atoms, (111)
microfacets are formed (Fig. 1.14) [1.25-27]. The reconstruction involves a multi-
layer reconstruction consisting of a buckling in the third and fifth layer and a row
pairing in the second and fourth layer.

1.2.2 Body Cubic Centered (bcc) Structure

Typical metals with bec-structure are tungsten (W), molybdenum (Mo), niobium
(Nb), and iron (Fe). Spurred by the interest in their use as thermionic electron
emitters, surfaces of tungsten have drawn the attention of researchers since the
early years of the 20th century. Studies included measurements of the work func-
tion of various crystal faces and the influence of adsorbates, in particular of alkali
atoms, on the work function. Later on, tungsten surfaces were considered as a
model for surface phenomena in general, partly for that history, partly because the
metallurgy of single crystal preparation was well developed for tungsten, and last
not least, because tungsten surfaces are comparatively easy to prepare clean in
ultra-high vacuum vessels made from glass (Sect. 2.2.3).

Fig. 1.15. Top and side view of the {110}, {100}, and {111} surfaces of a bulk terminated
bce-structure. The very open {111} surface is formed by three layers of atoms that are
missing some of their nearest neighbor bonds.

The bulk-terminated surfaces of bce-crystals are displayed in Fig. 1.15. The atom
density on the most densely packed {110} surface amounts to 91.8% of a hexago-
nal close packed surface. The atoms form a compressed hexagon with each atom
surrounded by four atoms in nearest neighbor distance, and two atoms in the
15.5% larger second nearest neighbor distance. The {100} surfaces possess 65.1%
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of the density of a hexagonal close packed face, which amounts to 70.9% of the
density of {110} surfaces. The {111} surfaces have a very open structure. The
atom density is down to 41.1% of a close packed surface, or 44.7% of {110} sur-
faces. Atoms in three layers are missing nearest neighbors. Since the distance to
the second nearest neighbors is merely slightly larger than to the first neighbors,
an estimate of the surface energies based on the coordination numbers is not
meaningful.

Fig. 1.16. Structure of the W(100) surface at 150K. The (2x2) unit cell is indicated by
dashed lines. The surface atoms in the cell are pair wise displaced along one diagonal (solid
line) of the (2x2) cell which produces a glide plane orthogonal to the diagonal. The recon-
struction has two equivalent domains.

For a long time it was believed that neither surface of the bcc-metals would recon-
struct. However, a careful structure analysis of the W(100) surface performed at
150 K [1.28, 29] revealed a (2x2) reconstruction of the space group pmg
(Fig. 1.16). The reconstruction of the W(100) surface escaped detection for ex-
perimental reasons. Firstly, the majority of surface studies were performed at
room temperature and above where the reconstruction is disordered and the sur-
face therefore appears as being unreconstructed with a high Debye-Waller factor.
Secondly and probably more importantly, adsorbed hydrogen produces a c(2x2)
structure (Sect. 1.2.4). The pmg diffraction-pattern is easily mistaken for a c(2x2)
pattern since it has the same extinctions along the h, k-axes as the pmg. The addi-
tional reflexes along the four diagonal (lhl=Ikl) directions exist for both
structures, for the pmg-structure because of the two equivalent domains. (The
structure as drawn in Fig. 1.16 would have extra reflexes for the h = k direction,
not for the h = —k direction). Hydrogen adsorbs dissociatively with a high sticking
coefficient on the W(100) at room temperature and below. Hydrogen is also the
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prime residual gas in stainless steel vacuum chambers (Sect. 2.2.1). As tungsten
surfaces are prepared by high temperature oxidation and annealing and some time
is required to cool the crystal down to 150 K, hydrogen adsorption is hard to avoid
unless special precautions are taken. Hence, even when researchers found a low
temperature (2x2) might have attributed it to a hydrogen induced reconstruction.
Presently, also the clean Mo(100) surface is believed to reconstruct at low tem-
peratures, but no structure analysis is available at this time.

1.2.3 Diamond, Zincblende and Wurtzite

The group IV-elements carbon, silicon and germanium crystallize in the diamond
structure in which each atom is surrounded by a tetrahedron of neighboring atoms,
providing optimum overlap of the sp’-type covalent bonds. The diamond structure
can be viewed as two fcc-structures displaced along the cubic space diagonal by a
vector ('/4, l/4, l/4)a0 with a, the lattice constant (Fig. 1.17a). The structure has its
name from the diamond phase of crystalline carbon although diamond is not the
most stable phase of carbon, which is graphite. The III-V and II-VI compounds
are likewise primarily covalently bonded in a tetrahedral configuration. The III-V
compounds and some of the II-VI compounds crystallize in the diamond structure
with each of the two atoms of the compound occupying one of the fcc-
substructures. The structure is then named zincblende, after the mineral name of
the II-VI compound ZnS. A ZnS-crystal has four polar axes oriented along the
tetrahedral bonds. A dipole moment can arise if the tetrahedral symmetry is dis-
torted, e.g. by shear stresses. Crystals with ZnS structure therefore have merely
non-diagonal components of the dielectric tensor.

(b)

Fig. 1.17. Structure of (a) zincblende and (b) wurtzite. The zinblende structure reduces to
the diamond structure if A- and B- atoms are identical. The zincblende structure has eight
the wurtzite structure 4 atoms in the unit cell.
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Most of the II-VI compounds crystallize in the hexagonal wurtzite structure. In
wurtzite, the local configuration is as in zincblende (Fig. 1.17b). The arrangement
of the tetrahedrons in space differs, however. When build with ideal tetrahedrons,

wurtzite has a c/a ratio of M =1.633. However, the symmetry of the structure
is compatible with the tetrahedrons being distorted along the c-axis. Since the c-
axis is a polar axis, wurtzite crystals are pyroelectric (pyroelectricity denotes a
variation of a permanent polarization with temperature), and possess one non-zero
diagonal and off-diagonal elements of the piezoelectric tensor.

Because of the covalent nature of the bonding (with some ionic character in the
III-V and II-VI-compounds) the termination of the bulk structure at the surface
means broken bonds, also called dangling bonds. To minimize the energy associ-
ated with the dangling bonds nearly all surfaces of the group IV elements and of
the III-V and II-VI compounds reconstruct in one or another way. In order to be
able to describe and understand nature of the various reconstructions involved it is
necessary to know the reference frame of the low index bulk terminated structures.
We therefore depict the surfaces as they arise from the truncated bulk structures of
zincblende and wurtzite, before entering the discussion concerning reconstruc-
tions.
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Fig. 1.18. Top and side view of the low index surfaces of the zincblende structure. Pictures
also represent the surfaces of the diamond structure if the dark and lightly shaded atoms are
identical. For zincblende the ideal (111) surfaces are polar, as the surface layer consists of
one type of atoms. Full lines indicate the boundaries of the (111), (100) and (110) planes as
drawn into the bulk cubic cell. The dashed lines are the surface unit cells.

Figure 1.18 shows top and side views of the {111}, {100} and {110} surfaces of
the zincblende structure, as they arise from the truncated bulk structure. The sur-
face layer of a {111} surface consists of only one type of atoms and has therefore

a polar character. The (111) and (11 1) surfaces are not identical. On {111} and
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{110}, surfaces atoms have one dangling bond, on {100} surfaces each surface
atom has two. The illustrations in Fig. 1.18 represent the surfaces of the diamond
structure when dark and light atoms represent the same element.

Figure 1.19 shows top and side views of two surfaces of wurtzite. As for the
{111} surfaces of zincblende, the surface layer of the {0001} surfaces consist of
atoms of one type; the surfaces are therefore polar. Because of the arrangement of
the tetrahedrons, wurtzite appears as rather open when viewed along the c-axis,
compared to the zincblende and diamond structure.

(0001) (1170)

180808

Fig. 1.19. Top and side view of surfaces of wurtzite surfaces.

The Si(111) surface

Some of the early work in surface science is associated with the Si(111) surface
prepared by cleaving a silicon crystal along the (111) plane in ultra-high vacuum.
Low energy electron diffraction (LEED) revealed that the surface is reconstructed
to a (2x1) unit cell [1.30] and transforms to a surface with a (7x7) unit cell upon
annealing. For a long time, research concentrated on the (2x1) surface for various
reasons. Firstly, cleaved surfaces are easily prepared and one could rest assured
that the surface was clean (Sect. 2.2.3), whereas it was debated for a long time
whether the (7x7) reconstruction was really a property of the clean surface. Sec-
ondly, strong Fermi-level pinning was found on the (2x1) surface [1.31],
providing evidence for a high density of surface states. The high density of states
was directly associated with the dangling bonds on the silicon surface. Further-
more, the (2x1) surface displayed interesting spectroscopic features, both with
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respect to surface vibrations [1.32] and optical properties [1.33, 34]. Much of this
early work remained speculative with respect to the interpretation of the experi-
mental results, because the surface structure was unknown. When surface structure
analysis became feasible and the structure of the (2x1) surface was solved around
the mid 80-ties of the last century, interest in the (2x1) surface had already de-
clined in favor of the (7x7) reconstructed surface. The structure of the (2x1)
surface as determined by Sakama et al. is shown in Fig. 1.20 [1.35]. The structure
is characterized by chains of surface atoms, which are 7-bonded by the electrons
in the dangling bonds. The hybridization reduces to sp?, so that the surface atoms
form a more planar structure.

Fig. 1.20. Perspective side view on the reconstructed Si(111)(2x1) surface. Electrons in
dangling bond establish a m-bonding between surface atoms, so that they arrange in chains
(marked by arrows) along a < 110> - direction. The size of the unit cell alonga <112>-
direction is thereby doubled (double headed arrow).

Unlike the Si(111) (2x1) surface, the Si(111)(7x7) surface is an equilibrium phase.
The structure involves a rearrangement of the position of many atoms as well as
additional atoms. A migration of atoms from an atom source, e.g. steps, is there-
fore necessary to build the (7X7) structure which explains that the structure is not
formed directly after cleaving the crystal at room temperature. The complexity of
the structure has challenged researchers for a long time. Hundreds of papers were
published proposing and considering possible elements of the structure without
getting a grasp on the full complexity of the problem. Even advanced techniques
of LEED-intensity analysis could not solve the puzzle, as a successful structure
analysis by LEED requires a trial structure fairly close to the final one. At last,
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scanning tunneling microscopy provided decisive clues that narrowed the number
of possibilities for the structure. Figure 1.21 shows an STM-image of the
Si(111)(7x7) surface. Within the unit cell, STM finds 12 bright spots. If these
bright spots are identified with atoms, this means the structure features twelve
atoms in a particular elevated position. These atoms were later identified as extra
silicon atoms (adatoms) sitting on three dangling bonds of silicon atoms, thereby
reducing the number of dangling bonds by a factor of three. The STM-image
shows further one deep, wide hole per unit cell.

Fig. 1.21. STM-image of a Si(111)(7x7) surface. Dashed lines mark the unit cell. The im-
age shows twelve bright spots and one deep and wide hole per unit cell. The bright spots
correspond to silicon adatoms bonding to three dangling surface bonds.

With these clues, a further one stemming from medium energy ions scattering
stating that the structure should involve a stacking fault, and his own Patterson
analysis of high energy electron diffraction data, Takanayagi et al. were able to
propose the currently accepted model [1.36]. The model has been termed the
Dimer-Adatom-Stacking fault (DAS) model after its key structural elements. The
structure is shown in Fig. 1.22. The atom coordinates are taken from the LEED-
structure determination of Tong et al. [1.37]. We begin the discussion of the vari-
ous structural elements with the stacking fault. The top view on the two uppermost
Si-double layers in the right and left side of the rhombic unit cell differs. In the
right half, the structure is as in bulk silicon, in the left half the arrangement of the
first two double layers is as in wurtzite. Hence, this section is faulted with refer-
ence to the silicon structure. At the domain boundary between the faulted and non-
faulted area six silicon atoms pair up to form three dimers (textured arrows in
Fig. 1.22). The adatoms are best seen in a side view. The side view in Fig. 1.22
displays the three sheets of atoms that lie between the dotted lines drawn in the top
panel. This section of the unit cell has four adatoms between the large holes at the
apices of the rhombic unit cell. The positions of these adatoms correspond to the
white spots along a line connecting the two apices of the unit cell in the STM-
image Fig. 1.21. Four more adatoms exist on either side, above and below the
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dotted lines in Fig. 1.22. While the adatoms reduce the number of dangling bonds
per unit cell, some of the silicon surface atoms retain their original dangling
bonds. Four of them are shown in the side view. These surface atoms are called
rest atoms.
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Fig.1.22. Structure of the Si(111)(7x7) surface according to the Dimer-Adatom-Stacking
fault model (DAS). The lower panel displays a side view of the atoms residing between the
dotted lines shown in the top panel. Four adatoms sitting on a triplet of Si-atoms mark
positions of height maxima that are the salient feature in STM-images (Fig. 1.21). The
(7x7) unit cell (dashed lines) comprises 12 adatoms. The top view shows clearly that the
arrangement of tetrahedrons in the first two double layers is as in wurtzite on the left hand
side of the rhombic unit cell. Hence, the stacking of layers is faulted with respect to the
silicon structure. Dimerization of surface Si-atoms occurs along the domain boundary be-
tween the faulted and non-faulted section of the (7x7) unit cell (textured arrows).
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The Ge(111) surface

The cleaved Ge(111) surface exhibits the same (2x1) reconstruction as the Si(111)
surface. The (2x1) reconstructed surface transforms irreversibly into a stable
structure around 200 °C [1.30]. Again, minimizing the number of dangling bonds
is the driving force for the reconstruction. For germanium the resulting equilib-
rium structure is, however, much simpler since the reconstruction involves merely
an ordered array of adatoms on the otherwise unreconstructed, though distorted
Ge(111) surface. Figure 1.23 shows the c(2x8) structure that is obtained after an-
nealing the surface [1.38].

Fig. 1.23. Perspective view on the topmost layers of the reconstructed Ge(111)c(2x8) sur-
face. Each unit cell (dashed lines) contains three adatoms. The adatoms cause a distortion
of the germanium structure, clearly visible in the panel. The distortions extend several
layers deep into the bulk.

The Si(100) and Ge(100) surface

Atoms on the {100} surfaces of the tetrahedral coordinated crystals would have
two dangling bonds each if the surface existed as a truncated bulk (Fig. 1.18).
Clearly, such a surface must be even less stable than the ideal (111) surface, and
reconstructions, which reduce the number of dangling bonds, are expected. The
geometry of a {100} surface permits a way to saturate 50% of the dangling bonds
by pairing the surface atoms (Fig. 1.24). The moderate energy needed to distort
the bond angles of the sp’-bonded surface atoms is overcompensated by the gain
in energy due to the formation of dimers. The symmetric dimer has still two dan-
gling bonds, i. e. half-filled electron states of the same energy. Breaking the
symmetry lifts the degeneracy of the electrons states, which allows for the filling
of the lower energy state with two electrons whereby the electronic energy is re-
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duced (Fig. 1.24). This general principle of energy reduction by symmetry
breaking is called Jahn-Teller effect. In this particular case, the Jahn-Teller effect
involves a partial transfer of one electron to one of the two atoms in the dimer.
Electrons of that atom then form a p’-configuration with 90° natural bond angles.
The electrons of the donating atom form a planar sp’-hybrid. The state of lowest

P

Fig. 1.24. Illustration of the dimer formation on the {100} surfaces of tetrahedral coordi-
nated structures. Surface atoms can be brought into bonding distance by a distortion of the
sp>-bonds of the surface atoms. Partial electron transfer from the left to the right atom
changes the sp>-hybrids to a planar sp’-hybrid and a p*-configuration with 90°-angles, giv-
ing the dimer an asymmetric structure (buckled dimers).
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Fig. 1.25. Top and side view of the Si(100)(2x1) reconstructed surface.
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energy is therefore an asymmetric dimer (buckled dimer). Note that the buckled
dimer has no half-filled electron orbitals and therefore no remaining dangling
bonds.

The electrons in the filled and empty states form bands of surface states [1.39]
that are energetically located in the band gap between the valence and the conduc-
tion band (Sect. 8.2.4). The total density of these states is two states per surface
atom (Sect. 3.2.2). Many different ordered structures can be realized with the
asymmetric dimers as building blocks. The simplest structure is with all dimers
tilted in the same direction. The resulting reconstruction is a (2x1) structure which
exists in two domains. An example is shown in Fig. 1.25 with the Si(100)(2x1)
reconstructed surface. The structure analysis was performed using LEED at 120K
[1.40]. A simple structure with an equal number of dimers of either orientation is
the c(4x2) reconstruction which can exist on Si(100) as well as on Ge(100). Fig-
ure 1.26 shows top and side view of Ge(100)c(4x2). The unit cell (dashed
rectangle) contains two asymmetric dimers of either type. The energies of the
various arrangements of the asymmetric dimers differ only because of elastic in-
teractions between different dimers. These interactions are comparatively weak.
Entropy plays therefore an important role in the free energies of various surface
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Fig. 1.26. Top and side view of the Ge(100)c(4x2) reconstructed surface. For clarity, the
side view displays merely three planes of atoms along the dotted line. The unit cell (dashed
rectangle) contains two asymmetric dimers of each type.
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configurations. Phase transitions between the ordered structures occur as a result.
Another consequence of the weak interactions between dimers is that at room
temperature dimers flip back and forth between the two asymmetric states. STM-
images average over the two configurations so that the dimers appear to be sym-
metric in such images.

Surfaces of zincblende and wurtzite

The truncated bulk {111} and {100} surfaces of zincblende and the {0001} sur-
faces of wurtzite are polar, that is the outermost surface layer consists of one of
the two types of atoms only (Fig. 1.18). Because of the ionicity of the bonds in
zincblende and wurtzite, the outermost layer would bear an uncompensated sur-
face charge. A zincblende crystal terminated by a (111) surface on the one end and

a (111)-surface on the other, or a wurtzite crystal terminated by (0001) and

(0001) -surfaces would bear a net permanent polarization giving rise to electric
fields in the adjacent vacuum. If, furthermore, the surfaces were planar extended,
there would be no countercharge to terminate the electric field, which means that
the field energy adds an infinite amount of energy to the surface energy (see also
Sect. 4.2.1). For the wurtzite structure the permanent polarization P is easily cal-
culated with the help of Fig. 1.17. The dipole moment p per unit cell is gc/4 when
q is the ionic charge and c the length of the c-axis of the unit cell. The polarization
P is P = p/cF,, with F, the area of the base of the unit cell. The polarization P is
therefore equivalent to a surface charge density of g/4F}. The polarization is com-
pensated by placing counter charges on the surfaces, which amount to the ion
charges of 1/4 of a monolayer, or by removing 1/4 of the atoms in the surface
layer, that is by introducing 25% surface vacancies. The same argument applies to
the zincblende crystals. In other words, the nominally polar surfaces are prone to
reconstruct. The reconstruction may also involve a relaxation of the bond lengths
and a change of bond angles.

Figure 1.27 shows the Ga-terminated GaAs(111) surface as an example. As
suggested by the considerations above every fourth Ga-atom is missing. Further-
more, the first double layer of Ga- and As-atoms is relaxed to a nearly planar sp>-
type configuration.

The {100} surfaces of zincblende crystals tend to form dimers like the diamond
type structures. However, with the surface stoichiometry as a free parameter,
many complex ordered structures are realized which involve several atom layers.
A relatively simple generic reconstruction occurs on the {110} surfaces of
zincblende crystals and on {IOTO} surfaces of wurtzite which is displayed in
Fig. 1.28 for the example GaAs. The GaAs pairs in the top layer are tilted by an
angle of about 28°, which gives the Ga-atoms a nearly planar sp’-type bonding
and the As-atoms a p’-type configuration. Both electronic configurations are natu-
ral for neutral Ga- and As-atoms with their three and five valence electrons,
respectively.
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Fig. 1.27. Top and side view of the GaAs(111)(2x2) surface. Ga-atoms are displayed in
light grey. One quarter of the Ga-surface atoms is missing, i. e. one Ga-atom per unit cell
(dashed line). Furthermore, the first double layer of Ga- and As-atoms is relaxed to an
almost planar sp>-type configuration (side view).

Fig. 1.28. Top and side view of the GaAs(110) surface. Light grey shaded balls represent
Ga-atoms. The tilt in the surface bonds by about 28° is caused by the different hybridization
of the electrons of the surface atoms. Ga-atoms assume a sp’- and the As-atoms a p’-
configuration.
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1.2.4 Surfaces with Adsorbates

The large diversity in the structures of bare surfaces is surpassed by the diversity
of structures of adsorbates covered surfaces. Adsorbates can have three different
effects on the structure of the substrate surface. By saturating the dangling bonds,
adsorbates may eliminate the reason for a reconstruction of the bare surface and
thereby restore the unreconstructed surface. Secondly, adsorbates may cause a
restructuring of the substrate. This happens in particular for strongly bonded ad-
sorbates. Thirdly, adsorbates may leave the substrate surface largely unaltered and
merely form ordered commensurate or incommensurate superlattices on top of the
substrate. In this section, we briefly consider these general aspects. Specificities of
individual adsorbates are presented in Sect. 6.4.

Lifting of reconstructions by adsorbates

Except for the case of very weak bonding, adsorbates alter the reconstruction of
bare surfaces. Frequently the effect of adsorption is a lifting of the reconstruction
and a return to the unreconstructed substrate. For covalently bonded substrates,
this is the case if the adsorbate bonding involves merely the dangling bonds of the
truncated bulk structure. A well studied and illustrative example is the hydrogen
covered Si(111) surface with one hydrogen atom bonding to each surface atom.
Such a surface can be prepared in air by wet chemistry, inserted into a vacuum
chamber and investigated at length under vacuum conditions without becoming
contaminated. In addition to being non-reconstructed, surfaces thus prepared are
rather flat and stable even in air. The physical properties of this ideal surface serve
as a benchmark for intrinsic surface properties in general. Electronic as well as
phonon properties have been studied therefore. Hydrogen terminated Si(111)(1x1)
surfaces also serve as a template for deposition of nanostructures.

For metal surfaces, the difference in the free surface energies of the recon-
structed and unreconstructed states is significantly smaller than for covalently
bonded materials. Occasionally, it is therefore possible to lift the reconstruction by
adsorption and subsequent removal of the adsorbate by gentle heating or by a
catalytic reaction and preserve thereby the unreconstructed surface as a metastable
state. An example is the Ir(100) surface [1.41]. The metastable Ir(100)(1x1) is
obtained by exposing the (5x1)-surface for 2 min to O, at 475 K, followed by
annealing to 750 K. The oxygen is removed by exposure to 5x10~’ mbar H, at a
temperature of 530 K. The (1x1) surface thereby obtained persists at room tem-
perature. The metastable (1x1) surface is converted back into the stable (5x1)
surface by annealing to 800 - 900 K. This conversion requires the incorporation of
20% additional Ir-atoms, which have to be generated from kink site at steps. The
generation of adatoms from kink sites requires energy which explains that the
(1x1) surface is metastable. The measured activation energy for the conversion of
0.9 eV [1.41] appears to be a reasonable number for the formation energy of sur-
face adatoms from kink sites.
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The (2x1) missing row reconstructions of the 5d-metal (Fig. 1.14) can also be
removed by adsorption processes, e. g., on the Pt{110} surface by adsorption of
CO [1.42]. The considerable relaxation times associated with the transport of Pt-
atoms over large distances which is required to lift the reconstruction gives rise to
oscillatory catalytic reactions under steady state conditions and fascinating spatio-
temporal patterns [1.43, 44].

Restructuring of substrates by adsorbates

In the early days of surface crystallography, substrate surfaces were considered
rigid templates, merely providing specific sites on which adsorbate lattices would
unfold. It was not before methods of surface analysis had progressed and the coor-
dinates of many atoms per unit cell could be determined with accuracy that the
restructuring of substrate lattices under the influence of adsorbates was revealed.
The hydrogen covered W(100) surface is an interesting example. Hydrogen pre-
fers adsorption in bridge sites, however with the tungsten atoms closer than they
would be on a (100) surface with a truncated bulk structure. The fact that on the
clean surface the tungsten atoms are laterally displaced from their bulk positions
(Fig. 1.17) shows that the atoms on the W(100) surface have some degree of flexi-
bility with respect to sideward motion. With half a monolayer of hydrogen atoms
the tungsten atoms pair under upon adsorption of hydrogen in bridge sites, and
these pairs order into a c(2x2) pattern (Fig. 1.29). Upon adsorption of two hydro-
gen monolayers, all possible bridge sites become occupied with hydrogen atoms
and the tungsten atoms return to their bulk positions with respect to lateral dis-
placements.

Fig. 1.29. The W(100)c(2x2) structure with half a monolayer of hydrogen atoms. Hydrogen
adsorbs in bridge sites with the tungsten atoms paired.
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While the restructuring of the W(100) surface upon adsorption of hydrogen is
revealed only by quantitative structure analysis, the massive restructuring of the
Ni(100) surface upon adsorption of nitrogen and carbon becomes apparent by the
systematic extinctions in the diffraction pattern due to the glide planes involved in
the restructuring. The resulting p4g-structure was already shown in Fig. 1.9.

Adsorption of alkali atoms likewise habitually induces major reconstructions
and can give rise to very complicated ordered structures with alkali atoms in the
outermost surface layer as well as in layers buried in deeper layers. The resulting
structures are better described as ordered surface alloys than as adsorption struc-
tures (Sect. 6.4.6).

Adsorbate lattices on rigid substrates

In cases when the substrates structure does not change upon adsorption, save for a
minor rearrangement of the atom coordinates, the structure and periodicity of the
adsorbate lattices is determined by the interplay of the site specificity of the ad-
sorption energy and the interaction between the adsorbate atoms. The distinction
between these two energetic contributions is somewhat artificial as the interaction
potential also depends also on the adsorption site. The interaction between adsor-
bates can be purely repulsive, but more typically consists of a combination of
attractive forces at longer distances, and repulsive forces at shorter distances. In
many cases, the adsorption energy has a pronounced maximum for one particular
type of adsorption site, so that only this site is taken at any coverage. An example
is the adsorption of oxygen and sulfur on transition metals where the oxygen and
sulfur atoms assume the site of highest coordination, the fourfold hollow site on a
{100} surface and the threefold hollow site on the {111} surfaces. The resulting
ordered lattices (Fig. 1.6), e.g. the p(2x2) lattice, are usually observed at coverages
below the nominal coverage required for forming a perfect lattice. This means that
islands of ordered structures are formed, which is indicative of attractive interac-
tions. On the other hand, the occupation of nearest neighbor sites (Fig. 1.6) is
excluded. Thus, at least some form of a hard-core repulsion must exist.

Rare gases on metals represent systems with a small, though not vanishingly
small, site specificity. The lateral interactions are of the van-der-Waals type. Or-
dered commensurate as well as incommensurate structures exist in that case.

1.3 Defects at Surfaces

Ever since researchers thought about properties of surfaces, defects have played a
prominent role in their considerations. In 1925, Taylor [1.45] proposed that cata-
lytic reactions at surfaces would occur at special active sites. Defects also play an
important role in crystal growth. A pair of screw dislocations of opposite sign of
the Burgers-vector, a Frank-Read source, promotes nucleationless growth at the
step sites on surfaces. The relevance of steps and defects at steps in epitaxial
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growth was discussed in the seminal work of Burton, Cabrera and Franck [1.46].
In this early work, defects were discussed mostly from the standpoint of theory
since hardly a technique was available whereby defects could be made accessible
to experimental investigation. The only possibility — decoration of steps and point
defects by large Z-elements (mostly Au) and imaging the decorated defects in an
electron microscope — produced images of "dead" defects: After decoration, steps
cannot change position with time, nor are steps catalytically or otherwise active.
The invention of the scanning tunneling microscope (STM) and the subsequent
development of other scanning microprobes changed that situation completely.
Not only that line and point defects have become visible objects, one can even
track their motion as they migrate across the surface, in the course of thermal fluc-
tuations, catalytic reactions, epitaxial growth, or abrasion. A remaining, yet
essential limitation is the large discrepancy in the time scale of the scanning
probes and the time scale of defect migration.

1.3.1 Line Defects

Line defects on surfaces are steps, boundaries between different domains of ad-
sorbate structures, and dislocations, but also non-structural defects as the
boundaries between magnetic or ferroelectric domains. Although these line defects
are of a very different nature, they also have certain things in common. For exam-
ple, work is required to create the defect and the work depends on the orientation.
In a coarse-grained description, the static and dynamic properties of all different
line defects are therefore treated by the same statistical theory.

Steps

The easiest access to steps of defined orientation, conceptually as well as techni-
cally is via surfaces that are inclined with respect to a low index surface by a small
angle. These surfaces are called vicinal surfaces (Fig. 1.30). If all steps are one
atom layer high, which is the generic form of bare vicinal surfaces after prepara-
tion in ultra-high vacuum, the mean number of steps per length is unambiguously
determined by the angle of inclination 6. Figure 1.30 shows a schematic view of a
vicinal surface, together with the most important point defects. For particular azi-
muthal directions, the steps are oriented along a direction of dense atom packing.
They are nominally free of kinks. In the following, we consider vicinal orienta-
tions on cubic materials. We begin with the vicinals of the {100} surfaces. These
have Miller-indices of the type {1 1 n}. The surface consist of terraces, each n/2
atom diameters wide, separated by monatomic steps along a (110) direction. The
(110) direction is the direction of nearest neighbors on {100} surfaces. Steps along
this direction are therefore (ideally) free of kinks. Figure 1.31 shows a ball model
of the (1 19) surface as an example. The illustration shows that the steps form
{111} microfacets. A nomenclature for stepped surfaces, that is more descriptive
than the Miller indices denotes vicinal surfaces by the type of microfacets and the
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number complete of atom rows on the terraces: the (1 1 9)-surface, e.g., is de-
scribed as 4(100)x(111) in this convention. The latter notation immediately
conveys the atomic picture. The Miller-index notation, on the other hand, is
unique, and the

Adatoms at step

Fig. 1.30. Schematic illustration of a vicinal surface with one-atom layer high steps, kinks
in steps, adatoms on terraces and at steps, vacancies and islands formed by a group of ada-
toms.

Fig. 1.31. Ball model of the (1 19) surface of an fcc-crystal. The surface consist of 4.5
atom wide terraces, separated by monatomic step along a (110) direction.
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rotation angle @ with respect to the low index surface can be calculated exactly
from the scalar product of the normal vectors. For the (111) vicinals one has

cosg= (QOD)-(Ln) 1 (1.9)
0,001 L) 142/,
For small angles 6
6=2/n (1.10)

is a useful approximation. The error is smaller than 4% for n > 4.

Two different types of close packed steps exist on the vicinals of the {111} sur-
faces of fcc-crystals. Depending on the direction of inclination with respect to the
(111) direction, steps can display either {100} microfacets (A-steps) or {111}
microfacets (B-steps). Figure 1.32 and 1.33 show the (77 9) and (9 9 7) surfaces
as examples. The notation for general {111} vicinals with A-steps is {nnn+2}.

The width of the terrace is n+2/3 atomic rows, each having a width of
1 1
aL=E\/§a”=Z\/gao (1.11)

in which a is the atom diameter or the atomic length unit parallel to the step direc-
tion and a, is the lattice constant. The angle of inclination with respect to the (111)
surface is

cosf = (1,1,1)-(n,n,n+2): n+2/3 (L12)
(01000 n+2) 2 ans3 4403
A good approximation for the angle 6 is
0~2V3/3(n+1) (1.13)

The error is smaller than 5% for n > 4.
The notation for general {111} vicinals with B-steps is {n +ln+ln —1}. The

terrace width is (n+1/3)a, . The angle of inclination with respect to the (111)
surface is

(LLD)-(n+Ln+1,n-1) n+1/3
LD+ L+ Ln=1) 2 4 20/341/3

cosf = (1.14)
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Fig. 1.32. Ball model of the (77 9) surface with steps showing {100} microfacets (A-
steps).

Fig. 1.33. Ball model of the (99 7) surface with steps showing {111} microfacets (B-
steps). If one more atom row on the terrace is included in the consideration then the
local structure at a B-step is as on the (110) surface (Fig. 1.10).
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Here @is approximated by

0=~21/3n (1.15)

The error is below 5% for n > 6.

The {100} surfaces of the fcc- and bee-structure have fourfold rotation symme-
try. On the {100} surfaces of the likewise cubic diamond structure the symmetry
is reduced to a two-fold rotation axis. Vicinal surfaces of the (1 1 n) type have
therefore two types of terraces, one with the dangling bonds oriented parallel
[110] the other parallel to [110] (Fig. 1.34). Consequently, two types of
monolayer high steps exist, one with the bonds on the upper terrace perpendicular
to the step (S,-steps), the other with the bonds parallel to the step (Sy-steps). We
note that vicinal Si(100) surfaces with a miscut angle around 4° form double steps
so that only a single reconstruction domain exists with the dimer rows perpendicu-
lar to the step orientation [1.47].

An even larger variety of steps exists on zincblende surfaces since the top layer
consists of different elements on adjacent terraces. This makes the (I 1 12)- and the
(11 72)-surfaces nonequivalent. S,- and Sy-step atoms can be either of the Zn- or
the S-type atoms. The pairing row reconstructions on Ge(100) and Si(100) leads to
rows which are parallel to the step on the upper terrace of an S,-step and perpen-
dicular for an S,-down step (Fig. 1.35 [1.48]). The two types of steps have
different equilibrium morphology because of the different energies associated with
the formation of kinks on the two types of steps [1.49].
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Fig. 1.34. Ball model of the unreconstructed (1 1 17) surface of the diamond structure with
one atom layer high steps. Steps descend from left to right. The dangling bonds are drawn
as triangles. They are rotated by 90° with respect to each other on adjacent terraces. The
paired surface atoms in the reconstructed phase are like wise mutual orthogonal.
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Fig. 1.35. STM image of a Si(100) surface with steps. The Sy-steps are rougher than the S,-
steps since the kink energy is lower on S,-steps (image from [1.48], original reference B.
Swartzentruber et al.) [1.49] .

Domain walls

Ordered periodic structures exist in patches of finite size, called domains. A sim-
ple form of finite size domains is illustrated in Fig. 1.36. Patches of ordered (2x2)
superstructures are displaced with respect to each other by one base vector of the
substrate lattice. The line defects between the different domains are called domain
walls. Depending on the density of atoms in the wall, one distinguishes light and
heavy walls. Structural domains may also differ in the type of superstructure. For
example, ordered domains of a (2x2) and c(2X2) superstructure may coexist
(Fig. 1.37). Domain patterns of this type are typical for systems which realize one
type of superlattice at one particular coverage and another at a higher coverage
(©=0.25 and @=0.5 in the example) when the coverage is between the two lim-
its. The transition region between one domain and the next in Figs. 1.36 and 1.37
is abrupt, in other words, the thickness of the walls is only an atomic distance.
This is typical for adsorbate systems for which the corrugation of the adsor-
bate/substrate potential is large compared to the adsorbate/adsorbate interaction,
so that all adsorbate atoms reside in the same defined sites. If the corrugation of
the adsorbate/substrate potential is small compared to the lateral interaction, then
the thickness of the domain wall increases. An example are the walls between the
domains of fcc- and hcp-site occupancy on the reconstructed Au(l11) surface
(Fig. 1.12/1.13) which are several atoms wide. If the corrugation of the adsor-
bate/substrate potential is very small compared to the lateral interaction potential,
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the structure eventually becomes incommensurate. The structure of Au(111) is on

the borderline between the latter two situations.
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Fig. 1.36. Schematic illustration of light and heavy domain walls in an adsorbate lattice.
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The problem of finding the equilibrium position of atoms in and near a domain
wall can be mapped onto a simple one-dimensional mathematical model, the
Frenkel-Kontorova-model (see e.g. [1.50, 51]). The model considers the equilib-
rium states (and in an extension the dynamics) of a linear chain of atoms coupled
by springs in a sinusoidal potential. The Hamiltonian is of the form

H =z%k(xn+1 —x, —a)? +U[1-cos(2nx, /b)) (1.16)

Here, a and b are the natural lattice constant of the chain (without the potential)
and of the potential, respectively; k and U are the spring constant and the potential
depth; the atom positions are denoted by x,. Despite its simplicity, the model is
very rich in properties (in particular if a kinetic energy term is added [1.51]) and
describes essential features of domains, domain walls and transitions between
commensurate and incommensurate phases. Here, we discuss merely the static
solutions of the model that are relevant for domain walls. By differentiation with
respect to the atom position x, one obtains the condition for equilibrium as

k(2x, =X, — X, )+U(2/b)sin(2m x, /b) = 0. (1.17)

We consider the case where the number of atoms is half the number of minima of
the potential, that is a coverage of @ = 0.5 and assume that the springs are not
loaded if the atom distance equals 2b (a = 2b). Then the equilibrium condition is
fulfilled when the atoms reside in every second potential minimum. We now insert
one extra atom into the system and assume that the spring constant is very soft,
kb* << U. The inserted extra atom then assumes a position close to the potential
minimum adjacent to another atom, which is thereby pushed out of the position of
minimum potential (Fig. 1.38a). For symmetry reasons, the displacements u of the

(a) -u +U
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Fig. 1.38. Illustration for two limiting solutions of the Frenkel-Kontorova-model. (a) The
heavy wall solution for very soft springs (kb® << U, (b) the incommensurate solution for
very hard springs kb® >> U.
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two atoms have the same magnitude, but are of opposite sign. The change in en-
ergy with respect to the energy where all atoms sit in the potential minimum is

AE = ku? +%k(b—2u)2 +2U[1 - cosru/b)| (1.18)

Expanding AE for small displacements u one obtains

4U n*
bz

AE={3k+ }uz—Zkbu+%kb2 (1.19)

The displacements u which lead to a minimum in AE are

ug =br? I(1+3r?), (1.20)

2
r= ‘/4"”211 (1.21)
T

The displacement u vanishes when the spring constant approaches zero, as they
should. The energy associated with the two displaced atoms, the domain wall en-

ergy is

with

2 2
= M (1.22)
2(1+3r)
The solution has acceptable accuracy as long as r < (.5.
The other extreme case, infinitely stiff spring constants, keeps the atom distance
at a, and the adsorbate lattice becomes incommensurate with the substrate lattice
(Fig. 1.38b). However, an analytical solution exists for an interesting intermediate
case for which the displacements of the atoms u, differ from zero over a wider
range of n, but deviate little from one atom to the next. In that case, the difference
U, +u,,—2u, can be replaced by the second derivative of u(n) with respect to
n, n now considered as a continuous variable. Inserting x, = 2b+u, into 1.17 one
obtains the sine-Gordon equation

2
d*u(n) _ 2nU Sin[ 27tu(n)} (1.23)

dn?® kb b

This non-linear differential equation is solved by a trick. One multiplies with
du/dn to obtain



42 1 Structure of Surfaces

du | d*u 2nU . [21114)
— - sin
dn |dn* kb b

) (1.24)
d |1{ du U 2nu

=—~<—| — | +—cos =0
dn|2\dn k b

Partial integration yields

2
Lpdul U o 224 | (1.25)
2\ldn) &k b

We are looking for a particular solution which satisfies the boundary condition
that u(n) =0 for n — — and u(n) =b for n — +o. Hence K = U/k. Further cal-
culation yields

2
(d_”j :ﬁ{l_co{znu]}:ﬂsinz(nu/b) (1.26)
k b k

and

LL _ |4, (1.27)
sin(mu / b) k

After integration and solving for u(n) one obtains
u(n) = —(2b/m) tan™' (exp(n/r)) (1.28)

Figure 1.39 shows solutions for » =1 and r = 5. The width of the domain wall is
about 4r. The domain wall energy in this case is

E, =2kb* (n’r) (1.29)

The solution has acceptable accuracy for r > 1.

Because of the periodicity of the potential, the domain wall has the same ana-
Iytical form if the center is shifted to any arbitrary value of n. Localized non-
harmonic excitations like this are generally called solitons. More than one soliton
and a periodic arrangement of solitons are further possible solutions of the sine-
Gordon equation (1.23).
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Fig. 1.39. Relative displacement u(n)/b of the atom positions according to the continuum
solution (1.28) of the Frenkel-Kontorova model. The width of the domain wall increases
proportional to r.

Dislocations

Domain walls in adsorbate lattices (Figs. 1.36, 1.37) may be considered as special
forms of dislocations, which have their core at the interface between the adsorbate
and layer and the first substrate layer. The direction of the dislocation line coin-
cides with the direction of the domain wall. A ball model of the solution of the
Frenkel-Kontorova-model discussed in the previous section is shown in Fig. 1.40.

The Burgers-vector of the dislocation as constructed by a closed lattice path
(Burger's circle) is perpendicular to the dislocation line (and parallel to the inter-
face). The dislocation is therefore an edge dislocation. Interface dislocations are
ubiquitous in the heteroepitaxial systems.

N EEREEEEREE.
N EEEEEREEE.
0 0 020 0 0 0@
oL
XXX EXKXKXK)

Fig. 1.40. Ball model of a dislocation at the interface between a substrate (large dark balls)
and an epitaxial pseudomorphic layer (small light balls). The Burgers vector b is parallel to
the interface and perpendicular to the direction of the dislocation line.

Dislocations cannot end inside bulk material. The dislocation depicted in Fig. 1.40
could extend (perpendicular to the plan of drawing) until it ends at the boundary of
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the crystal, which is unlikely because of large lateral extension of the film com-
pared to its thickness. Alternatively, the dislocation may form a closed loop at the
interface, or it could bend upwards, go through the deposited film and end at the
surface. In the latter case, one speaks of threading dislocations. As threading dis-
locations exist inside the film, they may have detrimental effects on its electronic
properties. One therefore attempts to keep the dislocations at the interface, if pos-
sible.

On the reconstructed Au(111) surface, the surface layer atoms alternate be-
tween fcc- and hep-sites (Fig. 1.12). In the language of dislocation theory, this
type of dislocation is called a Shockley partial dislocation, "partial" because the
glide vector amount to a fraction of a lattice unit. Two of these partials make one
full displacement from one fcc-site to the next (Fig. 1.12). The atom positions of
the Au(111) system may be described by a Frenkel-Kontorova type of model with
an alternate sequence of two different potential valleys [1.14]. Similar cases that
have been studied extensively are the monolayer deposits of Ag on Pt(111) [1.52]
and Cu on Ru(0001) [1.53].

(a)

Fig. 1.41. STM images (50 nm x 50 nm) of dislocations at Ag(111) surfaces. (a) A step
originates at the point where the core of a screw dislocation meets the surface. The step
height increases gradually to the height of one atom layer. When this height is reached, the
step appears fuzzy due to rapid kink motion along the step. The sharp lines forming a 60°
angle are due to Shockley partial dislocations, i.e. due to stacking faults in the (111)and
(111) planes inside the bulk. (b) STM image displaying the full base triangle of a tetrahe-
dron with stacking faults in the (111), the (111), and the (111) plane. The step height
from the lower terrace onto the triangular plane is 2/3 of step height of a monolayer, the
step height from the triangle to the next terrace amounts to 1/3 of a monolayer.

Surface line defects are also produced when a dislocation line of a bulk screw
dislocation or of a dislocation with some screw character emerges at the surface. A
step originates at the point where the dislocation core meets the surface. Such
steps are frequently observed in STM images of metal surfaces, in particular when
the samples have experienced a longer history of sputtering and annealing cycles,
a procedure prone to generate dislocations in ductile metal crystals. An early re-
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port on dislocations concerns the Ag(111) surface [1.54]. Figure 1.41 shows STM
images of an Ag(111) surface with several features caused by dislocations. In
Fig. 1.41a a step emerges on the surface (arrow (1)) which increases in height until
the height of a monolayer is reached at (2). From thereon the step appears rough
due to the rapid motion of kinks along the step edge on Ag-surfaces at room tem-
perature (Sect. 1.4.2). The sharp lines forming a 60° angle are due to Shockley
partial dislocations. These consist of stacking faults in the (1 11)and (111) planes
inside the bulk. In Fig. 1.41b a full base triangle of a tetrahedron next to a normal
step is visible. The tetrahedron is terminated by (1 11)-, A1)~ and (111)-
planes in the bulk of the material along which a plane of atoms reside in hcp-sites.
These stacking faults give rise to non-integer steps (in units of a monolayer). The
step height from the lower terrace to the plane of the triangle is 2/3 of a
monolayer, the step height from the triangle to the next layer 1/3 of a monolayer.
Since the non-integer steps represent the protrusion of a bulk defect, no kinks exist
on these steps. The edges of the triangle appear therefore sharp in the STM-image.

Bulk defects, which appear as protrusions on the surface are frequently ob-
served on lattice-mismatched, epitaxial films. Thin films of Cu grown on the
Ni(100) surface are an example [1.55]. The compressive strain in the Cu-

1ML 2 ML 3 ML
(111) (117)

Fig. 1.42. Epitaxial growth of copper on Ni(100). Strain in the first monolayer is relieved
by displacing a row of Cu-atoms (light balls) with respect to the other Cu-atoms. An addi-
tional row of Cu-atoms is inserted with each further layer, whereby internal {111} facets
are formed. The faulted areas are higher at the surface and are therefore visible in STM-
images as rectangular shaped area of slightly larger height (after Miiller et al. [1.55]).

films due to the 2.6% misfit of the lattice constant is relieved by the introduction
of stacking faults into the first Cu-layer, and a gradual build-up of internal {111}
facets. The process is illustrated in a ball model in Fig. 1.42.
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1.3.2 Point Defects

Kinks

The most important point defect on surfaces is the kink. Figure 1.43 shows kinks
in a step running along the direction of dense atom packing. Atoms in this particu-
lar site have the coordination 6. In German, this site is called a Halbkristallage
(literal translation: half crystal position). A Halbkristallage is a very special site
indeed: it takes exactly the cohesive energy per atom to move one atom from this
site into the vacuum. The reason is that the kink reproduces itself when an atom is
removed. By taking one atom after another, firstly an entire row of atoms is re-
moved, until one comes to the end of the surface, then one might start on the next
step. Every once in a while, one removes an atom of higher or lower coordination
in the process, but for an infinite crystal the number of such atoms is vanishingly
small compared to atoms at kink sites. The atoms in kink sites representing a
Halbkristallage therefore determine the vapor pressure of solids.

Kinks in steps exist as thermal excitations. Their equilibrium concentration
depends on the energy' & required to generate a kink (Fig. 1.44). For a densely

Fig. 1.43. Ball model of a (100) surface with a step along the [011] direction, which has
kinks: two single atom kinks of opposite sign and a kink, which has a length that corre-
sponds to three atom diameters.

packed step, this amounts to half the energy required to break one bond, alterna-
tively, the energy involved in the reduction of the coordination number of a step
atom by one. If the energy were a linear function of the coordination, then the kink
energy would be one 12th of the cohesive energy. For copper that would amount
to 290 meV, much larger than the experimental values (&qio0;= 129 meV and
(111}~ 117 meV [156])

! More precisely, it is the work required to generate a kink (See Sect. 3). For a
surface in vacuum, the work is the change in the Helmholtz-free energy, which is
approximately equals the energy if the temperature is low.
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Fig. 1.44. Two kinks are generated by shifting a row of step atoms sideways. On the {100}
and {111} surfaces of an fcc-material step atoms at densely packed steps have the coordina-
tion 7 and a kink atom has coordination 5. Two atoms are therefore brought from
coordination state 7 to 6 in the process depicted above.

A better estimate for defect energies is obtained by scaling the binding energies of
atoms with a fractional exponent of the coordination ¢

E(C)=E,, (C/Cyy)”. (1.30)

Figure 1.45 shows the binding energy of an atom as a function of the coordination
number relative to the cohesive energy for Cu, Ag, and Au according to the effec-
tive medium theory (EMT) in lowest level of approximation [1.57]. The theory is
equivalent to the embedded atom model (EAM) [1.58].

The good fit of the "data"-points in Fig. 1.45 to the solid curve (&= 0.3) should
not be overrated; it is a consequence of the basic structure of the model, and not
necessarily realistic in detail. By applying (1.30) with &= 0.3 to Cu (cohesive
energy 3.49 eV) one obtains for the kink energy &gqio0y = &q111y= 134 meV, which
is close to the experimental numbers.

Since the kink energy is merely a small fraction of the cohesive energy, a con-
siderable concentration of kinks exists at steps even at moderate temperatures. The
concentration of kinks of either sign is

B =2exp(—¢ / kgT) (1.31)
in which kg is the Boltzmann constant and 7 the temperature. Eq. (1.31) holds if

kT is a fraction of & so that P, << 1. To stay with the example copper the kink
concentrations are Pi(111) = 0.022 and P (100) = 0.014 at 300 K.
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Fig. 1.45. Binding energy of atoms vs. coordination number for Cu, Ag, and Au, according
to effective medium theory (EMT) in its lowest order approximation [1.57]. The solid line
is a fit according to (1.30) with an exponent = 0.3.

In Fig. 1.35 a vicinal Si(100) was displayed with two different types of steps, the
S.-steps parallel to the dimer rows on the upper terrace, and the S,-step perpen-
dicular to the dimer rows on the upper terrace. Both steps contain kinks
corresponding to an equilibrium concentration at about 600 °C [1.49]. The kink
concentration on the Sy-steps is significantly higher than on the S,-step, calling for
a lower kink energy on the Sy-steps. In addition to kinks of one dimer unit there
are many kinks which have a length of several dimer units, in particular on the
rough S,-step. Swartzentruber et al. have fitted the observed concentrations of
kinks of various lengths to a model, which assumes that the kink energy is propor-
tional to its length plus a corner energy.

8(1’1) = €corner + exn (132)

with n the length of the kink in dimer units. The corner energy &ome Was deter-
mined to 80 meV, and the kink energy per length & =28 meV and 90 meV, for the
Sy- and S,-steps, respectively. The kink energies on Si(100) are much smaller than
for Cu, in particular in relation to the cohesive energy (3.5 eV/atom for Cu,
4.6 eV/atom for Si). This is because no nearest neighbor bond breaking is required
to generate kinks on the Si(100) surface due to the reconstruction.

In addition to kinks in thermal equilibrium, forced kinks exist on surfaces if
steps run along a direction off the direction of dense atom packing. One possible
reason is pinning of steps by impurities. Another typical case is a step as a bound-
ary of a two-dimensional island. The step has then has segments of all directions
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and the concentration of forced varies along the perimeter of the island. A system-
atic way to produce steps with a uniform orientation in a particular direction is to
cut the surface as a vicinal surface. Figure 1.46 shows a ball model and an STM-
image of a Cu(5 8 90) surface as an example [1.59]. By virtue of these forced
kinks, surfaces acquire a chiral character, which can be exploited to achieve enan-
tioselectivity in catalytic reactions [1.60, 61].
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Fig. 1.46. Ball model of a (5 8 90) surface of fcc (a) and a STM image of the Cu(5 8 90)
surface (b). The real surface has a concentration of forced kinks according to the angle of
cutting. Locally, the kink concentration fluctuates. Note that the surface has a chiral charac-
ter (courtesy of Margret Giesen, [1.59]).

We note further that the product of the equilibrium concentrations of the kinks of
the majority and minority type is Py P, =exp(-2&, /kgT) . The equation is the
same as for the product of electrons and holes in semiconductors (eq. 3.14): in
both cases, a thermal activation process creates an equal number of species of
either type (positive and negative kinks, electrons and holes). For kinks, the law of

mass action has little practical value as hardly any kink of the minority type is
found in STM-images (Fig. 1.46).
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Adatoms and vacancies

Atoms in kink sites (Halbkristallagen) determine the vapor pressure since the kink
reproduces itself in the process of evaporation. By the same argument, the "vapor
pressure” of a dilute two-dimensional lattice gas, in other words the concentration
of atoms on a terrace is determined by the energy E, required to bring an atom
from a kink site onto the terrace. Expressed in units of available sites, the equilib-
rium concentration of adatoms on terraces @,gaom 15

) = exp(=E 5 /kT) . (1.33)

adatom
The same equation hold for the equilibrium concentration of vacancies when the
energy required taking an atom out of the surface and moving it to a kink site is
inserted in (1.33). Note that the equilibrium concentration is independent of the
position of the adatom or vacancy on the terrace, as long as the energy does not
change as a function of position. The equilibrium concentration of adatoms and
vacancies is very low at room temperature: On Cu-surfaces 1072 (E, = 0.7 eV) is a
typical number. Despite their low concentration, adatoms and vacancies mediate
noticeable mass transport processes on Cu-surfaces at room temperature because
of their rapid movement. For the same reason, adatoms and vacancies cannot be
observed in STM-images unless the surface temperature is very low (Sect. 1.4.2).
Then, however, only atoms deposited at low temperature or vacancies generated at
low temperature, e.g. via sputtering can be seen. The equilibrium concentration
escapes observation. Thus, there is no direct experimental access to the equilib-
rium concentration and the energy of formation for these defects, in contrast to
kinks in steps. Vacancies in surfaces can be made visible by decoration experi-
ments. Deposition of a small amount on Mn or In leads to a decoration of
vacancies as Mn or In atoms move into the empty sites and appear as an immobile
protrusion of the surface there. Since vacancies are generated at steps, the deco-
rated, immobilized vacancies form a spotted band along both sides of steps [1.62,
63]. These experiments reveal something about the kinetics of vacancy generation
and diffusion, but not about their equilibrium concentration.

Cluster, Islands, Mounds

A two- or three-dimensional compound of a few identical or different atoms on
surfaces is called a cluster. The term cluster is used in particular when the unit
forms a chemically different species, such as a Cqp-cluster. Sometimes, in particu-
lar in theory, the term is also employed for units of a very few atoms (2-10) of the
same element or compound as the substrate. The term island is used for an ensem-
ble of many atoms (> 100) on a surface. If the island is only a monolayer high,
then it is called a two-dimensional (2D) island. Three-dimensional islands are
sometimes called stacks, mounds or hillocks depending on their shape.

Cluster, islands, and mounds on surfaces escape the scheme of classification
employed here, insofar as their physical properties have 0-3 dimensional aspects.
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Islands may trap an electron wave function, in particular that of a surface state
(Sect. 8.3.3), thereby bearing the property of a quantum dot, hence a OD property.
The outer boundary, a step is a 1D feature. Larger islands have an extended, in
case of heteroepitaxial islands possibly strained surface, giving them a particular
2D aspect. Finally, large multilayer islands represent 3D solid matter in a particu-
lar state.

1.4 Observation of Defects

Scanning probe microscopies, in particular the STM, have become the most im-
portant tool to observe and investigate defects on surfaces. Their great advantage
is obvious: the nature and shape of the defects is identified from the images, their
atomic structure can be seen directly, and their motion on the surface can be
tracked. Nevertheless, diffraction techniques stand their ground. At elevated tem-
perature, often even at room temperature, defects migrate across the surface far
too fast to be imaged by the comparatively slow scanning microprobes. Diffrac-
tion techniques can still provide information on average properties, such as the
mean concentration of defects or the mean shape of islands. For these reasons,
diffraction, primarily electron diffraction, is still employed in surface defect analy-
sis (for a review see [1.64]).

1.4.1 Diffraction Techniques

Stepped surfaces

A classical diffraction experiment concerns vicinal surfaces with regular step ar-
rays. Such a surface has two periodicities, one is the atomic periodicity of the flat
terraces, and the other one is the periodic array of steps and terraces. Diffraction
therefore requires constructive interference with respect to both periodicities: a
LEED spot arising from the surface unit cell can only appear as a (single) spot if
one has constructive interference also with respect to diffraction from different
terraces. This amounts to a third Laue condition concerning the wave vector com-
ponents perpendicular to the terraces.

ki, —ky, =G, =2nn/h (1.34)

Here, n is an integer, & is the vertical distance between terraces and k n and k|

are the components of the wave vector of the incident and the diffracted electron
perpendicular to the terraces (not to the macroscopic surface!). If one has destruc-
tive interference (n = 1/2, 3/2...) then the intensity is zero at the position of the
beam diffracted from the flat surface. The diffracted intensity then appears in two
spots, symmetric on both sides of the original spot. Figure 1.47 displays the
Ewald-construction for diffraction from a vicinal surface with periodic steps. The
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spot intensities can be calculated in kinematic approximation in a little model. The
model considers only s-wave scattering from the surface atoms. The surface atoms
are assumed to be arranged in rows oriented parallel to the step direction. We are
interested in the case in which the scattering vector AK = k—k, is perpendicular to
the steps.

Fig. 1.47. Ewald-construction for diffraction from a vicinal surface with periodic steps.
Diffracted intensity occurs when the scattering vector AK = k—k, ends in the shaded areas.
Diffraction spots alternate between singlet and doublets.

The position of the atom rows on the surface r, ,, are denoted by the vector

r,,=nae.,+mhe, (1.35)

nm

with e, and e, the unit vectors along and perpendicular to the surface of a terrace,
respectively, and a the distance between the atom rows. The scattered intensity is

2

3 ei 4K, ,

nm

I o< (1.36)

We assume a regular array of M terraces each possessing N atom rows and obtain.



1.4 Observation of Defects 53

2 2 2

N idK e i(AK \Na+AK _h
— zel an zel( Na hm)

n=1

idK an 14K .hm
Ioc zel X e z

nm m=1

(1.37)
_ sin? (4K aN/2) sin®[(AK .aN + AK ;h)M/2]
sin?(AK .@/2)  sin*[(AK .aN + AK _h)/2]

The second term in (1.37) is the stringent interference condition describing the
spot size if the number of interfering terraces M is large compared to the number
of atoms on an individual terrace N. The smoother interference function of the N
atoms modulates the intensity of the spots. Figure 1.48 illustrates the two terms for
N=5 and M =50, for the case of destructive and constructive interference be-
tween terraces, respectively. For constructive interference between terraces, that is
for a particular energy, a diffracted beam appears as a single sharp diffraction
peak. As the energy is lowered or increased the relative position of the sharp peaks
(short-dashed lines in Fig. 1.48) and the broad peak (long-dashed line) shift with
respect to each other. The product function then has its peaks shifted either to-
wards the left or to the right of &=0. Eventually a second peaks appears, and
gains intensity. Under condition of destructive interference between terraces the
two peaks have the same intensity and appear symmetric around 8= 0. The width
of the splitting is a measure of the terrace width: The magnitude of the splitting in
units of the distance between diffracted spots is the inverse of the width of the
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Fig. 1.48. Diffracted (00) intensity for perpendicular incidence from a vicinal surface with
50 terraces possessing 5 atoms each for destructive (fop) and constructive (bottom) interfer-
ence between the terraces (solid line). The long-dashed line is the scattered intensity from a
single terrace (first factor in eq. (1.37)). The short-dashed line represents the interference
between the terraces (second factor in eq. (1.37)).
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terraces measured in number of atom rows. We have assumed that the terrace
widths are all the same. Then, the sharpness of the spots depends only on the
number of terraces contributing coherently to the scattering. In the calculated ex-
ample 5x50 = 250 atoms contributed coherently. In reality, one has a distribution
of terrace widths. The broader the terrace width distribution, the broader are the
spots. The terrace width distribution can therefore be determined by measuring the
intensity of diffracted spots with high accuracy. Due to the finite angular and en-
ergy resolution, conventional LEED-display systems (Fig. 1.2) do not suffice for
that purpose. Spot Profile Analysis Low Energy Electron Diffraction (SPALEED)
requires special equipment, which is commercially available.

Diffraction from other defects

Each type of defect gives rise to a particular diffraction pattern according to the
structure of the defect and its embedding into the surface matrix [1.64]. This spe-
cific diffraction pattern can be used to identify the nature of the preponderant
surface defect and to analyze its shape, size and concentration. However, with the
availability of scanning microprobes, diffraction patterns have lost importance in
studies of surface defects. Presently, diffraction techniques are mainly employed
in cases where the defects exist merely on a very short time scale, move rapidly
about on the surface in the temperature range of interest, or exist only under ex-
perimental conditions where scanning microprobe cannot be brought to bear. We
therefore focus our discussion on one situation of this type and the typical defects,
which are encountered there, and consider a surface that is subject to exposure by
a constant flux of atoms or molecules. In order to ensure the epitaxial growth of a
smooth surface the substrate temperature is typically chosen such that adatoms
and other defects have a high mobility. With the exception of a very short period
of nucleation, steady state concentration of the deposited atoms is small since they
are quickly captured by the already existing nuclei (Sect. 11.1.1). The deposited
single atoms have therefore no effect on the scattering. The preponderant defects
during steady state growth are three-dimensional crystallites or monolayer high
islands of deposited material. We consider the case of layer-by-layer growth:
Then, the surface alternates between two limiting states, a flat surface and a sur-
face covered with half a monolayer of islands of a particular size. The island size
is determined by the nucleation density on the flat surface (Sect. 11.1.1). In the
latter state, the surface has therefore a high concentration of steps that form the
perimeter of the islands. In contrast to vicinal surfaces, these steps have all orien-
tations. Constructive and destructive interference between scattered beams
therefore concern all directions. Depending on the energy, the lattice diffraction
spots would therefore alternate between the sharp spots and rings. As the islands
generated in a nucleation process have a distribution of sizes, the diffraction spots
alternate between sharp spots for constructive interference, and blurred spots for
destructive interference between terraces. The mean size of the spots when they
are blurred, measured in terms of the distance to the next reciprocal lattice rod, is
the inverse of the mean island size, measured in terms of corresponding surface
lattice. The shape of the blurred spot reflects the shape of the islands: square
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shaped-islands produce square-shaped spots. If the islands have rectangular shape,
the spot are likewise rectangular with their long edge in the direction of the short
edge of the islands in real space.

Since the time scale of the interaction of the electron with the solid is of the
order of 107'® s, which is much shorter than the time scale of any configuration
changes on the surface, the scattering pattern reflects an average over snapshot
images of the surface structure under the particular growth conditions.

1.4.2 Scanning Microprobes

The first instrument that enabled the imaging of surfaces with atomic resolution
was the Field Ion Microscope (FIM) developed by E. W. Miiller [1.65]. Though
this technique is applicable only to the low index surfaces of a limited number of
materials, many results of persistent importance on the diffusion of single atoms
and of clusters consisting of a few atoms were obtained by this technique [1.66].
The major drawbacks of the method are the restrictions concerning sample mate-
rial and crystal faces and the smallness of the surface areas that can be
investigated. The Scanning Tunneling Microscope (STM) invented by Binnig and
Rohrer in 1982 [1.67] does not suffer from those shortcomings. Over the years,
STM has been developed to become the instrument for the investigation of surface
morphologies on all length scales as well as of atom-size surface defects. It is no
overstatement to talk about a Surface Science before and after the appearance of
STM. Before the advent of STM, the focus was on the periodic, crystallographic
structure of surfaces. The STM has opened our eyes to the richness of large scale
morphological (mostly non periodic) features on surfaces and also to the fact that
there is a rapid migration of atoms on surfaces at room temperature or above, even
on those surfaces which appear as totally calm and rigid in their diffraction pat-
tern. STM and other microprobes are not confined to vacuum environment. The
Electrochemical STM has become a standard tool for atomic scale studies of proc-
esses on surfaces in contact with an electrolyte. STM is even more dominant in
that field than in vacuum surface science because most classical surface probes
that employ electron-, atom-, or ion-beams are not applicable in an electrolyte
environment.

In the more recent years, various derivatives of the STM such as the Spin Po-
larized Scanning Tunneling Microscope (SPSTM) have debuted. The Atomic
Force Microscope (AFM) originally suffering from a lower, non-atomic resolu-
tion has now a lateral resolution comparable to the STM, and has found
widespread application in the investigation of insulator and soft matter surfaces.
Nevertheless, for the surfaces addressed in this volume, STM remains to be the
most important microprobe. We briefly describe the experimental technique in the
following, as well as some particular features, which have to do with the time
scale of the STM imaging process in relation to the persistence time scale of sur-
face phenomena, and consider tip surface interactions.
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The scanning tunneling microscope

The basis of the STM is the quantum mechanical tunneling process and its ex-
treme sensitivity on the width of the tunnel gap. A sharp metallic tip (ideally
terminated by a single atom) is immersed into the evanescent electron wave func-
tions outside the solid surface. For small tunneling voltages, the tunneling current
is proportional to the density of those electrons in the tail that have their energy at
the Fermi-level. As the electron density decreases exponentially with the distance,
the tunnel current also decreases exponentially with the distance. In the standard
mode of operation, the tunnel current is held constant by a feedback loop, so that
the tip follows the contour of constant density of electrons at the Fermi-level. An
alternative mode of operation is the constant height modus. The latter is employed
in particular for fast scans (video frequency) over small and mildly corrugated
surface areas.

piezoceramic
actuators

sample holder

stainless steel balls |

Fig. 1.49. The STM of Frohn, Wolf, Besocke and Teske [1.68].

The lay-out of tunnel microscopes has changed considerable since the first design
of Binnig and Rohrer [1.69]. Here, we review the design of Frohn et al. [1.68]
(frequently also referred to as the Besocke-microscope) which has the advantage
of a very small temperature drift due to its built-in compensation of thermal ex-
pansions. The microscope is shown in Fig. 1.49. The central piezoelectric actuator
carrying the tunnel tip is fixed to a tripod of three further piezoelectric actuators of
the same type each resting on a 120° ramp. Oxidized stainless balls are mounted
on the latter three actuators. The central position of the actuator carrying the tip
and the fact that all four actuators are alike ensures an almost perfect thermal
compensation, so that the tip has very little thermal drift with respect to the sur-
face, neither laterally nor vertically. Scanning along the xy-directions is performed
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either by bending the actuators of the tripod or by bending the central actuator. In
order to operate the STM in the latter mode the central actuator must feature two
pairs of metal plates for bending (preferably, in the upper part close to where the
actuator is fixed to the tripod) in addition to the tube metal plating for the vertical
motion of the tip. The STM is positioned onto the sample holder by lowering the
entire four-actuator unit by the support ring. Because of the tripod arrangement,
the system is mechanically quite stable and insensitive to vibrations. Atomic reso-
lution is obtained with a minimum of vibration insulation, e.g. by placing the
sample on a stack of metal plates with Viton" dampers in between. Better insula-
tion, in particular against sound, is obtained by placing the microscope on a base
plate that is suspended by soft, damped springs.

The microscope works also in an inverted form: the four-actuator unit is
mounted on a base plate with the tip pointing upwards while the ramp/sample unit
rests on the three stainless steel balls of the outer three actuators. This latter ver-
sion recommends itself in cases where in-situ samples changes via a transfer
system are required. Controlled heating of the sample to temperatures above room
temperature is also possible in that case. One has the additional technical advan-
tage that the STM head with its large number of electric leads need not be moved
about. The version shown in Fig. 1.49 is more suitable if cooling of the sample
below room temperature is desired.

Despite its undisputable advantages, the Besocke-microscope has also the dis-
advantage that the coarse approach is delicate and requires a good match of
sample and tip adjustment within a margin of a few tenth of a millimeter. Com-
mercial microscopes for standard applications tend to trade off stability and small
thermal drift for easier handling by employing xyz-linear motors for the tip ma-
nipulation and a sample mount that permits an easy exchange of samples.

The time structure in scanning probe images

The time required for a single STM image ranges between 50 ms and a few min-
utes. The shortest times per frame are obtained by using the constant height mode
with the feedback loop shut off. A video-frequency repetition rate of STM-frames
is thereby achieved. However, even a video STM is a slow instrument the time
scale of atom diffusion, unless the temperature is correspondingly low. Imaging
single atoms requires therefore cooling of the sample, in many cases down to the
liquid helium range. The situation is different when the atoms are part of a peri-
odic structure. Then the lateral interactions keep the atoms in place even at room
temperature and above. Atomically resolved images of periodic adsorbate struc-
tures are therefore readily obtained.

Similar considerations apply to images of other morphological features. In all
cases, the effect of the relative time scales of the imaging process and of possible
structural changes on the surface have to be taken into account. A good example
for the importance of the time scale is the fuzzy appearance of monatomic steps
(Fig. 1.41 and 1.46). The STM tip finds the step at a different position in each scan
line (see also Sect. 10.5).



58 1 Structure of Surfaces

Tip surface interactions

The original use of the STM was to investigate surface structures. In the course of
these investigations, researchers frequently found that the tip had an effect on the
image. Atoms appeared to be dragged along with the tip and occasionally entire
steps were drawn from one position to another [1.70]. These effects frequently
depend on tunneling voltage and current, unfortunately not always [1.71]. The
very presence of a tip above an atom can have an effect on the activation energy
for diffusion. Papers have been published which called the entire use of STM for
quantitative analysis of surface diffusion studies into question, but this is throwing
the child with the bathtub. In many cases, the tip has no effect on the observed
processes and there are simple test to prove that this is so. One simply has to make
sure that no quantitative aspects of the data depend on the time the tip spend over
the investigated area and also not on the number of times the STM tip had visited
the area in question. Such test are performed by comparing data obtained with
different scan speeds, or even better, with data that are obtained by introducing a
variable pause in the scan process after each scan line, and compare that data with
those obtained in continuous scanning.

There is also a good side to tip/surface interaction: the tip can be used to ma-
nipulate atoms on surface, move them about and place them into patterns in a
controlled way [1.72, 73]. In these days, it seems that every university or research
institute likes to see its logo made with atoms using STM-tip manipulation. Atoms
can be moved by using the tip as a push rod. One can also employ attractive forces
between the tip and an adatom or adsorbed molecule [1.73]. Alternatively, an ad-
sorbed molecule can be attached to the tip by applying a suitable potential, and
then dropped at the desired place on the surface. Aside from making logos one can
do other, scientifically more interesting things with atom manipulation. Studying
and inducing chemical reaction on a single molecule [1.74, 75] is one, building
special quantum structures [1.76, 77] another (see Sect. 8.3.3).

1.5 The Structure of the Solid/Electrolyte Interface

This section is brief for two reasons. One reason is that experimental results on the
crystallographic structure of the solid/electrolyte interface are scarce. Secondly,
some structures of solid surfaces in vacuum as discussed in the preceding sections
persist in an electrolyte environment. For example, the reconstructions of the
Au(100), (110) and (111) surfaces exist also when the surface is in contact with an
electrolyte. However, one feature is unique to the interaction with the electrolyte
and the associated charging of the surface. That is the phase transition to an unre-
constructed state of the surface at positive potentials of the gold sample. The
potential induced phase transition is a consequence of the interfacial thermody-
namics, which is discussed in detail in Section 4.2.3. The definition of an
electrode potential and the standard experimental setup in electrochemical work is
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Fig. 1.50. Model for an electrolyte near a solid surface. See text for discussion.

described in Section 2.3. Basic properties of the electrolyte in the vicinity of the
solid are described in Section 3.2.3. Here, we focus on a general introduction to
structural properties at the solid/electrolyte interface.

It is convenient to divide the interfacial region conceptually into three zones
(Fig. 1.50), the solid, a layer of strong electrolyte/solid interaction called Stern
layer (circumscribed by dashed lines), and the electrolyte in the vicinity of the
solid but far enough to maintain its character of a bulk liquid electrolyte (circum-
scribed by dotted lines). We assume the electrolyte to be an aqueous one. Within
the electrolyte, ions are dressed by solvation shells of polarized water molecules,
which screen the fields originating from the ions (Fig. 1.50). The ions with their
solvation shell carry a net charge, which moves in an electric field. A space charge
layer can build up near the solid surface, with a characteristic decay length de-
pending on the ion concentration in the electrolyte. The electrical properties of this
zone can be treated in a continuum approximation (Sect. 3.2.3).

The Stern layer consists (i) of water molecules, (ii) of ions, which have kept
their solvation shell and (iii) ions in a chemisorbed state. Electrochemists call
these adsorbed species specifically adsorbed ions to distinguish between species
that adsorb directly on the solid surfaces and those ions that keep their solvation
shell. The term is somewhat unfortunate as it carries the connotation that the ions
retain their ionic character at the surface, which is not at all the case (see Sect.
3.1.3). It is a well-known result of Solid State theory (although not always appre-
ciated in full consequence) that the electrons of the solid screen the ions almost
completely leaving only a modest polarization, which gives rise to a modification
of the work function. Examples for "specifically adsorbed ions" are Cl, Br, or SOy,
to name a few. When these species are adsorbed on the surface, they form struc-
tures and superlattices, in principle as known from vacuum physics. For a limited
number of systems a structure analysis with a limited scope has been performed
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using GIXRD (see e.g. [1.78]). The surface concentration and thereby the struc-
ture is controlled by the surface charge on the solid. This aspect is considered later
in Sect. 6.2.5.

Fig. 1.51. (a) The bi-layer structure of water in densely packed adsorbate layers as pro-
posed in 1980 [1.79] from vibration spectroscopy. In order to form a 2D-network three of
the hydrogen atoms pointing upwards or downwards have to be committed to bond oxygen
atoms to neighboring rings. In 2002 Meng et al. [1.80] showed that the structures shown in
(b) and (c) with hydrogen and oxygen lone pair bonding to the surface have nearly the same
energy. According to Ogasawara et al. [1.81] the oxygen atoms should be nearly coplanar
and bond to the surface alternatively by the oxygen-lone pair orbital and by hydrogen bond-
ing (d).

The bonding of water molecules has been investigated theoretically and experi-
mentally for metal surfaces. The bonding of single water molecules is discussed in
Sect. 6.4.4. More relevant to the solid/electrolyte interface is the structure of water
that forms at higher coverage. From vibration spectroscopy is was concluded that
water molecules form hexagonal rings of bi-layers and that the water molecules
bond to the Pt-surface in two ways, via the oxygen lone pair bonds and via hydro-
gen bonding with the hydrogen atoms pointing downwards [1.79] (Fig. 1.51a). In
order to form a defect free 2D-network three of the hydrogen atoms pointing up-
wards or downwards have to be committed to bond the oxygen atoms of neighbor-
ing rings. The lateral position of the oxygen atoms in the network is as in graphite
[1.82, 83]. In 2002 Meng et al. [1.80] showed that the structures displayed in
Fig. 1.51b and 1.51c with hydrogen and oxygen lone pair bonding to the surface
have nearly the same energy on Pt(111). In the same year, Ogasawara et al. pro-
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posed [1.81] that the oxygen atoms should be nearly coplanar with a buckling of
merely 0.25A (Fig. 1.51d). According to their model, the oxygen atoms bond to
the surface alternatively by the oxygen-lone pair orbital and by hydrogen bonding.
There is consensus that the oxygen atoms are placed in the a-top position on
Pt(111). For the case of Ru{0001} a structure involving a partial dissociation of
water was proposed [1.84, 85]. However, the structure was not confirmed for other
surfaces. It is therefore probably less relevant for solid/water interfaces at room
temperature.

The theoretical and experimental studies cited above concern adsorbed water
layers on surfaces in vacuum that are stable only at temperatures below 150K
because of the small binding energy. There is also consensus that the energy dif-
ferences between the various proposed structures are small. As neither theoretical
calculation involves entropy, which should be relevant as the binding energy of
water is small, theory cannot convincingly converge on one particular structure
model, not even for one particular surface. With regard to the solid/water interface
at room temperature, possible entropic contributions to the free energy and the
volatility of the hydrogen bond make it likely that all structure elements consid-
ered above are simultaneously present at the solid/water interface with a rapid
flipping back and forth between various configurations. At room temperature,
water at the interface is therefore in a state that is between a solid and a liquid. The
models for the ice-layer predict the oxygen atoms to be at distances between
1.31A and 1.98A from the boundary of the Pt-atoms which is consistent with the
pronounced peak in the mean density of the oxygen atoms in a water layer as a
function of the distance from a solid surface [1.86]. Hydrogen bonding by water
molecules is presumably also important in the ordered structures formed by "spe-
cifically adsorbed ions" on surfaces. This concerns in particular the oxygen con-
taining species ClO;, SO, and structures investigated by STM and infrared
spectroscopy have been interpreted that way.



2. Basic Techniques

2.1 Ex-situ Preparation

2.1.1 The Making of Crystals

Surface Science is built on single crystals. The starting point for experimental
work on surfaces is therefore the preparation of oriented surfaces on single crys-
tals. Either that surface is the object of study or it serves as a template on which
the material to be investigated is grown epitaxially. Depending on the material,
single crystals are commercially available or are grown by research institutions for
specific purposes. Rarely does a surface scientist grow crystals for her/himself.
The interest in the surfaces properties of a material usually encompasses the bulk
properties of the material as well, and should so, because the understanding of
surface properties requires a good knowledge of bulk properties. For some materi-
als, semiconductors in particular, the commercial interest has created a market for
semi-finished products in the form of large area wafers of a particular surface ori-
entation. The technology of crystal growth and wafer preparation is most advanced
for silicon. Wafers with 12-inch diameter represent the current industrial standard.
Wafers are also available for III-V compounds. Because of the stringent require-
ments of industry, the surfaces of these wafers are extremely flat, oriented with a
high precision, and free of contaminants. The wafers are typically coated by a
protective coating, which is easily removed after insertion into an ultra-high vac-
uum (UHV) chamber. For silicon, the coating is a thermally grown SiO,-layer. The
oxide layer is removed by heating to about 1000 °C in UHV and a well-ordered
surface is the result. Creating a clean surface that way is not only easy, but also
superior to any conceivable homemade preparation method, because of the enor-
mous industrial R&D-efforts that went into silicon wafer technology.

The situation is different for metals surfaces. Here, the typical starting point is a
single crystal from some commercial source. For some materials however, small
single crystal beads are grown easily from high-purity wires. This is by far the
cheapest method of crystal growth, and even superior the conventional methods
regarding the purity and absence of dislocations. The method is therefore de-
scribed in the following.

Figure 2.1 displays the equipment schematically. The end of a pending metal
wire of 0.5-1 mm diameter is molten by a propane/air or a hydrogen/air flame to
form a droplet of 2-5 mm diameter. A stream of argon coming from the side serves
two purposes; one is to surround the metal droplet with inert gas, the other to push
the flame gently to the side. By varying the argon flow and/or the gas supply to the
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burner the temperature of the droplet can be controlled accurately. Upon cooling,
the solidification begins at the wire. With lowering temperature, the solid/liquid
phase boundary moves away from the top (Fig. 2.2) until the entire drop is solidi-
fied. The result is not necessary a single crystal. However, by processing the
crystal repeatedly between melting and solidification, and by beginning the solidi-
fication process at the wire end very slowly one eventually may grow the crystal
from a single nucleus, and thereby grow a single crystal.

hydrogen
propane

Fig. 2.1. Growing single crystal beads from a wire.

Fig. 2.2. Growing a bead crystal from a molten droplet. The pictures show a platinum bead.
The lower light part is the melt. Upon cooling, the solidification begins at the wire (left) and
eventually the entire droplet is solidified. The clearly visible {111} facets indicate the
growth of a single crystal. The bright ring-like structure at the top is some dirt that accumu-
lates in the transition area between the wire and the bead crystal in the course of repeated
melting and solidification (courtesy of Udo Linke).

By repeated melting and solidification, one may further drive impurities contained
in the original material upwards to the wire end of the bead and accumulate the
impurities there: a poor man's way of refining by zone melting! Single crystals of
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high purity are obtained for Au, Pt, Ir, Rh and Pd. Propane gas is used for Au;
hydrogen for the other materials. Palladium dissolves large concentrations of hy-
drogen. Repeated zone melting avoids an accumulation of hydrogen, however.
Bead crystals can also be grown from other metals, e.g. Ag and Cu, however only
in vacuum. The wire is then heated at the end by electron bombardment. Single
crystals of alloys, e.g. Pt/Rh alloys, can likewise be grown.

The final single crystal beads displays {111} facets (Fig. 2.2) as the {111} fac-
ets do not undergo a roughening transition below the melting point (Sect. 4.3.1).

Fig. 2.3. Bead crystals can be oriented to within 1°-2° by bending the wire such that the
reflection of a laser beam from the {111} facets is in the desired direction. Subsequently the
entire sample is embedded into meta-acrylate or an epoxy-resin.

2.1.2 Preparing Single Crystal Surfaces

In order to prepare surfaces of the desired orientation from bulk single crystal ma-
terial the crystal has to be first oriented and then cut along an oriented plane, and
finally polished to a shiny surface.

Bead crystals

An approximate orientation is easily arranged for bead crystals with the help of the
{111} facets: The bead crystal is mounted by fixing its wire to the head of the
goniometer that is used later for x-ray orientation and polishing (see below). If the
bead crystal is illuminated by laser beam that has a diameter larger than the bead
crystal, the {111} facets exposed to the beam produce defined reflected beams
(Fig. 2.3). A rough orientation to the desired direction is then obtained by simple
bending the wire by hand. Once the rough orientation is achieved, the wire and the
bead crystal is fixed by embedding it into meta-acrylate (or into an epoxy resin).
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The embedded bead crystal is mounted on a polishing jig as shown in Fig. 2.4. The
jig is designed for fine adjustment of the orientation within a range of 6° for the
polar angle and 360° for the azimuth.

Fig. 2.4. A polishing jig that allows for adjustment of the tilt angle in an arbitrary azimuthal
direction (courtesy of Udo Linke). A bead crystal is mounted for illustrative purposes. The
bead crystal is embedded into meta-acrylate before polishing.

The embedded crystal together with the resin is abraded using SiC abrasive paper
to expose the bead. The polishing jig is then fixed to an X-ray equipment to check
and further adjust the orientation of the crystal according to the Laue pattern, or
the diffraction pattern obtained by characteristic X-ray emission lines. After this
final orientation, the polishing procedures can begin. These typically comprise the
following steps:

Wet grinding with SiC- paper, grain size 400, 800, 1200.

Cleansing to remove SiC particles.

Wet polishing on silk cloth with diamond paste, grain size 6u

Wet polishing on nylon cloth with diamond paste, grain size 3u

Wet polishing on velvet cloth with diamond paste, grain size 1

Wet fine-polishing on velvet cloth with Al,O; paste, grain size 0.03pn
Cleansing and drying with alcohol.

Final check on orientation using X-ray methods (e.g. rocking curves).

PRI A LD =
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9. Removing the resin.

10. The cleaned and dried crystal is placed into a quartz furnace and annealed
in an Hy/Ar or an O,/Ar atmosphere (depending on the material) to heal-out
surface defects and to leach-out common bulk impurities like sulfur and
carbon.

11. The sample is probed in a scanning electron microscope using Selected
Area Channeling Patterns (SAPS)

An example of the final product is displayed in Fig. 2.5.

Fig. 2.5. The ready-to-use bead Pt-crystal exposing a (111) surface. Note the other {111}
facets on the side in trigonal symmetric arrangement (courtesy of Udo Linke).

surface surface

Fig. 2.6. Two common forms of ready-to-mount metal crystals. The left form is for use with
a tungsten or molybdenum wire loop. The hut-crystal is fixed to the sample holder by
clamping the crystal on the rim of the hut. The thereby induced plastic deformations stay
away from the surface, at least for some time.
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Samples cut from bulk single crystals

A few additional steps are required if metal samples are to be prepared from a
bulk single crystal. These crystals come from the manufacturer in the form of
oriented rods with diameters between 5-20 mm. The first preparation step is a
rough orientation using the Laue pattern. A disk is then cut off the rod using a
spark erosion wire saw or an acid wire saw for ductile metals. Brittle materials are
cut using a peripheral saw or an annular saw with diamond or SiC fortified blades.
The use of spark erosion has the advantage that the sample form can be chosen
more freely. After cutting, the damaged surface layer is removed by etching. The
crystal is annealed as described in step 10 above. After that, the crystal is mounted
on the polishing jig using dental wax, oriented, and polished following the proce-
dures described before. Figure 2.6 shows two commonly used forms of metal
crystals.

Preparation of Si-wafers by wet chemistry

Single crystal surfaces of silicon are best obtained directly from wafers as they
are provided by industry for commercial purposes. No further polishing is re-
quired, but a final treatment using wet chemistry may be recommended. Such
preparation procedures were developed by the electronic industry for the purpose
of wafer cleaning prior to device fabrication. Originally, the main goal was to
achieve a surface free of metal contaminants. Nowadays, wafer quality assurance
concerns the control of many impurities such as O, C, F and H, as well as the
control of the roughness of surfaces. The silicon preparation methods split into
two categories as they generate either hydrophilic or hydrophobic surfaces. Hy-
drophilic surfaces are terminated by polarized bonds, such as Si-O or Si-OH,
which bind water molecules via hydrogen bonding. Hydrophilic surfaces are
used as intermediates to prepare well-defined Si/SiO: interfaces. Hydrophobic
surfaces are covered mostly by Si-H, i.e. by non-polarized bonds.

Among the methods that employ hydrophilic surfaces, the most widely used
method is the so-called “RCA cleaning”, which involves a set of different clean-
ing steps specifically designed to remove a particular contaminant or a particular
class of contaminants. All steps contain hydrogen peroxide as oxidizing agent,
and other chemicals to eliminate a selected contaminant. Three basic steps are:

1. H202 + H2SOs, 10 minutes at 80°C, (Removes the residues of a photo re-
sist or other organic contaminants, and forms a 1 nm layer of SiO2).

2. H202 + 1 NH4OH + 5 H20, 10 minutes at 80°C (Removes organic con-
taminants and some metals and forms a 1nm layer of SiO2).

3. H202 + 1 HCI1 + 5 H20, 10 minutes at 80°C (Removes heavy metals and
forms a 1nm layer of SiO2).

In each step, a Inm layer of SiO: is formed which serves to protect the surface
against reactive contaminants from air such as unsaturated hydrocarbons. The
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Inm SiO2 must be removed before the next cleaning step. This is done by a hy-
drophobic etch procedure which is customarily a HF-dip (hydrofluoric acid)
followed by rinsing with ultra-pure, de-ionized water.

It is known for a long time that HF etches SiO:2 very effectively. The polar-
ized Si-O bonds are broken by the polarized HF molecule. The F -ion binds to
the positively charged Si-atom and the proton is captured by the O-atom. The
reaction mechanism can be described as

(= Si-O-Si=) + 2HF = 2(=Si-F) + 2H:0

It had been suggested initially that the resulting chemical stability of the silicon
surface is due to a passivation of silicon by fluorine. This hypothesis was sup-
ported by the fact that the Si-F bond strength (= 6.0 eV) is much greater than
that of Si-H (= 3.5 eV). Nevertheless, fluorine has been observed to be a mi-
nority species on the etched surface. The surface is terminated mostly by
hydrogen, but hydrocarbons and oxygen have also been found [2.1-4]. Several
investigations showed the latter to be contaminants so that the surface is genu-
inely H-terminated. This striking fact has been explained on the basis of reaction
kinetics by Ubara et al. [2.2]. They postulate that fluorine terminated silicon
complexes are unstable in HF solution due to strong polarization of the Si-Si
back bonds and are removed from the Si-surface by releasing SiFs into the solu-
tion, leaving a H-terminated surface behind.
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Quantum chemical calculations of the activation barriers for these types of reac-
tions [2.5] show that a reaction such as = SiH + HF — = SiF + Ha, though
exothermic, has an activation barrier, which is significantly higher than that of
the Si-Si bond cleavage reaction. As the hydrogen termination results from kinet-
ics it is clear that some fluorine remains on the surface. The amount depends on
the concentration of the hydrofluoric acid and varies between 6% and 12 % for
HF concentrations between 24 % and 48% [2.6].

The HF-dip not only produces unsatisfactory results concerning the H-
termination but also a considerable surface roughness. Smoother surfaces are
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obtained when HF-solutions buffered at higher pH-values are employed. The
following recipe produces very smooth, H-terminated Si(111) surfaces. Si(100)
surfaces produced that way are rougher and the H-termination is less perfect. All
agents must be "electronic grade". The water must be de-ionized and free of
hydrocarbons (total hydrocarbon concentration, TOC < 3 ppb).

1. Oxidize wafer thermally (900°C, under O: flow, oxide thickness 100 nm).

2. Rinse sample using trichloroethylene, acetone and alcohol.

3. Place teflon beaker and tweezers in a glass beaker and clean to remove the

residual organic substances, using H20:H202:NH4OH 4:1:1 at 80+2°C

for 10 minutes.

Repeat step 3 with the sample inside the glass beaker.

Pre-etch the thermal oxide in H2O:H202:HCI1 1:1:4, 5 minutes at 80°C.

Rinse thoroughly in water.

Remove remaining oxide using buffered HF (pH = 5.0), 5 minutes in the

teflon beaker.

8. Rinse.

9. Oxidize the sample softly: H20:H202:HCl 4:1:1, 10 minutes at 80°C.

10. Rinse.

11. Remove oxide layer built in the preceding step and H-terminate surface
using 4 % NH4F (pH = 7.8) for 6.5 minutes in the Teflon beaker.

12. Rinse thoroughly.

Nawk

It is very important that samples have no contact with air after step 5, or at least
after step 7. Pulling the sample through a liquid-air interface surely contaminates
the surface, since hydrophilic organic contaminants decorate the surface of the
liquids. Thus, solutions are removed by diluting with water and the sample is
brought into the active agents while being covered with water. This is far more
important than keeping the exact concentrations.

The sample is now H-terminated and largely inert. It contaminates only very
slowly in air, mainly through an uptake of unsaturated hydrocarbons. Storing the
sample in hydrocarbon-free argon or nitrogen helps to keep the sample clean for
a longer time if desired. The sample can be inserted into a vacuum-chamber via
an air lock pumped by an oil-free pumping system. It has been recommended
that the initial pumping down from atmospheric pressure should be performed
slowly via a leak valve to avoid turbulences, as these turbulences could bring
organic compounds onto the surface. The importance of this procedure presuma-
bly depends on the cleanliness of the air lock and the pumping system used.
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2.2 Surfaces in Ultrahigh-Vacuum

2.2.1 UHV-Technology

Basic issues

Solid surfaces are investigated in Ultra-High Vacuum (UHV) environment in or-
der to minimize the interaction with foreign materials. The number of molecules
that arrive on a surface per time on an area A equals the number of molecules con-
tained in cylinder of a height (lv,l) with the base area A. The mean velocity {lv,l) of
gas molecules with a velocity direction towards the surface is

(v )= kT /2nm 2.1

Here, m is the mass of the molecule, kg the Boltzmann constant and 7 the tempera-
ture. With the state equation of the ideal gas of pressure p, pV = NkgT the number
of molecules in the said cylinder is

%Q v, WA= p Al 2nmkgT . 2.2)

The flux F of molecules impinging on the surface per area and time is therefore

F=pl2nmkgT 2.3)

A standard time span for surface studies is about 10* s. If one wishes to have less
than 10" molecules per cm” on the surface (corresponding roughly to 1/100 of a
monolayer) a pressure of 5%107"° Pa (Nm™) (25x10™"? mbar) is required. A pres-
sure as low as this is in the range described as Extremely High Vacuum (XHV). As
most of the residual gas molecules are harmless to the surface, a pressure of about
107® Pa suffices for most experiments. The density of molecules in a "vacuum" of
that pressure is 10° cm™ and the free mean path of the molecules is about 10® m. A
typical UHV-vessel may have a volume of 100 1 and an inner surface area of 1 m”.
The total number of molecules in the gas volume is then 10''. Because of the large
mean free path, these molecules never meet each another in the gas phase; rather
they traverse the vessel from wall to wall. Hence, the walls of the vessel determine
the properties of the gas phase in the UHV-regime. The walls also host the vast
majority of the molecules inside the vessel in the form of an adsorbate phase. Let
us assume for the purpose of illustration that the walls are covered by a monolayer
of molecules. The total number of molecules on the walls is then about 10!, which
exceeds the number of molecules in the volume of the vessel by ten orders of
magnitude! If all these atoms would desorb and be in the gas-phase, the pressure
would increase by ten orders of magnitude, i.e. to 100 Pa. Even though the cover-
age of the walls may be much less than a monolayer, it is clear from the example
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that the walls control the pressure in a UHV-vessel. This has important conse-
quences: if a part of the surface of the vacuum vessel is heated, molecules desorb
from there in enormous quantities, giving rise to a pressure burst. Maintaining
UHV-conditions during heating some parts of the vessel or the sample in its sam-
ple-holder requires a careful out-gassing of those parts by heating during the initial
pump-down. The de-gassing process as such cannot take place once the pressure is
already in, or near UHV-range. Staying with the example above and assuming a
pumping speed of 100 1/s, it would take 10" seconds to remove the monolayer of
gas from the walls if pumping were performed at 107 Pa, but it takes merely one
second at 100 Pa. The natural coverage of air exposed surfaces with gases, in par-
ticular water, is removed and UHV-pressures are eventually achieved only by
baking the entire vacuum chamber while pumping the vessel at moderately low
pressures of 102-107* Pa.
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Fig. 2.7. Mass spectrum of the residual gas in a UHV-vessel (logarithmic scale) before and
after bake-out (solid line and dashed line, respectively). Before bake-out, the mass spectrum
is dominated by water (mass 18 plus some 17). After bake-out the spectrum contains hydro-
gen (mass 1 and 2) methane (mass 16), CO (mass 28), and CO, (mass 44) as well as some
cracked hydrocarbons as evidenced from the peaks to the left and right of mass 28.

Typical bake-out temperatures are 150-250 °C. Construction materials must with-
stand these temperatures and must have a low enough vapor pressure. Because of
its zinc content, brass is not a suitable UHV-material, for example. Other unsuit-
able materials comprise rubber, plastics including Teflon (because of its fluorine
content), solders containing Cd and porous materials which tend to release gases
forever. Classic construction metals for UHV are stainless steel for most parts of
the vacuum chamber, copper for gaskets and as a good heat conducting metal,
tungsten for filaments, molybdenum and tantal for parts to be heated to high tem-
peratures, and aluminum/magnesium alloys for those parts of the construction for
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which low weight is required. Suitable insulating materials are sintered, impervi-
ous ceramics made of Al,O;, sapphire for good heat conduction combined with
electrical insulation, and machinable ceramics such as Macor™. A good flexible
material for electrical insulation is Kapton™, which withstands heating in vacuum
up to 250 °C.

The standard construction material for UHV-vessels is stainless steel. In its
natural state, stainless steel contains large quantities of dissolved hydrogen. This
hydrogen outgases only very slowly during normal bake-out procedures so that the
walls of the vessel keep their hydrogen inventory over a lifetime of many years.
This dissolved hydrogen therefore determines the residual pressure of a well-baked
system. Figure 2.7 displays mass spectra of the residual gas in a vacuum chamber
before and after bake-out. Before bake-out, the spectrum is completely dominated
by the water peak at mass 18 and its cracking pattern. After bake-out, hydrogen is
the prevailing residual gas. The atomic hydrogen originates from hydrogen mole-
cules dissociated at the hot filaments of the mass spectrometer and the Bayard-
Alpert pressure gauge. Further components in the residual gas are CO, CO, and
hydrocarbons. A peak at mass 32 (O,) would be a sure indication of a leak. A
UHV-vessel never contains oxygen unless there is a leak because oxygen is re-
duced to water by atomic hydrogen.

Pumps

Pumps fall into two categories, roughening pumps to evacuate the vacuum vessel
down to a pressure of 10°-107 Pa and the pumps for the UHV-regime. Roughen-
ing pumps are oil lubricated rotary pumps or oil-free pumps that use bellows and
valves. In the early days of UHV-technology, oil or mercury diffusion pumps were
employed for the high-vacuum regime. These are now completely replaced by
turbo-molecular pumps or ion getter pumps. Turbo-molecular pumps (called
turbo-pumps in the following) are mechanical pumps. Their active part is a fan of
rotating blades (Fig. 2.8). The pumping action results from an asymmetry of the
molecular flow between the left and the right side of the fan. In order to calculate
the flux of molecules from left to right and from right to left we need to consider
the velocity distribution with respect to the reference frame of the rotating blades.
The spaces between the blades form long channels so that only the molecules in
the direction €, (Fig. 2.8) can pass. In the rotating reference frame, the thermal
velocities of those molecules are shifted by vycosé, (Fig. 2.8), with v, the circum-
ferential speed of the blades.

v =>v—v,cosf 2.4)

The current density j of molecules possessing a particular velocity is given by the
product of the velocity and the density p. The current densities from left to right
and right to left are therefore
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Js =M I(v—vb cos @) F(v)dv
vy, €086,
2.5)
Je=p  [0+v,cos6)F(v)dv

—Vy cos 6,

in which g and p; are the densities left and right of the rotor, respectively.

Rotating blades

7
x

Fig. 2.8. The figure illustrates the pumping effect of a molecular pump. The blades move
with a circumferential speed v, (upwards in the figure). The arrows illustrate the thermal
velocity of gas molecules relative to the moving blades.

The lower boundary for the integral is where the velocity towards the channel
between the blades is zero. F(v) is the Maxwell velocity distribution of particles
moving in a particular direction

1/2
F(v)= [ ] exp(—mv? / 2kgT) . (2.6)

2nkgT

In steady state condition j_, = j_ and the ratio of the particle densities and there-

fore the ratio of the pressures, the compression ratio is then

[(v+vy, cosG,)F(v)dv
K :ﬂ:ﬂ: -V, cos 6, 2.7)
Py DPr

c]i(v =, cos6,)) F(v)dv

Vp COS G,
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After some algebra one obtains

_ mvg cos” 6

K = with k= 2.8)
Vi 2kxT
_ 2 2 B
e —Vnx|l-—"—= [e dy

The coefficient x is essentially the square of the ratio of the circumferential speed
of the blades and the mean velocity of the gas molecules (2.1). For small x the

Gaussian integrals can be approximated by 2+/x/n , and K is then approximated
by

K =1+(6+n+6Jm)x+2Jnx (2.9)
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Fig. 2.9. Compression ratio K as a function of the coefficient x. The dashed curve is the

approximation (2.9). The shaded areas mark the ranges obtained by a commercial pump
(Leybold 340M).

Figure 2.9 shows the compression ratio as a function of & For a significant pump-
ing effect, the circumferential speed v, must be of the order of the mean thermal
velocity of gas molecules (120 m/s for N,, 450 m/s for H,). Materials of sufficient
mechanical strength for the rotors and suitable ball bearings for operation became
available only in the last decades. The shaded areas in Fig. 2.9 mark the ranges of
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compression ratios realized by the rotor of a commercial turbo-pump (Leybold
340M) which features magnetic bearings of the System FZJ™ developed in the
Research Center Jiilich. The upper and lower limits correspond to the circumferen-
tial speeds of 350 m/s and 175 m/s at the outer and inner diameters of the rotor
blades. To bridge the pressure gap between UHV and the vacuum provided by the
roughening pump the turbo-pump posses a stack of 11 bladed wheels. The total
compression ratio for nitrogen is more than sufficient. The overall compression
ratio for hydrogen of about 2.04'"' = 2500 is less impressive. The turbo-pump with
magnetic bearings is free of lubricant. Backed by an oil free roughening pump a
completely oil free pumping system can be realized. Since the final pressure of oil-
free roughening pumps is about 10 Pa a molecular drag pump (working on the
principle of an archimedian screw) is placed between the turbo-pump and the
roughening pump.

Ion getter pumps come as diodes or triodes. Figure 2.10 shows a triode consist-
ing of a collector, an anode and a cathode made from titanium. Titanium combines
good mechanical properties with a high reactivity to most residual gases, except
the noble gases. A freshly prepared titanium films absorbs all but the noble gases
readily and can therefore be employed as a getter. A voltage of about 5-7 kV is
applied between anode and cathode. The high voltage in combination with the
shape of the cathode causes high local electric fields at the cathode surface, and
electrons are field-emitted from there. The magnetic field forces these electrons
into an orbital path, which enhances the probability for collisions with the residual
gas molecules. The electrons ionize the molecules and the positive ions are accel-
erated towards the cathode. Their path is nearly straight because of the larger mass.
Due to the geometric arrangement and the shape of the cathode, the ions strike the
cathode at grazing incidence. Titanium material from the cathode is thereby sput-
tered mostly in forward direction and deposited on the collector. The amount of
sputter-deposited titanium is proportional to the number of molecules hitting the
cathode, i.e. proportional to the pressure. This ensures that the supply of titanium
atoms freshly deposited on the collector matches the number of adsorbed atoms
from the residual gas. The steady stream of titanium atoms onto the collector bur-
ies the adsorbed residual gas molecules or atoms inside the growing bulk material.
In that way, not only reactive gases are effectively gettered but also non-reactive
gases in particular noble gases which normally would reside only briefly on the
collector surface and be released into back into the gas phase. A triode ionization
pump is therefore capable of pumping also noble gases. Unlike the turbo-pumps,
ion getter pumps do not remove the gas from the vessel. Rather the gas accumu-
lates in the titanium matrix. Ion getter pumps therefore tend to have a memory
effect. If the high voltage is switched off, e.g. to stop the pumping during a gas
inlet, the pump releases less tightly bound gases like methane and ethane. In order
to minimize memory effects the majority of the gas inventory of a UHV-vessel
released during bake-out should be removed from the vessel by a turbo-pump, so
that the ion pump is used only in the high vacuum regime. The ion getter pump is
also regenerated to some extent by baking the pump elements at 300-400 °C dur-
ing bake-out while pumping with a turbo-pump. If used only in this way, ion getter
pumps practically last forever. A characteristic defect that can occur after some
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time is an unstable operation in the high-vacuum regime with pressure bursts from
time to time. This is due to needles and flake of material that grow on the cathode.
These needles and flakes can give rise to sudden events of electron field emission,
which release so much heat locally that titanium material with its gas inventory is
evaporated. The pressure bursts can bring the pressure temporarily from 107 Pa to
107 Pa. A remedy is to raise the operating voltage cautiously to about 20 kV,
which burns off the flakes and whiskers. After that, a complete bake-out cycle is
required.
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Fig. 2.10. Schematic drawing of a triode ion getter pump.

Pumping by an ion-pump is frequently supported by an additional getter film,
which is deposited from a heated titanium wire in regular intervals. The intervals
are matched to the pressure. The large area of that deposited films provides a high
pumping speed for gases that are gettered by titanium. The titanium film is particu-
lar effective if it is deposited on a wall cooled by liquid nitrogen. The pumping
speed of a perfectly absorbing film is calculated from (2.1) by noting that A(v,) is
the volume, which is pumped per time by an absorbing area A. For nitrogen, a
100 cm? area has a pumping speed of 12001/s. A typical vacuum chamber
equipped with titanium getter pump that covers the entire bottom of the chamber
with the titanium film is emptied about a hundred times per second. Unfortunately,
the gas phase is replenished from the permanently out-gassing walls. The consid-
erations above apply also to the layout of the roughening pumps and the
dimensions of pump lines. In the regime of molecular flow, a long tube has a con-
ductance that corresponds to its cross-sectional area multiplied by the ratio of the
diameter d and the length L. The conductance is therefore approximately
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3
c=1202 df (2.10)
S

The characteristic time constant for evacuation of a chamber having a volume V is
is 7= V/C. It then takes 7In10=2.37 for every decade of pressure reduction. To
pump a volume of 1201 in a characteristic time of 100 s through a tube of 1 m
length requires a tube diameter of 2.1 cm.

Vacuum gauges

Measuring the pressure in different pressure regimes requires different gauges.
Classical mechanical manometers work down to 100 Pa. The range of mechanical
pressure measurements is extended to about 107> Pa by the Baratrons in which the
pressure induced deflection of a membrane is measured as a change of capaci-
tance.
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Fig. 2.11. Schematic drawing of the spinning rotor gauge. A stainless steel ball is magneti-
cally suspended in vacuum. The friction with the residual gas molecules is measured.

A simple instrument for the range between atmospheric pressure and 10~ Pa is the
Pirani-manometer in which the loss of heat of a fine wire due to convection and,
in the low-pressure regime, due to heat conduction is measured.

A very accurate instrument for pressures between atmospheric pressure and
107 Pa is the spinning rotor gauge (Fig. 2.11). The instrument measures the fric-
tion of a magnetically suspended stainless steel sphere by the residual gas. The
sphere is magnetically suspended in the equilibrium position between two perma-
nent magnets. The equilibrium is stable with respect to lateral displacements of the
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sphere, but instable with respect to a vertical movement. An additional electro-
magnetic field that is controlled by the instantaneous position of the sphere in a
feedback loop stabilizes the vertical position. The magnetic suspension is practi-
cally frictionless, save for the gas friction. To measure that friction, the sphere is
first driven to a certain rotation speed (400-800 Hz), then the drive is shut off and
the slow decay in the rotation speed is accurately measured by monitoring the
electromagnetic signals induced in the driving coils by the rotating magnetic mo-
ment of the sphere. At higher pressures, the power consumption of the rotating
magnetic field required to keep the rotation speed constant is measured. The in-
strument is completely inert and works in corrosive and hot environments. It
represents also the certified international transfer standard for vacuum measure-
ment. The determination of the pressure via the gas friction requires some data
accumulation time. The time is longer for lower pressures. For every day use, the
friction rotor gauge is therefore unpractical. Furthermore, the friction gauge does
not cover the UHV-range.

The standard instrument in a wide range of pressures from 1072107 Pa is the
ionization gauge after Bayard-Alpert (Fig. 2.12). Electrons emitted from a hot-
filament cathode are accelerated by the positive voltage on the anode, which con-
sists of a cylindrical wire mesh. A thin wire is placed in the center of the anode as
the ion collector. The potential on the ion collector is negative with respect to the
cathode by about 25 V. Gas molecules ionized by the accelerated electrons inside
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Fig. 2.12. Bayard-Alpert ionization vacuum gauge on a metal flange.

inside the anode cylinder travel to the central collector. The current on the collec-
tor is therefore proportional the concentration of gas atoms and therefore a
measure of the total pressure. Since molecules have a different ionization probabil-
ity, the pressure reading depends on the type of gas. The ultimate pressure limit is
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given by the X-ray limit: electrons arriving at the anode cause the emission of soft
X-rays from there. The X-rays in turn cause the photoemission of electrons from
the surface of the ion-collector. Since this current has the same sign as the current
of the collected ions, it fakes a pressure. The photocurrent is proportional to the
surface area of the central wire, which is therefore kept as thin as possible. The X-
ray limit is typically about 10~ Pa.

Residual gas analysis

Mass spectroscopy of the gas in an UHV-chamber is required
e to define sources of malfunction of the vacuum system,
e to control the exposure of surfaces with specified gases,
e and to monitor desorption from surfaces.
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Fig. 2.13. Sketch of a quadrupole mass spectrometer. See text for explanation.

The most commonly used type of mass spectrometer is the quadrupole mass spec-
trometer. This spectrometer consists of an ionization chamber, a system of four
metallic rods between two apertures, and a detector for the ions (Fig. 2.13). The
quadrupole is a mass-selective filter, which works on the principle of dynamic
stabilization. Ions produced in the ionization chamber via electron impact ioniza-
tion are accelerated to a potential eU, by the positive bias on the two apertures and
the quadrupole. An additional oscillating voltage is applied to the four rods such
that opposite rods have the same potential. Ions traveling along the center path
between the rods are in equilibrium with respect to the oscillating potential, in
stable equilibrium with respect to one pair of rods and in an unstable equilibrium
with respect to the other. Ions embarked on trajectories that pass the entrance aper-
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ture at a small angle experience a potential that is proportional to the square of the
deviation from the center path, and oscillating in its sign. Ion trajectories oscillat-
ing around the center path (Fig. 2.13) occur if the phase of the ion path is matched
to the phase of the oscillating voltage such that the potential repels the ions to-
wards the center path when the ion is further away from the center and vice versa.
Without solving the mathematics in detail one can therefore write down the focus-
ing condition

=L onomiw @2.11)
v

in which zis the time during which the ion traverses the distance L between the
two apertures, v is the ion velocity, @ 1is the frequency of the ac-voltage and n is
an integer number. Since the velocity of ions possessing the mass m is

v=+/2ZeU /m with Ze the ion charge, the focusing condition (2.11) selects a
mass, which is proportional to @2

2.2.2 Surface Analysis

Monitoring surface structure during preparation

Sample preparation in UHV requires in-situ control of the surface structure and
chemical composition. Experimental tools for an in-depth study of surface struc-
ture and morphology were already discussed in chapter 1. Low energy electron
diffraction (LEED) is also used for qualitative checks on the surface order. For
monitoring the surface structure during preparation procedures, in particular dur-
ing epitaxial growth Reflection High Energy Electron Diffraction (RHEED) is
more suitable since the equipment is not in the way of evaporation sources and
other tools. The experimental arrangement is sketched in Fig. 2.14a. Electrons with
energies in the range between 10-100 keV strike the surface at grazing incidence,
and the diffraction pattern is observed in reflection. Because of the higher energy,
the diffraction spots are closer together compared to LEED. Sharp diffraction spots
occur either if the surface is very flat or if the surface is covered with small three-
dimensional crystallites. More often, however the diffraction pattern consists of
vertical streaks. Upon surface disorder, the reciprocal lattice rods assume some
fuzziness, and this fuzziness elongates the diffraction spot along the vertical direc-
tion (Fig.2.14b). The experimental set-up provides means to characterize the
growth-mode. If electron energy and the angle of the incident beam are chosen so
that a particular beam, e.g. the (00) beam experiences destructive interference from
the beam reflected by consecutive monolayers then layer-by-layer growth causes
oscillations in the diffracted intensity (cf. Sect. 11.1). Whenever a layer is com-
plete, the intensity is maximal, and minimal for half a completed monolayer
because of the destructive interference. The effect is best seen for medium electron
energies (500-1000 eV) because of the higher surface sensitivity of these electrons.
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By counting the oscillations, one has an accurate measure of the deposited number
of monolayers that can be used to calibrate the evaporator for a particular ingot.
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Fig.2.14. (a) Experimental set-up for Reflection High Energy Electron Diffraction
(RHEED) during epitaxial growth. (b) The Ewald-construction for high-energy electrons in
reflection geometry.

Monitoring surface cleanness and composition

The most common methods for the analysis of the element composition of surfaces
are based on the emission of core electrons either by photoemission or via the Au-
ger-process (Fig. 2.15). In both cases, the kinetic energy of the emitted electrons is
characteristic of the elements. The spectroscopy of the kinetic energies therefore
provides information on the sample composition. The spectroscopy based on the
photoemission process is either called X-ray Photoemission Spectroscopy (XPS)
or, as named somewhat misleadingly by its inventor K. Siegbahn, Electron Spec-
troscopy for Chemical Analysis (ESCA). The spectroscopy based on the Auger-
process is termed Auger Electron Spectroscopy (AES). The kinetic energy of the
photo-emitted electron is determined by energy conservation

E,, =hv+E(N)—EN -1) (2.12)

Where E(N) and E(N—-1) denote the energies of the system with N and N-1 elec-
trons, respectively. To a rough approximation, the energy difference can be
expressed in terms of the electron energy levels of the N-electron state so that in
case of photoemission from the K-shell one obtains

Ey, =hv—(E,. —Ex) (2.13)
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The Auger-process is the radiationless filling of a core hole after ionization by an
electron from an upper shell or the valence band, with the energy transferred to a
second electron of the upper shell (Fig. 2.15). The final state in the Auger-process
is a two hole-state. The energy of a two-hole system differs from a single hole-
system. To a crude approximation the kinetic energy of the Auger-electron is

Evn =Ey +Ep —E;. (2.14)

in which Ey; and E, are the energies with the electron holes in the final state and E}
is the energy of the state that is ionized initially. It is customary to denote the Au-
ger-electron by the notations of the three electron shells involved in the process,
KLL, LMM, etc. The valence band is denoted as V. Since electrons of medium
kinetic energy are most suitable for surface analysis (see below), Auger-transitions
between the higher electron states, including the valence band are employed. For
the second row elements from Li to Ne, including the typical surfaces contaminant
C, these are the KVV-Auger electrons. For the third row elements (Na — Ne) these
are the LVYV transitions. For the 3d-transition elements, the 3s, 3p-shells are sev-
eral tens eV below the 3d/4s valence band. The LMM, LMV, and LVV Auger-
electrons form a characteristic triplet.

[Ey, =2Ey —E —E
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Fig. 2.15. Tllustration of the Photoemission and Auger-process. Shown are K-shell photo-
emission (left) and a KVV-Auger-emission (center) for second row elements, and a LVV-
Auger-emission for 3d-transition metals (right).
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Neglecting the many-body nature of the excitation, the intensity of an Auger-line
is described by the matrix element

. . . 2
Lpnger Ky/](’) D 1175, 190 ! >>‘ 2.15)

in which Bl’l(i) , 5”2(") , '{’l(f ) , and '{’z(f ) are the wave function of the two electron in
the initial and final state, respectively and 1/r;, is the Coulomb interaction be-
tween the two electrons. The matrix element vanishes if ¥/ is an s-state and the

initially occupied state is a p-state, vice versa. The intensity of the Auger-lines also
reflects the number of participating electrons is a state. For example, the LVV
Auger-line for the 3d-transition elements is roughly proportional to the number of
electrons in the valence band. The LVV-line is the strongest line in the L-triplet for
Cu and becomes very weak in the case of Sc.

Photoemission-spectroscopy and Auger-spectroscopy gain their surface sensi-
tivity from the fact that electrons have a high cross section for inelastic scattering.
The information depth for surface spectroscopies is given by the mean distance,
which the electron can travel in the material without loosing a significant amount
of energy. Energy losses due to phonons do not count in this regard, as their en-
ergy is too small! Because of the inelastic scattering events the flux of electrons of
certain energy decays exponentially as

I=1Iyexp(-x/A) (2.16)

where A is the mean free path. The mean free path is inversely proportional to the
imaginary part of the electron self-energy [2.7, 8] which may be calculated in the
Random Phase Approximation (RPA) from the dielectric response function
1/&(w, q) with wthe frequency and g the wave vector. The inverse of the mean free
path A, the stopping power for electrons with the energy E and wave vector k is
given by [2.9]

l Dmax — l

f
dg |w,dw, Im
(-)[ q q g(

- nagE jq[ae/aw]wq

A : O(E—-E,;, —hw) (2.17)

s

Ein 1s the Fermi energy or the conduction band edge in case of an insulator and ap
is the Bohr radius. The Heavyside ©-function takes care of energy conservation.

The upper frequency limit @,,, corresponds to the maximum energy loss for a

given g-vector that occurs when the g-vector is oriented opposite to the k-vector of
the electron. In that case, energy conservation requires that

Drnax :i[kz_(k_q)zl (218)
2m
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If damping is disregarded the response function has a g-independent pole at the
plasmon frequency @= @), and can be represented by

-1
e(w,q)

Im

:gwpd(w—wp). (2.19)

This simple expression is a good representation of the response function for all
materials as long as the electron energy is large and if the plasmon frequency is
calculated from the density of valence electrons n as

2
=" (2.20)

with & the absolute dielectric permeability. The result for 4™ is
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Fig. 2.16. Mean free path of electrons with respect to plasmon excitations according to
(2.18) for Ge, Si and Al (dashed, dash-dotted and solid line, respectively) together with
selected data points (circles, triangles and squares, respectively) [2.10-12].

The maximum wave vector can be taken as the wave vector where the plasmon
ceases to be a well-defined excitation, which is the case when the phase velocity of
the plasmon @, /q is equal to the Fermi-velocity vg. The minimal wave vector
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gmin 1S Obtained, if ¢ is oriented anti-parallel to the wave vector of the electron & in
which case (2.18) holds. After insertion of g.x and g, (2.21) becomes

o ho, hao,
A= In (2.22)
2agE | 2,/EcE (1—\/1—th /E)

The result for A is plotted in Fig. 2.16 for the elements Ge, Si and Al together with
experimental data. The model describes the general energy dependence quite well,
underestimates however the stopping power as it neglects surface plasmon excita-
tions and core excitations (relevant for £ >>@,) as well as electron hole pair
excitations (relevant for E < /a},). Auger and photoelectrons which involve the
upper shells and have therefore energies between 100 and 1000 eV are particular
suitable for surface elemental analysis as their mean free path is small.
Channeltron
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Fig. 2.17. Cylindrical mirror electron Auger-spectrometer with an integrated electron gun
for electron impact ionization.

For the purpose of surface elemental analysis, Auger-spectroscopy has gained
more acceptance than XPS for two reasons. One is that Auger spectrometers can
be built rather compact as add-on devices. The other is that Auger-spectroscopy in
combination with a highly focused electron beam has spatial resolution. Fig-
ure 2.17 shows the standard form of a cylindrical mirror analyzer with a coaxial
electron gun for primary ionization. The beam energy for ionization ranges be-
tween 3 and 10 keV. The Cylindrical Mirror Analyzer (CMA) consists of two
coaxial metallic cylinders. The inner cylinder has entrance and exit pupils, which



2.2 Surfaces in Ultrahigh Vacuum 87

define the angular aperture of about £6°. The magnitude of this angle is chosen to
match the third order angular aberration of the cylindrical mirror analyzer to
achieve a good compromise between resolution and transmission. To minimize
perturbations on the potential the openings in the inner cylinder are covered by a
high-transparency wire mesh. The inner cylinder is on ground potential, as the
sample. The outer cylinder is negatively biased. For a given bias, electrons of a
particular kinetic energy are focused on the exit aperture. The entrance aperture is
provided by the diameter of the focused electron beam used for ionization. To
avoid perturbations from the fringe fields at the ends of the two cylinders two par-
tially metalized ceramic plates provide roughly the same In r -dependence of the
potential as in the interior of the cylinder analyzer. The use of a separate grazing
incidence electron gun instead of the integrated gun enhances the surface sensitiv-
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Fig. 2.18. Auger-spectrum obtained from a cylindrical mirror analyzer of a Cu(110) surface
before cleaning [2.13]. Electron beam energy for primary ionization is 3 keV. The dashed
line is the spectrum after correcting for the analyzer transmission.

Since the Auger-analyzer scans through the energies by changing the deflection
voltage, the energy width of transmitted electrons is proportional to the pass en-
ergy. The intensity of the transmitted signal is therefore also proportional to the
pass energy. The current at the detector is therefore proportional to the product of
the pass energy E and the intensity of electrons emitted from the sample N(E).
Figure 2.18 displays a spectrum obtained from a contaminated Cu(110) surface.
The characteristic Auger-lines of Cu and of the contaminants S and C ride on top
of a large background of secondary electrons. The dashed line is the response cor-
rected for the increasing transmitted bandwidth. One sees that the intensity of
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secondary electrons increases for very low energies. The cut-off at about 20 eV is
caused by a loss of analyzer transmission due to stray electric and magnetic fields.

Auger-spectra as displayed in Fig. 2.18 are used for quantitative analysis after
subtracting a suitable function to describe the background. For qualitative analysis,
differentiated spectra are more convenient. Figure 2.19 displays differentiated
spectra of a Cu(110) surface before and after cleaning. On the contaminated sur-
face, the intensities of the high energy Cu-lines are reduced to about 45%.
Considering the mean free path of about 1.3 nm and the emission angle of 45°, one
can estimate the thickness of the contamination layer to be of the order of 1 nm.
The low energy Cu-peak is not suitable for this type of estimate since (i) the mean
free path within the dirt layer is uncertain at low energies, and (ii) the Cu-Auger
peak involves surface valence band states of Cu, which change due to the chemical
bond with carbon and sulfur atoms in the contamination layer.

Cu(110)-surface
------- before cleaning
after cleaning

Differentiated signal (arb. units)

LMEBMZ 3
S C ‘ LMz.sv
L cu _
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Electron energy / eV

Fig. 2.19. Differentiated spectra of a Cu(110) surface before (dashed line) and after cleaning
(solid line) [2.13]. The Cu-signal is smaller on the dirty surface as the contaminant layer
reduces the thickness of the Cu-layer that contributes to the spectrum.

2.2.3 Sample Preparation in UHV

Preparation by removing a protective layer

Si-surfaces prepared by wet chemistry have a protective layer of Si-H bonds, so
that the surface stays clean in air for some time (Sect. 2.1.2). Si-surfaces may also
be covered by a protective oxide layer, produced either by wet chemistry or by
thermal oxidation in a quartz-furnace. Those samples can be introduced into the
vacuum system via an air lock and transferred to the sample holder. Once mounted
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on the sample holder and after reestablishing UHV-condition the protective oxide
layer can be removed by heating the crystal. This preparation method produces
well-ordered and clean surfaces. For thick oxide layers a temperature above 900°C
is required. Heating is performed either by electron bombardment heating or by
passing the heating current through the sample. In the case of silicon, the proce-
dure requires the application of high voltages and low heating currents in the
beginning and of high currents at low voltages at high temperatures because of the
temperature dependent resistance of the semiconductor silicon.

Occasionally, surfaces or thin film systems are prepared in a separate UHV-
chamber, coated by protective layer and the transferred to the analysis chamber.
The suitable type of coating depends on the material to be investigated. High-
temperature metals are best coated by a layer of gold. Metals that cannot be heated
to high enough temperatures to flash-off the gold may be coated with iodine or
bromine. An established coating for GaAs is arsenic capping.

Preparation by mechanical means

The traditional and safe method to prepare clean surfaces in UHV is cleaving. The
method has lost importance in recent years, but still has its place in the preparation
of some materials.

4
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Fig.2.20. Crystals are cleaved by driving a wedge into prepared notches that mark the in-
tended cleaving plane.

To facilitate the cleaving in UHV the crystals are cut into a particular shape with
little notches on both ends of the intended cleavage plane (Fig. 2.20). Cleaving is
performed by driving wedges into the notches to the point of contact, followed by
a sudden blow of a hammer. If large single crystals are available, longer bars with
several pairs of notches can be prepared for multiple cleavage of one sample.
While surfaces prepared by cleaving are clean and maintain the stoichiometry of
the bulk crystal, the surfaces may contain an unspecified number of steps of vari-
ous heights. Furthermore, crystals cleave only along particular crystallographic
planes. Ionic crystals cleave along the neutral planes that contain an equal number
of cations and anions (e.g. the {100} planes for alkali-halides, the {110} planes for
III-V compounds). The II-VI compounds cleave likewise well along the neutral
{110} planes, but also along the {0001} planes. Si and Ge cleave along the {111}
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planes, though not very well. Layered crystals such as intercalates and graphite can
also be cleaved by fixing and removing an adhesive tape.

Another way of preparing clean surfaces with bulk stoichiometry, albeit with
defects, is by grinding. The technique has been employed in the analysis of the
electronic surface structure of perovskites.

Preparation by sputtering and annealing

Sputtering with noble gas ions is most frequently employed method to remove
contaminants from the surface. The method is therefore given a more detailed
consideration. Noble gas ions used for sputtering are generated in an ion gun
(Fig. 2.21) by electron impact ionization, accelerated to the desired energy and
focused onto the sample. The noble gas supply is provided either by feeding the
gas into the ion gun housing via a leak valve or by backfilling the entire chamber
with the gas. For cleaning, the broad focus of the ion gun depicted in Fig. 2.21 (a
few mm diameter, depending on ion energy and sample distance) suffices. For a
very homogeneous sputter rate across the sample the beam of a fine-focus ion gun
is swept over the sample area.

Ne+, Ar+

cap
on ground
Anode cage potential
B circular
cathode
+Uion-UeI +Uion T

Ne, Ar

Fig. 2.21. A simple ion gun featuring an annular cathode, a cage-anode for the electrons and
an outer cap with a hole. Electron emitted from the cathode are accelerated towards the
cage-anode, which is at Uy, =+150 V with respect to cathode potential and at +U,,, with
respect to the grounded cap. The electrons travel back and forth in the cage until they hit a
noble gas atom and finally disappear in the cage-anode. The positively charged ions are
accelerated towards the cap and a moderately well focused beam of ions leaves the orifice.
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Three different processes contribute to the removal of contaminants (Fig. 2.22)
[2.14, 15]: The direct knock-off process by the collision of the ion with the con-
taminant, the knock-off by a reflected ion, and a process in which the contaminant
atom receives enough energy for desorption from the outwards flux of sputtered
substrate atoms. The cross sections for the three processes are of the same order of
magnitude. The cross section of first two decay slowly with energy, the cross sec-
tion of the last increases with energy and surpasses the cross section of the first
two mechanisms at about 1.5 keV [2.14]. Significant sputtering of substrate atoms
normally is an undesirable side effect since it disorders the substrate and inter-
mixes the contaminants with the substrate. Ion energies of 500 to 1keV are
optimal for cleaning the substrate of surface contaminants. The cross sections for
sputtering adsorbates are of the order of 107 ¢cm™ for 500 eV argon and neon
ions. The use of neon has the advantage that a liquid nitrogen cooled getter pump
can be operated during sputtering which keeps the background pressure of reactive
gases in the chamber low (neon does not adsorb at 77 K, argon does!).

(a) (b) ()

\-/ \.// \/
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Fig. 2.22. Schematic illustration of the three different sputter processes that contribute to the
removal of surface contaminants: (a) Direct energy knock-off collisions, (b) knock-off after
recoil of the ion from the substrate, and (c¢) energy transfer from sputtered substrate particles
(after Taglauer [2.14])

The sputter rate for contaminants on the surface is proportional to the cross section
o and the ion current j

AN __Ng (2.23)
dt
so that the number of contaminant particles decays exponentially in time

N=Nye'", (2.24)
with a time constant

r=(0j)". (2.25)
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The time constant 7is of the order of a minute for typical ion currents of SuA/cm’.
One might therefore expect to have the surface free of contaminants after a few
minutes of sputtering. Unfortunately this is not so! Inevitably, contaminant atoms
are pushed into the substrate matrix during sputtering and are removed only by
sputtering off a few monolayers of substrate material, in the course of which a
fraction of contaminant atoms get pushed deeper into the substrate, and so forth.
This slows down the cleaning process considerably. The typical contaminant on
metal surfaces, carbon and sulfur, can be brought back to the surface by mild an-
nealing of the sample. Sequences of alternate sputtering and annealing are
therefore recommended to remove these surface contaminants effectively. Sulfur
and carbon contamination arises not only from surface processes. These atoms are
also contained in the bulk single crystals with a concentration of the order of ppm.
As the surface disorders during sputtering, the crystals have to be annealed to
higher temperatures (e.g. up to 0.9 of the melting temperature) in order to restore
surface order after sputter cleaning. During this annealing procedure, the bulk
impurities can diffuse towards the surface, and segregate there if the free enthalpy
in the adsorption sites is lower than in the bulk. In a simple model for segregation
the surface equilibrium concentration @is given by

O ~(Ho .-

2 = ce W —Hun) kg (2.26)
1-6

Here, c is the bulk concentration, and Hg,s and Hy,y are the enthalpies per con-

taminant atom on the surface and the bulk, respectively. In the high temperature

limit, the surface coverage is smaller or at most of the order of the bulk concentra-

tion. At lower temperatures and if Hg, << Hy,, (.e. the surface sites are

energetically preferred) the surface equilibrium coverage can approach one, even
for low bulk concentrations. This is the typical situation for the common metal
contaminants C and S (for a detailed discussion see Sect. 5.4.3). Consequently, the
sputter-annealing process has to be repeated over and over, until the entire crystal
is leached completely. This may take as many as 100 cycles, depending on the
required state of cleanliness. Detrimental to effective leaching of the crystal is that
the surface concentration of segregated contaminants at a particular temperature,
once it is smaller than one, decreases with the decreasing bulk concentration. One
therefore frequently abstains from complete leaching and terminates the cleaning
procedures with a final long sputter session, followed by a mild annealing to a
temperature, which is sufficient for re-crystallization, but too low to let the bulk
impurities diffuse to the surface. The surface cleaning procedures can be speeded
up by using thinner crystals or by heating the crystals in a hydrogen atmosphere
for a longer time prior to mounting in the UHV-chamber.
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Preparation by in-situ chemical reactions

Because of the considerable deficiencies of the sputter-annealing process, alterna-
tive methods of cleaning should be considered, if possible. One of them is cleaning
by chemical reactions in vacuum. Surfaces of the refractory metals, tungsten, mo-
lybdenum and niobium, e.g., are cleaned by high temperature oxidation. This
process burns off surface carbon deposits as well as the dissolved carbon, which
tends to segregate to the surface even more readily in an oxygen environment since
the reaction product CO is a state of lower chemical potential. Oxygen also reacts
with the substrate material to form oxides. For the refractory metals, these oxides
have a higher sublimation pressure than the substrate material. They are therefore
removed by heating without evaporation of substrate material. The required tem-
peratures are listed in Table 2.1. The comparatively high temperatures are
achieved by electron bombardment. Since only refractory metals withstand such
temperatures, the sample holder, at least the parts that become hot, must be manu-
factured from the same materials. The temperatures can be measured either by
using a pyrometer or by spot welding a W/Re thermocouple to the sample.

Table 2.1. Recipes for cleaning by oxidation and reduction for W, Mo, Nb and Re.

Material Oxidation Reduction
W 24 h, 1x10™*Pa, 1000 K 2500 K
Mo 5x107°Pa, 1400 K 2000 K
Nb 1x107* Pa, 1000 K 2h at 2300 K
Re 90 s, 1x10™*Pa, 1600 K 2100 K

In order to maintain UHV-conditions during sample heating, the sample holder
must be degassed during and after chamber bake-out by heating the sample to the
same temperatures as during the cleaning procedure. Successful degassing requires
that the electrons emitted from the cathode during electron bombardment only
strike the intended target. Otherwise, electrons hitting the chamber walls or the
sample manipulator would cause electron stimulated desorption, with negative
consequences for the vacuum. A simple recipe to avoid electron stimulated desorp-
tion is to bias the cathode positively with respect to ground by about 50-100 V. In
that way even electrons that are elastically scattered from the target cannot arrive
on the chamber wall or at those part of the sample mount, which are not on high
positive voltage. A positive bias is automatically obtained by using a power supply
for the cathode heating current that floats with respect to ground and by connecting
the cathode to ground by a resistor. The resistance R is calculated as 50 V/l.pission
with L.pission the cathode emission current required to heat the sample to the desired
temperature. Depending on the sample size, temperature and the heat loss via con-
duction to the sample holder, up 100 W electric power may be required.

Cleaning by oxidation has also been used for cleaning Pt-surfaces. Oxygen
burns off carbon very effectively. After prolonged heating in an oxygen atmos-
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phere, Auger-spectra of Pt-surfaces tend to display an oxygen peak that cannot be
removed by heating to temperatures where adsorbed oxygen would desorb. This
stable surface oxide is due to Si or Ca contaminations in the bulk, which segregate
to the surface under the influence of the chemical potential of oxygen. Since Si and
Ca are difficult to detect by Auger spectroscopy in the presence of the many Pt-
associated peaks, the oxygen signal was mistaken for a form of stable platinum
oxide for some time. SiO, and CaO do not desorb. They are best removed by sput-
tering. Hence, a combination of oxygen treatment and sputtering appears to be the
optimum cleaning procedure for platinum.

Another method of chemical cleaning that works rather effectively without
being too aggressive is cleaning with atomic hydrogen. The method can be used to
remove most common contaminants from the surface: carbon, nitrogen, sulfur,
chlorine, fluorine, etc.. Silicon and germanium surface are etched by atomic hy-
drogen by the production of SiH, and GeHy. On II-V and II-VI compounds, the
stoichiometry is affected. Atomic hydrogen is produced by dissociation of molecu-
lar hydrogen on a hot tungsten filament that is placed near the sample. A better
method is to employ a beam of hydrogen atoms. A beam of up to 100% atomic
hydrogen is obtained by passing molecular hydrogen through a hot tungsten capil-
lary. Figure 2.23 shows a calibrated source of atomic hydrogen (after K.
Tschersich [2.16, 17]).

| Electric current feedthrough |

W-Capillary Heater

a H+H,

Shields

Fig. 2.23. Source for atomic hydrogen. Molecular hydrogen is dissociated at the hot walls of
a resistively heated tungsten capillary.
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Cleaning by atomic hydrogen is a standard method in semiconductor industry. It is
less common in research labs, mostly because it is only lately that good sources of
atomic hydrogen became commercially available. It is not advisable to use ineffec-
tive means of making atomic hydrogen from molecular hydrogen and compensate
the ineffectiveness by introducing massive amounts of molecular hydrogen into
the chamber: The hot oil in the turbo-pump and the rotary-pump may be crack-
reacted to hydrocarbon products that can be disastrous to the vacuum system!

Preparation by epitaxial growth

For many years, surfaces were considered clean when "the Auger spectra showed
no traces of contaminants". The sensitivity of Auger-spectroscopy is not very high,
however. The detection limit is 1% of a monolayer, in favorable cases 0.1%. That
still means that on a linear scale every tenth to thirtieth atom is a foreign atom.
While this contamination level may suffice for some studies of the electronic
properties and for structure analysis it would be intolerable for studies on the vi-
brational properties, on the morphological features of surfaces after annealing, on
catalytic surface reactions, or on the growth modes in epitaxial growth, to name a
few issues of current research interests. Contamination levels, as e.g. seen in STM-
images are frequently of the order of 10°°. These low contamination levels cannot
always be achieved by the classical techniques mentioned before. An alternative at
least for element crystals is to evaporate the material and grow several monolayers
of the material onto the pre-cleaned crystal surface to bury the remaining contami-
nant atoms. To obtain a smooth and contamination free surface the substrate
temperature need be chosen high enough to facilitate interlayer transport
(Sect. 11.1.4), but low enough to avoid segregation of the buried impurities. Natu-
rally, the evaporation source has to be out-gassed carefully, and sufficiently high
purity ingots have to be used to achieve good results.

2.3 Surfaces in an Electrochemical Cell

2.3.1 The Three-Electrode Arrangement

When a piece of material is immersed into an electrolyte, the ions of the electro-
lyte react with the surface and transfer their charge to the solid. If the solid is
electrically isolated otherwise, the electric potential of the solid changes until it
reaches an equilibrium value that is characteristic of the electrode/electrolyte
combination. The ion/surface reaction can be controlled by applying a potential
from an external source. That is why electrochemistry of the solid/electrolyte in-
terface is the science of solids in an electrolyte under potential control. The
potential is defined with respect to some reference redox system (see Sect. 3.1.3).
Thus, the experimental set-up involves always a reference electrode, which is in
equilibrium with the electrolyte. Equilibrium means that no current should flow
between electrolyte and the reference. The potential of the working electrode (the
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electrode of interest) with respect to the reference electrode must therefore be
measured without drawing a significant current on the latter. The current load on
the working electrode is picked up by a third electrode, the counter electrode.
Hence, electrochemical experiments require three electrodes.

We note that in electrochemistry the term potential is used synonymically for
voltage and is therefore measured in units of volts, rather than electron volts. We
stay in keeping with that custom throughout this entire volume. Furthermore, elec-
trochemists denote the potential by the letter E. To avoid confusion with the
energy we use the symbol ¢.

Reference electrode

Working
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Counter | I f
- electrode i !| T Bead
| Argon crystal
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Argon inlet
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Thermostat Water
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Fig. 2.25. Electrochemical cell with reference electrode, see text for discussion.

Figure 2.25 shows a glass vessel used for standard electrochemical measure-
ments. The counter electrode is a sheet of platinum. The reference electrode is
electrically connected to the electrolyte in the vessel via the Luggin-capillary. The
capillary should end near the working electrode so that the measured potential is
little affected by potential drop between the working electrode and the counter
electrode. The Luggin-capillary is filled by introducing slightly pressurized argon
into the inlet on the left side. This drives the electrolyte into the capillary once the
valve is opened. Contact with the possibly different electrolyte in the reference cell
is thereby established. To remove the dissolved oxygen, argon is bubbled through
the cell prior to immersion of the working electrode. The working electrode is
immersed into the electrolyte under potential control, which means that the poten-
tial of the working electrode is fixed with respect to the reference, regardless of the
current between the working electrode and the counter electrode. Figure 2.25
shows a bead crystal as the working electrode. The crystal is retracted a little after
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immersion so that the electrolyte forms a meniscus with the perimeter. This en-
sures that only the prepared and oriented surface (see expanded view) is in contact
with the electrolyte.

2.3.2 Voltammograms

The basic experiment in electrochemistry is the voltammogram: the potential of the
working electrode with respect to the reference is swept at a constant rate up to a
maximum and then backwards to the starting potential to complete a full cycle,
and the current is measured during the entire cycle. This basic experiment is the
starting point for practically all investigations on the solid/electrolyte interface
because to the learned scientist the voltammogram immediately reveals the status
of the surface in terms of order and cleanness. We discuss this with the voltammo-
gram of a Pt(111) surface as an example (Fig. 2.26). The vertical axis in Fig. 2.26
is the area specific current, the horizontal axis the potential with respect to the
Reversible Hydrogen Electrode (RHE). This electrode consists of a sheet of high
surface area platinum (black platinum) with molecular hydrogen bubbling through
the electrolyte. The electrolyte at the reference is the same as at the working elec-
trode. No continuous electrochemical reaction takes place in the entire potential
range shown in Fig. 2.26. Hence, the current were zero if the potential were kept
constant. The finite current arises from loading and unloading the interfacial ca-
pacitance (Sect. 3.2.3), from the charging and discharging of ions adsorbing and
desorbing from the surface at a particular potential, and from phase transitions that
may take place on the surface. The current density j arising from the capacitance is

j= C% , (2.22)

in which d¢/dr is the sweep rate of the potential and C is the area specific interfa-
cial capacitance. The capacitance is about 50 uF/cm? (Sect. 3.2.3). The sweep rate
in Fig. 2.26 was 50 mV/s. The capacitive current is therefore about 2.5 uA/cm?,
Only the current between the peaks in the right half of the figure is therefore a
capacitive current. Starting from the left, the nearly constant current is due to de-
sorption of hydrogen from an adsorbed layer of hydrogen on the surface.
Hydrogen desorbs as a solvated, positively charged proton, hence the current.
Electrochemists call the adsorbed layer of hydrogen underpotential deposited
(upd-layer, Sect. 6.2.4). Underpotential, because the bulk phase of hydrogen, the
H,-gas, develops at a more negative potential. The small peaks in the otherwise
monotonous current are due to desorption from A- and B-steps on the surface
(Figs. 1.32 and 1.33). The magnitude of these peaks is therefore a good indicator
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Fig. 2.26. Voltammogram of a Pt(111) crystal in 0.5 M H,SO, (courtesy of Guillermo
Beltramo). The potential is with reference to the Reversible Hydrogen Electrode (RHE).
The sweep rate is 50 mV/s. See text for further discussion.

of the amount of disorder on the surface. The fact that these peaks exist is indica-
tive of the cleanness of the sample and the electrolyte: contaminants would tend to
sit in step-sites and block these sites for hydrogen. The assignment of these peaks
to step-sites originates from comparative studies on Pt(110) and Pt(100) surfaces.
For example, the voltammogram of Pt(110) exhibits shows a strong peak at 0.12 V
RHE. Since the local atomic structure of a B-step together with two atom rows on
the lower terrace is that of a (110) surface (Fig. 1.33) the small peak at 0.12 V
RHE in Fig. 2.26 is assigned to hydrogen adsorption at B-steps. An interesting
question is why desorption from the step sites gives rise to a sharp peak as opposed
to desorption from the terraces. It is shown in Sect. 6.2.5 and 6.3.2 that the sharp-
ness of a desorption peak is related to the lateral interactions between adsorbates:
sharp peaks occur when there are no interactions between adsorbates or attractive
interactions, broad peaks or even featureless currents occur for repulsive interac-
tions. In the latter case the adsorption isotherm extends over a large potential range
and correspondingly desorption extends over a broad range (see also Fig. 4.7). The
broad hump at 0.35V RHE is the initial adsorption of SO, -ions. Further uptake
causes a phase transition into an ordered sulfate adlayer, which manifests itself by
the sharp spike at 0.45V RHE. The sharpness of the peak is an indicator of the
domain size, hence of the order and cleanness of the surface. The final peak is
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caused by the insertion of OH™ -ions into the sulfate layer. The peaks have their
counterparts in the negative sweep. Except for the OH-peak, all peaks in the nega-
tive sweep are at the same potential as in the positive sweep and have the same
shape. That means that adsorption/desorption processes were in equilibrium with
the electrolyte at the corresponding potential.
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Fig. 2.27. Voltammogram of Au(100) in 0.05 M H,SO, (courtesy of Margret Giesen). The
potential is with reference to the Saturated Calomel Electrode (SCE). Sweep rate is
10 mV/s. See text for further discussion.

The voltammograms of gold surfaces are less rich in features, nevertheless inter-
esting. Figure 2.27 displays the voltammogram of an Au(100) surface in 0.05 M
H,S0,. Now, the potential is with reference to the Saturated Calomel Electrode
(SCE) (OV RHE corresponds approximately to 0.24V SCE). The sweep rate is
10 mV/s. The surface was immersed into the electrolyte at —0.2 V SCE. At this
potential the Au(100) surface is reconstructed (Fig. 2.28a, see also Sect. 1.2.1).
The reconstruction is lifted when the potential is raised to positive values. Since
the potential of zero charge (pzc) of the unreconstructed surface is lower by about
0.3 V, the interface capacitor is suddenly charged upon lifting the reconstruction,
which causes the peak in the current (for details see Sects.3.2.3, 4.2.3 and
Fig. 4.7). As for the Pt-surface, sulfate ions adsorb for positive potentials, how-
ever, the sulfate uptake extends over a wide potential range of 0.6V (Fig. 4.8, 6.19)
and no peak arises from that. Instead, the gradual SO, -adsorption gives rise to the
higher current. The beginning of the SO -adsorption is seen as the onset of a
higher current in Fig. 2.27. When the reconstruction is lifted, the surplus atoms
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Fig. 2.28. Reconstructed Au(100) surface after immersion into the electrolyte at negative
potentials (a). The reconstruction is lifted around 0.35 V SCE (b). The 25% surplus atoms
(Sect. 1.2.1, Fig. 1.11) form adatom islands on the surface (c¢). The surface reconstructs
again after sweeping back to negative potentials, however the process is kinetically hin-
dered. The reconstruction begins in streaks. Atoms at the island edges jump into the next
layer underneath: the island is "eaten up by the streaks" (d). (Courtesy of Margret Giesen).

form islands on the surface (Fig. 2.28b). When the potential is swept backwards,
the islands do not instantaneously dissolve into the first layer. Rather, the recon-
struction is established along linear streaks that "eat" into the islands (Fig. 2.28c)
causing the odd island shapes. Since the process of re-establishing the reconstruc-
tion takes time, the reconstruction peak in the negative sweep is broad and shifted
towards negative potentials. Its shape depends on the sweep rate.

Voltammetry is sometimes seen as the equivalent to thermal desorption spec-
troscopy of surfaces in vacuum (Sect. 6.3). In thermal desorption spectroscopy,
the species desorbing from the surface are observed while the temperature is
raised at a constant rate. Upon a closer look the differences between voltammetry
and desorption spectroscopy are however larger than the similarities. On the tech-
nical side, voltammograms differ because one runs a complete cycle of the
potential with adsorption and desorption. Unlike the desorption in vacuum the
desorbing species have to be transported away by diffusion which has a consider-
able influence on the kinetics and makes the quantitative interpretation of
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voltammograms more complicated. As we have seen, the most significant features
in voltammograms are those associated with phase transitions that occur at a par-
ticular potential for which is no equivalent in thermal desorption spectroscopy.
Adsorption and desorption on the other hand mostly cause structureless currents.
Finally, voltammograms show continuous reactions outside the realm of the ide-
ally polarizable electrode.

2.3.3 Preparation of Single Crystal Electrodes

There may be still one or the other surface scientist coming from the UHV-
background who would be inclined to denounce work on electrolyte surfaces as
"dirty", or dismiss electrolyte surfaces as being less well defined than surfaces
prepared in UHV. Latest with the advent of single crystal electrochemistry and the
electrochemical STM there is no justification for such arrogance. Experiments on
the solid/electrolyte interface can be just as clean and well defined as any UHV-
experiment. Merely, the methods by which that result is achieved differ: They
largely involve chemical rather than physical preparation techniques. There is
definite lack of methods to determine the state of cleanness of a surface in an elec-
trolyte. No equivalent to Auger- or photoemission spectroscopy to reveal
impurities exists. With a well-equipped UHV-system at hand a physicists can
teach himself how to prepare a surface by trial and error. The preparation of elec-
trochemical experiments and of electrochemical surfaces requires training and
experience. This holds even more as the interpretation of the standard check on the
experimental conditions, the voltammogram, requires expertise and the compari-
son to a reference voltammogram of an undisputedly clean and well-ordered
surface. In the absence of other techniques, it has taken quite a while until re-
searchers could agree as to how a voltammogram of a clean and well-ordered
surface of a specific material in a specific solution should look. Differences in
voltammograms frequently concern very subtle features: the height and width of a
narrow peak (e.g. the peak caused by the disorder-order phase transition in
Fig. 2.26), the magnitude of defect-associated peaks (steps in Fig. 2.26), or the
overall slope of the voltammogram ("hanging" voltammogram). Moreover, even if
reference voltammograms are available, a deviation from the reference may be for
more than one reason. For example, the absence of the small step-associated hy-
drogen desorption peaks in Fig. 2.26 could be due to a very low concentration of
steps on the surface, which would be good. However, it also could (and may more
likely) be due to contaminations blocking the step sites, contaminations that came
from the crystal preparation procedure, from the electrolyte or from the walls of
the glass vessels because of insufficient cleaning. To determine the cause for a
failure, or rather to have the right thoughts about a failure, requires experience,
skill and considerable training. These capabilities are not acquired in a do-it-
yourself training program. Rather the novice should enter a "school" and learn the
trade there.

There is another important reason why self-training is not the thing to do, in
particular not for a person with a background in physics, that is safety! Cleaning
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procedures for the glassware require handling of extremely hazardous agents.
Strongly oxidizing acids such as Carot's acid (also called Piranja acids since or-
ganic material such as ones finger is dissolved in seconds!) or a mixture of
concentrated sulfuric and nitric acid are used in liter-quantities and boiling hot.
Dealing properly with those hazardous materials requires special laboratory
equipment, protective clothing and, above all, training in safe and disciplined
working conduct, which is not necessarily one of the virtues of a physicist. It is
therefore that we abstain from providing detailed recipes for cleaning procedures
of the glassware and the preparation of electrolytes in this volume. In the follow-
ing, we concentrate on the pre-treatment of a few specific single crystal materials.

Platinum, gold and silver single crystal surfaces are prepared by flame anneal-
ing. The crystals are gently heated by a Bunsen burner fed by hydrogen and air.
Platinum is heated yellow-hot (=1300 °C), silver and gold to dark red-hot
(=700 °C). Bead crystals are particularly well suited for flame annealing. The crys-
tals are held with tweezers by their wire end, which minimizes stress on the crystal
during the process. The crystals are cooled down slowly in an argon/hydrogen
atmosphere (with 5% hydrogen). Once the temperature is below 100 °C, the crys-
tals are immersed into the electrolyte under potential control. The silver crystal
requires chemical treatment before flame annealing in H,O,/cyanide and H,0,
solutions.

Copper surfaces are in-situ electro-polished in 50-66% orthophosphoric acid by
applying a potential of about 2 V between the copper electrode and a platinum
sheet for 15-60 s.



3. Basic Concepts

The section reviews some basic concepts of Solid State Physics, Chemistry and
Electrochemistry in as much as they come to bear in this volume. Elastic proper-
ties of crystalline solids are treated more extensively since they have become
rather important for surfaces and thin film systems lately. As an application, the
elastic interactions between defects and strain-induced self-assembly are consid-
ered.

3.1 Electronic States and the Chemical Bonding in Solids

3.1.1 Metals

The simplest model for the quantum states of electrons in a metal is the particle-
in-a-box model, the box being represented by a potential wall. The model neglects
all explicit electron-electron interactions. Each electron is considered as being
completely independent of each other and described by a single particle wave
function. According to the Pauli-principle, the single electron states (the energeti-
cally degenerate spin-up and spin-down states are counted as separate states!) are
occupied by one electron up to a maximum energy, the Fermi-level. As simple as
the model is, it accounts for many essential properties of the electronic structure of
metals. In the context of this volume, the model also serves to introduce certain
notations. It is therefore briefly sketched in the following. For details, the reader is
referred to standard textbooks on solid-state physics.

The electron states are particular simple if one assumes the potential box to pos-
sess infinitely high walls.

0 0<x,y,z<L
for X, 9,2 } G.1)

V(x,y,2) ={

elsewhere

The Schrodinger equation inside the box and the boundary condition that the wave
function be zero where the potential is infinite is fulfilled by the ansatz

2 \2
y(x,y,2) =[Zj sink,x sink,y sink z (3.2)

with



104 3 Basic Concepts

T
k.=—n.n =123... 3.3
L L L L ( )
The energy E is
2,2 2
Eky ="k =h—(kf+k§+k3) (3.4)
2m m -

in which m is the electron mass. The eigenstates labeled with the first four k-
values are displayed in Fig. 3.1. For a bulk solid, these low-energy states are un-
important, since there are only a few of them and they remain occupied under all
circumstances. The low-energy states do play a significant role in quantum well
structures where only a small number of theses states exist below the Fermi-level
(Sect. 8.3). For a box with finite potential walls (V = V;, outside) the wave function
develops exponential tails which extend into the region outside the box with a

decay length inversely proportional to the square root of V —7%k>/2m .

Fig. 3.1. The wave function y for particles in a box for n,=1,2,3,4; n,=n,= 1. The larger
the wave vector, the more rapidly the electron density |¥ of the corresponding electron
drops to zero at the boundary of the box. For k = kg the characteristic decay length is about
T/2kg.

Following the Pauli-principle, the single electron states are filled up to an energy
EF, the Fermi-energy that is

2,2 52
E, - hokg =;l_m(3n2n)3/2 35)
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with n the electron density and kp = (37:211)3/ 2 the wave vector of the electron

with the energy Eg. By counting the number of states in an energy window dE one
can easily derive the density of electron states D(E) per energy and volume for the
particle-in-a-box-model,

3/2
D(E) = %\/E . (3.6)
T

This expression is a very good approximation to the actual density of states of s-
electrons in metals. For metals with d-states in the regime of valence electrons e.g.
the 3-5d transition metals, a contribution due to d-states is to be added. Because of
the more localized character of d-electrons and the larger number of d-states per
atom, the density of d-states is confined to a narrower energy range and the den-
sity exceeds that of s-electrons by far.

According to the Pauli-principle, the occupation of an electron state can be
either zero or one. This principle also regulates the occupation of electron states at
a finite temperature T. The probability for a state to be occupied fAE,T) is

1
f(E,T)= —EiT 1] (3.7

with u the chemical potential of electrons and kg the Boltzmann constant. At
T=0K, AET) is 1 for E< x and O for E > u. The chemical potential is therefore
equal to the Fermi-energy Er at T=0 K.
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Fig. 3.2. Fermi-function f{E,T) for E in the vicinity of # for T=0K and 7= 300 K. The
Fermi-function is symmetric to both sides of E—u¢ = 0 with a width of 2kgT to either side.
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For T> 0 K the Fermi function is a smooth symmetric function around (E-x) =0
with a width of about 2k5T to each side (Fig. 3.2). The concentration of electrons n

n=7f(E,T)D(E)dE (3.8)
0

must remain constant with temperature. Since in genral the densities of states
above and below the Fermi-level are not equal, and since the Fermi-function is a
symmetric function, the chemical potential &« changes with temperature. The shift
with temperature is proportional to the negative slope of the density of states at the
Fermi-level, hence downwards for a D(E) as in (3.6). The shift can become quite
large for transition metals, which causes the larger thermo-electric power of such
metals.

The Fermi-function has its name because it describes the occupation statistics
of fermions. The derivation of the Fermi-function makes only use of the possible
occupation numbers and not of the spin being 2! Fermi-statistics is therefore also
the appropriate statistics for the occupation probability of all other particles that
have either zero or one as the possible occupation numbers. Statistical problem of
that occur also in other areas of physics, e.g. in the case of a non-interacting lattice
gas (Sect. 5.4.1). The relation between the probability of a site being occupied, in
other words the fractional coverage, and the chemical potential of the particles is
the same as for fermions. This concept immediately leads to the Langmuir Iso-
therm (Sect. 6.2.1).

3.1.2 Semiconductors

Metals are characterized by the fact that the Fermi-level falls inside a band of
electron states. Electrons at the Fermi-level can therefore pick up energy in infini-
tesimal small amounts, and thus can gain kinetic energy in an electric field, which
is the origin of the high electric and thermal conductivity of metals. Semiconduc-
tors and insulators possess a filled band of valence electrons, which is separated
from a band of unoccupied states, the “conduction band” by an energy gap. This
band structure is a consequence of the bonding and the electron configuration of
the atoms forming the solid. Consider silicon as an example (Fig. 3.3): If one
places the Si-atoms at the atom positions of the diamond structure (Fig. 1.17),
however at distance r much larger than the equilibrium distance, then the electron
orbitals initially remain as they are in the atomic 3s’3p’-configuration. As the
distance r is reduced the electron overlap, form bands and the electronic configu-
ration changes to sp’ hybrids, in order to maximize electron density in the regions
of low potential energy in the bonding regions between the atoms. All four va-
lence electrons per atom stay in the lowest band, the valence band, which is fully
occupied, while the upper band is completely empty. This immediately raises the
question where does one have to place the Fermi-level, respectively the chemical
potential at finite temperature. It seems that one might place Ep arbitrarily any-
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where between the occupied and the unoccupied band. However, this is not so! To
determine the position of the chemical potential at finite temperature and hence
the Fermi-level by considering the limit 7— O one needs to consider the density of
the valence and conduction band in more detail. Around the minimum of the con-
duction band, the electron energy can be expanded into a Taylor series with
respect to the wave vector k. The lowest term is necessarily the k*-term. The elec-
tron energy can thus be described by

2( 2 g2 2
E(k) = E, +h7[k—u—y+k—2] (3.9)

in which m,, m,, and m, denote effective masses of the electron in the three direc-
tions and E. is the edge of the conduction band. Near the conduction band
minimum, the density of states has the same square-root dependence on the energy
as for a metal (Fig. 3.4). The same argument can be made for the density of states
at the upper edge of the valence band.

| conduction band

Electron energy ——
gn
/’ 7

78

\ Number of
states per atom

Interatomic distance r ——

Fig. 3.3. Energy bands of electrons in solids formed by the group IV elements C, Si, and Ge
as a function of the interatomic distance. Note that the equilibrium separation ry is not at the
minimum of the electron energy because the Coulomb repulsion between the ion cores
needs to be balanced.
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Because of the rapid decay of the occupation probability with energy, only the
densities of states near the band edges are important (Fig. 3.4). The concentration
of electrons n in the conduction band is

_Er_:u

n= [D.E)f(E-T)YdE=Nge " (3.10)
EC
with the effective density of states
2rm kT )
Tm
off ={—h°2 B J . 3.11)

Here m: is a mean effective mass of electrons in the conduction band. In (3.10)
the Fermi-function is approximated by a Boltzmann distribution, which is a good
approximation as long as the chemical potential is several kgT below the conduc-
tion band.

KE,T), D(E)

E, u E, Energy
Fig. 3.4. Density of states in the conduction and valence band of semiconductors (solid
line) and the Fermi-function (dashed line). The chemical potential adjusts itself so that the
total number of electrons in the conduction band equals the number of unoccupied states
(holes) in the valence band. The chemical potential of electron has therefore a defined value
even though there are no states at the energy that corresponds to the chemical potential.

The concentration of unoccupied states, of “electron holes” is correspondingly

E —
+V7’u

E,
p= [DBI-f(ED|dE=Nyze " (3.12)

—oo

with
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2 kT )
v T[mv
N =(—h2 B J (3.13)

the effective density of states at the top of the valence band. The product of the
concentration of electrons n and holes p is

Eq

np=NgNige (3.14)

in which E, = E - E, is the energy gap between the conduction and valence band
edge. Eq. (3.14) can be considered as the law of mass action for electrons and
holes.

As electrons in the conduction band stem from the valence band the concentra-
tion of electrons n equals the concentration of holes p. By equating (3.11) with
(3.12) and by solving for & one obtains the position of the chemical potential as a
function of temperature.

+ kBT In Nevff

(3.15)
2 2 N:::ff

Hence, u lies in the middle between the conduction and the valence band edge at
T=0K, and it stays there if Ng; = N . The chemical potential of electrons has

therefore a defined value at all temperatures even though there are no states at the
energy .. This statement may appear trivial at this point, but is less trivial when
extended to insulators or ionic conductors of solid or liquid phase. As long as the
system has states for electrons to be occupied, one has a defined position of the
chemical potential of electrons. For two systems in equilibrium, the chemical po-
tential determines the position of the energy levels with respect to each other. If
the density of states is low around the chemical potential, the position of the
chemical potential changes rapidly when the system is charged. For semiconduc-
tors e.g., the chemical potential can vary between the conduction band and the
valence band, depending on concentration and sign of additional charges brought
into the system by doping or by contact with a metal or another semiconductor.
Local variations of the chemical potential are even more facile in insulators. In
metals, on the other hand, the chemical potential of electrons hardly changes upon
charging.

3.1.3 From covalent bonding to ions in solids and liquids
Compounds made from group III- and V-elements and from II- and VI-elements

are likewise bonded by sp’-hybrids. The structure of III-V compounds is the dia-
mond structure, albeit with the two atoms in the primitive unit cell occupied by



110 3 Basic Concepts

one atom each, whereby the Zincblende structure results (Fig. 1.17). An alterna-
tive structure in which the tetrahedral coordination is retained is the wurtzite
structure that is predominantly realized for II-VI-compounds. Since the two atoms
in the unit cell are different, the bonding has a partial ionic character. It is impor-
tant to state that the ionicity is really just a partial one. Considering the compound
ZnO as an example, which crystallizes in the wurtzite structure, merely a fraction
of an electron charge is transferred from zinc to oxygen in forming the bond, in-
dependent on how one defines atomic charges in a solid in detail. It is therefore
misleading to say that the Zn atom is in the Zn>* oxidation state in ZnO, or, to give
another example, that Fe is in both the Fe?* and Fe**-oxidation states in the com-
pound magnetite, Fe;O,4. Only in a few extreme cases of a purely ionic bonding as
in the alkali-halides, electronic charge is transferred completely from one atom to
another. Assigning spectroscopic energy levels as X", X" levels to characterize
different electronic structure of an atom X in a different local environment, as it is
done sometimes, is therefore a misconception. The situation is even more confus-
ing in chemistry where oxidation and reduction were traditionally conceived as
removal and addition of one or more electrons from an atom, processes that actu-
ally do not occur. One might wonder how this concept of oxidation/reduction
came about, as it evidently has no foundation in the physics of the solid state. It is
presumably because chemistry was primarily the science of reactions, and reac-
tions may be accompanied by a charge transfer. This holds in particular for
corrosion and galvanic deposition. A zinc atom, e.g., when dissolved in an acidic
aqueous solution becomes an ion complex, and the process is accompanied by
leaving behind two electrons on the solid zinc electrode.

In the previous section we have learned that electron have a defined a chemical
potential even when no electronic states exist at the energy which corresponds to
the chemical potential. A chemical potential and hence a Fermi-level exists there-
fore also in solids with partial or even purely ionic bonding which may be
complete insulators with regard to electron transport. If a Fermi-level can be de-
fined there, it exists also in liquids with ionic but no electronic conduction, i. e. in
electrolyte solutions. For a semiconductor we have found an easy way to relate the
position of the Fermi-level to the electronic states of the system. It is less trivial to
establish such a relation with respect to the energy scale of the multitude of redox
reactions. The reference point to all redox reactions is the protonization of hydro-
gen in water.

%Hz S H +e” (3.16)

Instead of writing H" sometimes H;O" is used in textbooks to indicate that H" does
not exist by itself in water. According to more recent work, this again is a poor
representation of the actual state, H;O3 being a better one [3.1]. The reaction

(3.16) is a half-reaction, which cannot occur in water as such because water has no
state to accommodate the free electron. A supplementing second half of the reac-
tion that takes care of the electron is
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H,0+e @%H2+OH_. (3.17)

The sum of (3.16) and (3.17) is the water dissociation reaction
H,0 & H"+0H", (3.18)

which requires a free enthalpy AG (practically equal to the free energy AF at at-
mospheric pressure) of 0.83 eV per atom. If one assigns by definition the energy
level AG = 0 to the half reaction (3.16) then AG = 0.83 eV is to be assigned to the
half reaction (3.17). One way to raise that energy in the appropriate form, namely
as a free energy, is to place the electron on a metal with a negative voltage. With
respect to the definition of the zero on the redox energy scale the voltage on the
metal would have to be —0.83 V. By comparing equilibrium reaction energies of
various reactions the complete scale of “Standard Potentials” (potentials in the
sense of voltages, not energies) evolves. This energy scale can furthermore be
matched to an absolute energy scale by considering certain reaction cycles (see
e.g. [3.2]). Reference point of that absolute scale is the vacuum energy of an elec-
tron, which is the energy of an electron just out side the solid or liquid (to be
specifically defined in the next section). For the water dissociation, we then have
the following energy scales.

Table 3.1. Energy scales and standard potential for the water dissociation reac-
tion.

. Chemical Absolute energy Standard Poten-
React
eaction energy AG / eV scale / eV tial U/ V
lH, oH e 0 -3.67+0.2 0
2
H,0+¢ < LH,+OH" +0.83 -4.5+0.2 -0.83
2
Lo, 420" & 1,0 +1.24 ~4.9120.2 ~1.24
2

The equilibrium concentration of the ions H" and OH™ are calculated from the
formation enthalpy as

_4G

[1*] o )= [1,0]e &7 (3.19)

With [H'] = [OH ] one obtains for the relative concentration of protons in water at
298 K almost exactly 1.0x107" which is nice as it provides a simple pH scale,
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given by the negative logarithm of the H'-concentration: pH = 7.0 denotes neutral
water. Equation (3.19) is identical to (3.14) relating the concentration of electrons
and holes in an intrinsic semiconductor. The analogy goes even further. By doping
the semiconductor with electron donors more electrons are created, the product of
the concentration of electrons and holes remains the same. Similarly, when a base
NaOH is added to water, more OH™ ions reduce the concentration of H*-ions so
that the balance (3.19) is maintained, and the pH shifts to larger numbers. A semi-
conductor doped with donors corresponds to a base, when doped with electron
acceptors it corresponds to an acid. This correspondence can be exploited to de-
fine an electron chemical potential in an electrolyte. One may interpret the
dissociation of H,O into the ions H" and OH™ as a transfer of an electron from one
state to another with an activation energy of 0.83 eV. This defines the position of
the Fermi-level as

H=E, —pHkgTIn10. (3.20)
2

—H,oH"+e”

The standard potential scale is therefore a function of the pH-value.

3.2 Charge Distribution at Surfaces and Interfaces

3.2.1 Metal Surfaces in the Jellium Approximation

The particle-in-a-box model describes the metal electrons in terms of single parti-
cle wave functions, which are standing waves. For a box with infinitely high
potential barrier to the vacuum, all electron wave functions vanish at the surface,
independent of the electron energy. The charge density is therefore zero at the
surface (Fig. 3.1). Towards the interior, the charge density rises to the bulk value
within a screening length which is of the order of a quarter of the shortest possible
wave length, the Fermi-wavelength A =2m/kz. The bulk charge density is ap-
proached in an oscillatory way because of the sharp cut-off at the Fermi-wave
length. If the potential well is of finite depth, then the charge density is not zero at
the surface. Rather it “spills out” into the vacuum with an exponential decay. The
decay length A is determined by the work function @, the difference between the
energy of an electron in the vacuum E,,. and the Fermi-energy Ef.

(3.21)

While the particle-in-a-box model is reasonably realistic concerning the electron
charge distribution near the surface, it cannot predict the work function @ or, al-
ternatively the depth of the potential well. To this end, one has to move at least to
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Fig. 3.5. Electron density at the surface of a metal in the jellium model [3.5]. The density is
plotted for two different bulk electron densities represented by r,, which is the radius of a
sphere in units of the Bohr radius a, describing the volume associated with one electron.
Values of r, range between 2 and 6. Low values correspond to high electron densities. The
oscillations in the charge density are known as Friedel-oscillations.

the next level of sophistication and include electron-electron interactions. The
density functional theory [3.3, 4] applied to the “jellium-model” [3.5, 6] is the
simplest approach. The electron density near a surface according to Lang and
Kohn [3.5] is displayed in Fig. 3.5 for two different electron densities in the bulk.
As common in the theory of metals, the electron density is described as the radius
rs in units of the Bohr radius a, of the sphere possessing the volume of one elec-
tron. Values of r, range between 2 and 6, which approximately correspond to the
electron densities in aluminum and cesium, respectively. Figure 3.5 shows nicely
the spill out of electrons beyond the boundary of the positively charged back-
ground of the ions (assumed uniform). Towards the interior, the density ap-
proaches the bulk value within about a quarter of the Fermi-wavelength Ar. Since
the spill-out of the electron charge decays to zero exponentially, the self-consistent
potential for an electron leaving the metal approaches the vacuum level within half
a Fermi wavelength, according to the jellium model. In reality, the vacuum level is
approached more slowly because of the classical image force, which is not ac-
counted for in the quantum mechanical jellium model. An electron in the vicinity
of a metal surface experiences a force from its image charge inside the metal,
which causes the image potential
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Here, & is the vacuum permittivity. Quantum mechanically, the image force arises
from a virtual excitation of surface plasmons. The relatively slow increase of the
potential to the vacuum level has interesting practical and conceptual conse-
quences. On the practical side, the effective work of a metal electrode can be re-
duced by applying a high electric field, which leads to field-assisted thermionic
emission. Conceptually, the existence of the image potential and the gradual, yet
largely unknown transition into the quantum mechanical regime leads to the diffi-
culty that the potential for an electron a few tenths of a nm away from the surface
is not well defined.

(a) (b)

Fig. 3.6. Illustration to the Smoluchowski-effect. The density of electrons cannot follow
the sharp contour of the jellium-edge at a step site (a) or at a single adatom (b). The result
is a dipole moment pointing with the positive end away from the surface leading to a reduc-
tion of the work function. As well as the model describes qualitatively the dipole moment
associated with rough edges, it is an artifact of the jellium model and not the real cause for
the dipole moment (see Fig. 3.7).

The work function of a metal depends on the crystallographic structure of the sur-
face. In general, the more open the structure the lower is the work function. Fur-
thermore, a rough morphology leads to a reduction of the work function. This
reduction is known as the Smoluchowski-effect. Within the framework of the
jellium model, the Smoluchowski-effect has the same origin as the smooth contour
of the electron density in response to the sharp contour of the potential (Fig. 3.5),
the kinetic energy. The finiteness of the kinetic energy imposes a shortest screen-
ing length on the electrons. Because of the finite screening length, electrons can-
not perfectly screen a sharp structural contour on a surface such as given by a step
(Fig. 3.6). Steps should therefore have a dipole moment p,, with the positive end
pointing away from the surface, leading to a reduction of the work function for a
given concentration n; of dipoles on the surface (see also section 4.3.5).
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AD =—¢p.n €, (3.23)

As well as the model describes qualitatively the dipole moment associated with
rough surface features, it is an artifact of the jellium model and obscures the real
cause for the dipole moments which are associated with surface roughness. On a
real surface, the electrons “see” no sharp edges associated with steps or adatoms,
the charge contours provided by the ion cores of the solid are already smooth. The
real cause for the positive dipole moment, e.g. of an adatom has to do with the
formation of bonds with the substrate surface atoms. Bond formation requires the
occupation of empty states. The occupation of states right above the Fermi-level
cost the least energy. The substrate provides more such states than the single ada-
tom, simply because it contains more atoms [3.7]. Hence, the valence charge den-
sity flows towards the surface, thereby creating a net positive dipole (if all atoms
involved are of the same type). The effect is illustrated in Fig. 3.7. There, the dif-
ference in the charge density caused by the bonding of an adatom at the surface of
a large cluster of gold atoms representing a (100) surface is plotted in a plane
normal to the surface. Dashed and solid contour lines represent a reduction and
enhancement of electron charge, respectively. One sees that in the outer region
above the adatom, the electron concentration is reduced, and the charge is moved
towards the surface on both sides of the adatom, giving rise to a dipole moment.

Fig. 3.7. Contour lines of the difference in the electron charge density caused by the bond-
ing of an adatom on the Au(100) surface. The plot is a cross section in the (011)-plane
through the adatom. Dashed and solid lines correspond to a reduction and increase of the
charge density, respectively [3.7].
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3.2.2 Space Charge Layers at Semiconductor Interfaces

Because of the (orders of magnitude) lower densities of charge carriers, screening
in semiconductors involves much larger length scales than in metals and can there-
fore be treated semi-classically. This section is devoted to the problem of screen-
ing of a homogeneous surface by charge carriers, electrons or holes in the bulk of
the semiconductor. Surface charges and their corresponding countercharges in the
semiconductor bulk are frequently an intrinsic property of semiconductor surfaces
because of the existence of surface states and a mismatch of the neutrality position
of the chemical potential in the surface states and the bulk. We consider the
Si(111) surface as an example.

The unreconstructed Si(111) surface would have one dangling bonds on each
surface atom, i.e. each Si-surface atom has a nonbonding orbital which can ac-
commodate two electrons, is, however, occupied only by a single electron. Hence,
the surface states form a band of metallic character, albeit of very low conductiv-
ity. The conductivity is low since the bands are flat in k-space because of the poor
overlap between the surface atoms. The effective mass is therefore rather high.
The (7x7) reconstruction reduces the number of dangling bonds by roughly a fac-
tor of two without changing the metallic character of the surface state band. The
center of the corresponding metallic band is in the lower half of the band gap of
bulk silicon. The neutrality position of the chemical potential for this band of sur-
face states is therefore also in the lower half of the conduction band. The surface
states become negatively charged when the chemical potential rises above the
natural level given by the occupation of the participating orbitals, and positively
charged when it falls below.

Similar arguments can be brought forward for the Si(100) surface. For the un-
reconstructed Si(100) surface each surface atom would have two half-filled dan-
gling bond orbitals. One of the orbitals engages in the formation of dimer bonds
between adjacent surface atoms (Sect. 1.2.3) leaving one single occupied dangling
orbital per Si-surface atom. For symmetric dimers, the half-filled orbitals would
represent again a metallic surface state band. As discussed in Sect. 1.2.3, the
symmetric, metallic state is instable with respect to a Jahn-Teller distortion into
asymmetric dimers. The metallic band then splits into a filled band of the dangling
bonds of the "up-atoms" and the empty band of the "down-atoms" of the dimer.
The surface state band has therefore semiconducting properties, again with a low
conductivity because of the flat bands with high effective masses. The surface
neutrality level lies between those two bands in the lower half of the band gap (for
details on the surface band structure see Sect. 8.2.3).

Because of the high density of surface states, a small shift of the chemical po-
tential away from the neutrality level causes a large surface charge. Inside the
semiconductor bulk, the chemical potential is determined by the neutrality condi-
tion for the bulk. The chemical potential is near the center of the band gap for
undoped material, near the conduction and valence bands for n- and p-doped ma-
terial, respectively. Equilibrium between surface and bulk requires that the chemi-
cal potentials in the surface i and in the bulk 4, must be at the same energy. This
is realized by bending the bulk band structure near the surface (Fig. 3.8) and by
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moving the chemical potential in the band of surface states. Since the interface
must remain neutral as a whole and the density of surface states is large, the shift
within the surface state band in negligible, the chemical potential is “pinned” by
the surface states. The first experiment that demonstrated the pinning (denoted as
Fermi-level pinning in the semiconductor literature) due to surface states was per-
formed in 1962 by Allen and Gobeli on cleaved Si(111) surfaces [3.8].

(a) (b)
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Fig. 3.8. A high density of surface states causes a bending of the band structure of the
semiconductor near the surface to match the chemical potential in the surface state i to the
chemical potential in the bulk zs,.

The bending of the band structure corresponds to variation of the electric potential
with the coordinate z. As the typical length scale for the band bending is much
larger than the lattice constant, the dependence of the potential on the position z
can be calculated in the continuum approximation. In the following, we denote the
electric potential (in the sense of a voltage) as ¢(z), so that the energy levels of the
band structure vary as —e@(z), with e the charge of an electron. The variation of
the potential @(z) is then obtained from a self-consistent solution of the Poisson-
equation and the charge density o(z) as given by the occupation of the various
energy levels according to Fermi-statistics

d’¢(z) __p(2)

dz? €€

. (3.24)

Here, € is the relative dielectric permittivity of the material. The charge density
has contributions from the concentration of holes p(z), of electrons n(z), of ionized

donors Ny, and of ionized acceptors N .

p(2) = e(p(z) +Np(z2)—n(z)— Ny, (z)) (3.25)
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A qualitative insight into the magnitude of the band bending and its dependence
on the doping is provided by the Schottky-model. The model assumes a complete
pinning of the chemical potential at the surface and one type of doping, n- or p-
type, in the bulk. Here, we consider the case of p-doping. The band bending is
then as qualitatively depicted in Fig. 3.9a. In the bulk, the charge density o(z) is
zero and the chemical potential lies between the energy level of the acceptors and
the valence band, provided the temperature is not too high and the p-type conduc-
tion is dominated by the doping. This is the typical situation for doped silicon at
room temperature. Because of the position of the surface states, the bands must
bend downwards near the surface and the chemical potential moves closer to the
center of the band gap. Thereby, the acceptors become ionized and thus negatively
charged in the band-bending region.
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Fig. 3.9. (a) Band bending in the case of p-doping when the band of surface states is cen-
tered in the lower half of the band gap. (b) The charge density o(z) can be approximated by
constant value —eN, in the range between z = 0 and z = d (hatched area).

The maximum charge density is given by the concentration of acceptors N,. Be-
cause of the exponential dependence of the occupation probability on the position
of the energy levels the transition between charge density o(z) = 0 and p(z) = —eNy
is confined to a narrow range (Fig. 3.9b). The charge density p(z) can therefore be
replaced by a constant -eN, between z =0 and z = d. The solution of the Poisson-
equation is then simply obtained by elementary integration as

eN,

(z—d)* z<d (3.26)
2ee

P(2) = P() —

The total band bending is therefore
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@y = P(2) = p(0) = ZIZ—gAdz (3.27)
0

Under the assumption of a complete pinning of the chemical potential at the sur-

face ¢, is given simply by the difference between the neutrality levels in the sur-
face and the bulk,

P = (s —p)/ e. (3.28)

The thickness of the space charge layer d in terms of that difference is
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d=| 2l ) | (3.29)
e" N,

Hence, the thickness of the space charge layer is inversely proportional to the

square root of the acceptor concentration. For a typical doping of 10" cm™ and

with £= 12 for Si, one obtains d =100 nm which, in hindsight, justifies the use of

the continuum approximation.

Technically more important than the space charge layers on clean surfaces are
those in pn-junctions and at the metal semiconductor interface. The very first solid
state electronic device, a piece of mineral PbS with a spring-loaded tip of copper
bronze which served a rectifier for radio frequencies in the first half of the last
century, was based on the electric properties of the metal/semiconductor interface.
A typical potential diagram of a metal/semiconductor interface, this time for an n-
type semiconductor is displayed in Fig. 3.10. Equilibrium between the metal and
the semiconductor is assumed (no current flow). The positions of the chemical
potentials in the metal and the semiconductor must match. In order to achieve that,
band bending must occur. The magnitude of the band bending is given by

D =ep=®-A-y+u,—E, (3.30)

in which @ is the work function of the metal, y the electron affinity of the semi-
conductor g the position of the chemical potential in the bulk of the semiconduc-
tor and E. the conduction band edge. The quantity A represents a potential drop
due to a dipole layer within the metal/semiconductor interface. This dipole layer is
of microscopic origin and due to the atomic structure of the interface.

For the metal/semiconductor interface, the chemical potentials inside the metal
and the semiconductor can be shifted with respect to each other by applying an
extra voltage U, which results in a current flow. The current is a non-linear func-
tion of the potential. The current rises exponentially if the applied voltage is posi-
tive on the metal (for n-doping), since the band bending is reduced thereby,
leading to a higher conductivity of the semiconductor in the space charge region.
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Fig. 3.10. Potential diagram of a metal/semiconductor interface with an n-doped semicon-
ductor. The band bending is determined by the work function of the metal @, the potential
drop 4 across the microscopic interface, the electron affinity of the semiconductor y, and
the position of the chemical potential in the semiconductor relative to the conduction band
edge E.. The thicknesses are not drawn to scale: the microscopic interface is a few tenths of
a nm thick, while the thickness of the space charge layer is of the order of 100 nm, depend-
ing on the concentration of dopants.

For reverse bias, the band bending increases and the space charge layer becomes
semi-insulating. Current can only flow because of thermal generation of holes in
the semiconductor within the recombination distance from the interface [3.9]. The
metal/semiconductor interface therefore acts as a diode. In addition to the rectify-
ing property, also the behavior with respect to ac-currents is of interest. For ac-
current loads, the metal/semiconductor acts as a capacitor. One charge sits on the
metal or in interfacial states; the counter charge is in the space charge layer. The
capacitance is entirely determined by the thickness of the space charge. The elec-
trical properties of the metal/semiconductor interface with respect to ac-current are
determined by the differential interfacial capacity, which is the derivative of the
charge on the capacitor with respect to the applied potential difference between
the metal and the semiconductor. The capacitance per area is then

a a a 2 U 1/2
C=—G:—(eNDd)=eND— 285, +U) ~% 331
U U Wl eNg d

as if the capacitor were built from two metal plates placed at a distance given by
the thickness of the space charge layer with the semiconductor material as a di-
electric. The thickness d itself depends on the applied potential U. In the range of
reverse bias, the metal/semiconductor interface (as well as any pn-junction) can be
employed as a tunable capacitance, which is a standard application in electronic
devices.
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3.2.3 Charge at the Solid/Electrolyte Interface

The objective of this subsection is to calculate the total capacitance of the
solid/electrolyte interface. The charge distribution is similar to the metal/
semiconductor interface. As for the latter, there is a thin region of the interface
with a thickness of one or two atoms/molecules consisting of adsorbed water
molecules, solvated ions that are weakly bonded to the surface and, depending on
the chemistry and the applied electrode potential, specifically adsorbed ions
(Fig. 1.50). Relatively little is known about the atomic structure of this “Stern-
layer” (see Sect. 1.5). Concerning the electrical properties, macroscopic measure-
ments as well as general principles require a drop or rise of the macroscopic po-
tential across the Stern-layer, in particular if ions are “specifically” adsorbed at the
surface (Sect. 1.5). Water molecules are bonded to the surface essentially with
their dipole moment parallel to the surface since otherwise the potential drop
across the interface (3.23) would become huge because of the large dipole mo-
ment of the water molecule. First principle theoretical calculations confirm this
orientation (Sect. 6.4.4). However, an externally applied electric field across the
interface can reorient the water molecules slightly, giving rise to a polarizability of
the interface. Further contributions to the polarizability stem from the solid sur-
face. They have been calculated within the jellium model [3.2]. In a macroscopic
measurement, this polarizability as well as the reorientation of the water molecules
appear as a capacitance, known as the Helmholtz-capacitance Cy. The Helmholtz
capacitance has a broad maximum around pzc (Fig. 3.12). The decay of the Helm-
holtz-capacitance on both sides of pzc is caused by a saturation of the dielectric
properties due to the extremely high electric fields in the Stern-layer.

Parallel to the displacement current loading or unloading the interfacial capaci-
tance, ohmic exchange currents may exist, by which ions moving from or to the
surface are unloaded or loaded with electrons originating from the substrate (or
holes in case of semiconductors), thereby causing an electrochemical reaction.
Here, we are interested in the physical properties concerning the dynamics and
electronics of the solid/electrolyte interface and disregard electrochemical reac-
tions. We therefore focus on solid/electrolyte interfaces in a certain potential win-
dow for which no charge transfer, and hence no reactions occur. In this potential
window, which can be as large as about one volt, the interface is ideally polariz-
able, in other words the interface has the electrical property of a pure capacitance.
The Helmholtz capacitance is electrically in series with, the capacitance of the
adjacent liquid electrolyte layer. This latter capacitance can be calculated macro-
scopically, similar as for space charge layers in semiconductors. The model was
developed by Gouy and Chapman [3.10, 11].

For simplicity we assume the electrolyte to consist of positive and negative ions
of the same charge number Z. The concentration of positively and negatively
charged ions n'(z) and n'(z) obeys Boltzmann-statistics

n*(z) =n, exp{— Ze¢(z)}’ n (z) =n, exp{+ ZZ¢(TZ)} (3.32)

kgT B
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The zero of the potential ¢(z) is in the interior of the electrolyte, z — oo, and ny is
the concentration of ions of either type in the neutral electrolyte. The potential
@(z) is to be calculated self-consistently from (3.32) and the Poisson-equation

d’0(z) __ p2)

> (3.33)

in which ¢ the relative dielectric permittivity (about 80 for water) and o(z) the
charge density

p(z) = Zeln* ()= n"(2) (3.34)

The solution for ¢(z) is given by the Poisson-Boltzmann equation

d’p(z) _ Zen, Zeg(2)| [ Zeg(z)
a2 = e, exp kT exp kT (3.35)

For small potentials, the terms on the right hand side can be expanded and one
obtains the linearized Poisson-Boltzmann equation

2 22
d ¢(z)=_2Z e n0¢(z)’

3.36
dz* kT (3.36)
which has the solution
#(2) = g expl- K 2)} (3.37)
with
22
(2 o2Leny (338)

&€gkpgT

and ¢g the potential at the interface of the Stern-layer and the liquid electrolyte.
The inverse of x is the Debye-length dpeyy.. Table 3.2 shows the Debye-length
and the Gouy-Chapman capacitance for typical concentrations. The Debye-length
at least for dilute electrolytes is large enough to justify the continuum approxima-
tion in the calculation of the potential.

Figure 3.11 displays the potential as a function of the distance from the surface.
The potential drop within the Stern-layer is shown as a linear dependence with the
distance, which assigns a macroscopic and constant dielectric permittivity to the
layer.
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Table 3.2. Debye-length and Gouy-Chapman capacitance at the potential of zero
charge for typical ion concentrations.

1o/ mol™ 1074 1073 1072 107!
dpevye/nm 30.4 9.6 3.04 0.96
C/uFem™? 233 7.36 23.3 73.6
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Fig. 3.11. Potential at a metal/electrolyte interface. The shaded area represents the Stern-
layer of tightly bonded water molecules, solvated ions, and specifically bonded ions. The
thickness of the Stern-layer is about 0.3 nm, its dielectric constant less than that of free
water since the water molecules in that layer cannot rotate freely as in the bulk of the water.
Beyond the boundary of the Stern-layer, the potential decays exponentially. The decay
length depends on the concentration of ions in the electrolyte solution.

For potentials ¢ > 2kgT/e the linear solution (3.36) is to be replaced by the general
solution of the Poisson-Boltzmann equation (3.35) which is

#(z) = Ay T arctan{e_"Z tanh[ Ze9o j} . (3.39)

Ze 4kgT

The charge density at the interface og is given by the derivative of the potential
with respect to z at (z = 0)

09

<

_ 2eekkgT sinh Ze@g ‘

(3.40)
Ze 2kgT

z=
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Fig. 3.12. Gouy-Chapman capacitance Cg, the Helmholtz capacitance Cy and the total
capacitance C,, are plotted as dashed, dotted and full lines for electrolyte concentrations of
1 mM, 10 mM, and 100 mM. The total capacitance has a minimum at the potential of zero
charge ¢,,.. The minimum becomes less pronounced for higher concentrations and is rather
shallow for small concentrations.

The differential capacitance of the Gouy-Chapman layer is therefore

Z
= 90 = &gy kcosh Qs . (3.41)

7 94 2kgT

The Gouy-Chapman capacitance has a minimum at the potential where the charge
is zero. As the Gouy-Chapman capacitance lies in series with the capacitance of
the Stern-layer the total capacitance (the only experimentally accessible quantity)
is

cl=cgi+cy (3.42)

For dilute electrolytes, the Gouy-Chapman capacitance is much smaller than the
capacitance of the Stern-layer. Then, the total capacitance is mainly determined by
the smaller Gouy-Chapman capacitance and has therefore a pronounced minimum
at the potential of zero charge (pzc) Gy,

The calculation of the functional dependence of the total capacitance as a func-
tion of the electrode potential requires a self-consistent solution of expressions for
Cs and Cy as both values depend on the potential drop across each capacitor in
series. A self-consistent solution is calculated best by expressing Cg and
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Cy in terms of the charge density and by observing that the total charge density in
the electrolyte is identical to the charge density at the electrode (with opposite
sign). In Fig. 3.12 the Gouy-Chapman capacitance, the Helmholtz-capacitance,
and the total capacitance are plotted for three electrolyte concentrations: 1 mM,
10 mM, and 100 mM. For all three concentrations, the capacitance displays a
minimum at the potential of zero charge ¢@,,.. Measurements of the capacitance at
moderate electrolyte concentrations therefore serve to identify the pzc.

3.3 Elasticity Theory

3.3.1 Strain, Stress and Elasticity

The elasticity theory of crystalline solid has gained importance in recent years.
The elastic energy plays a decisive role in the growth modes and the stability of
thin film systems, the interactions between defects and in the self-assembly of
periodic nanostructures. Furthermore, strain significantly affects electronic and
magnetic properties of thin films. This section briefly reviews some basic ele-
ments of elasticity theory and considers homogeneously strained thin film
systems.

The state of strain in a solid is described by the dependence of a displacement
vector # on the position denoted by r. The second rank tensor of infinitesimal

strain g&; is defined by

. du;

o =L O | (3.43)
72 oy, ox;

By definition, the tensor is symmetric. The antisymmetric tensor, with a minus
sign between the derivatives of displacements u, represents a pure rotation of the
solid. As a matter of convenience, the components of the tensor are usually ex-
pressed in terms of particular cartesian coordinates which are chosen to agree as
much as possible with the crystallographic axes. The diagonal elements of the
tensor &; are strain components associated with a change in volume (Fig. 3.13).
The magnitude of the (infinitesimal) change in the volume is given by the trace of
the deformation tensor.

‘i/—v =Ye; =Tre (3.44)

The non-diagonal elements &; describe the deformation of a volume element in i-
direction as one moves along the j-direction and therefore correspond to a shear
distortion (Fig. 3.13).
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A solid resists deformations; hence, deformations generate forces. For a homo-
geneous material, the forces in response to a strain or shear are proportional to the
area that is affected by the deformation. One therefore relates the forces to the
areas. For a definition of these area related forces, the “stresses”, one considers a
section through the crystal perpendicular to the x;-axis and removes, in thought,
the material on the right hand side of the intersection. The forces per area in the
direction i that are necessary to keep the crystal in balance are the components of
the stress tensor 7; (Fig. 3.13). The stress tensor is symmetric just as the strain
tensor: an antisymmetric part of the stress tensor would represent a torque, and in
equilibrium all torques must vanish inside a solid.

u axj ij
i
k
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Fig. 3.13. Illustration for the definition of the strain and stress tensor components.

Stresses and strains are related by Hook’s Law. In its most general form Hook’s
Law reads

The = 2 Cruiiy (3.45)

g

in which ¢,; are the components of the forth rank tensor of the elastic modules.
Because of the symmetry of the stress and strain tensors 7;, and &; one has the
relations ¢;; = ¢y = ¢y - The number of independent components of the elastic
tensor is further reduced by the requirement that the elastic energy be a unique
function of the state of strain. The energy density U, 1S

1
Ut = 2. [Tredey, = 3 2 Chaij €€ - (3.46)
xt ikt

This equation yields the same result independent of the chosen indices for the axes
if ¢y = ¢y - With these symmetry relations, the number of independent compo-
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nents of the elastic tensor reduces to 21, which permits a shorthand notation by the
Voigt indices. The assignment follows the scheme

I11-1 23-4

2252 135

3353 12—6.

Components of the stress and strain tensors can also be denoted using Voigt’s
notation. In order to ensure that all non-diagonal elements of the strain and stress
tensor in the energy density (3.46) are properly accounted for (i.e. & and &;) a
complete transition to Voigt’s notation would require the introduction of redefined
elastic modules. For our purpose here, it is easier and safer to use Voigt’s notation
only as an abbreviation for the indices in the elastic modules and stay with the
standard tensor notation and summation otherwise. In the shorthand notation, the
elastic tensor becomes a 6x6 symmetric tensor with 21 independent components,
at most. The number of independent components is further reduced by the crystal
symmetry. For crystals with cubic symmetry, the elastic tensor has only three
independent components.

ap ¢ ¢ 0
cp ¢ ¢y 0
cp ¢ ¢ 0
0 0 0 cy
0 0 0 0 cy
0 0 0 0 0 cy

(3.47)

S O O O
S o o o O

It is easy to see that the elastic tensor must have this form, even without a formal
proof. For example, the cubic axes are equivalent. Therefore, the diagonal compo-
nents for normal and shear distortions must be equal (cy; = ¢ = ¢33 and cyy = ¢s5 =
Ce6)- A shear strain along one cubic axis cannot give rise to forces which would
cause a shear along another cubic axis (c45 = 0, etc.). Furthermore, a shear cannot
cause a normal stress (cj4 = 0, etc.), and finally the forces perpendicular to a strain
along one cubic axis must be isotropic (¢, = ¢y3, etc.).

For a hexagonal crystal, the elastic tensor has the components

cp ¢ o3 0
¢ ¢y ¢3 0

c c c 0
13 C13 €33 (3.48)

S O O O
S O O O O

0 0 0 0 0 cg
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A hexagonal crystal is elastically isotropic in its basal plane. The tensor compo-
nent that describes the stress-strain relation for a shear distortion in the basal
plane, cg6, is therefore related to the tensor components c;; and c;, by the isotropy
condition

2ce6 =€ —Cpa - (3.49)
If the same condition would hold also for a cubic material, i.e. if
24, =) —Cpy (3.50)

the material would be elastically isotropic with only two independent elastic con-
stants, the Lamé-constants

U=cy and A=cp,. (3.51)
In general cubic crystals are far from being isotropic (an exception is the element
tungsten (see Table 3.3)!). Nevertheless, elasticity of interface systems is often
studied assuming elastic isotropy, because this model provides analytical solutions

for many essential problems. For an isotropic solid Hook's law (3.45) becomes

Ty = Ady Zeii +2uey (3.52)

Hook's law can also be written in its inverse form

ij

in which sy,; is the tensor of elastic constants. The tensor s has the same symmetry
as the tensor ¢. The isotropy condition is

Sqq =208y — 812) - (3.54)
For an isotropic solid the elastic tensor has the independent components

Y=1/s; and v=-s,/5,. (3.55)

Y and v are Young's modulus and Poisson-number, respectively, related to the
Lamé-constants g and A by

A vy UQRu+31)

V= (3.56)
2(A+ u) H+A
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For a proof of this relation and others see e.g. [3.9] 96ff.

While resorting to the isotropic solid is necessary for many problems, it is advan-
tageous to stay with the anisotropic crystal in cases where the symmetry reduces
the tensor relation to scalar ones. An example is the equation of motion for longi-
tudinal waves along the axis of a cubic material. All components of the strain
tensor except one, e.g. &, vanish and Hook's law (3.45) reduces to

du
711=Cl1511=a—1~ 3.57)

X

The change in stress component 7j; on a length element dx; due to the strain is
balanced by the inertial force so that

.07, 0%u,
piiy =20 2t (3.58)
I

in which p is the mass density. The velocity of sound for a longitudinal wave is
therefore

v =Jenlp. (3.59)

Just as easily one obtains the sound velocity of a shear wave as
VT = “'044 /p . (3'60)

3.3.2 Elastic Energy in Strained Layers

Thin films systems offer the unique possibility to synthesize materials in a state in
which the strain can have a magnitude that could not be realized for bulk materi-
als. Such materials can have unusual and advantageous mechanical or electrical
properties. An example is strained silicon in which electrons and holes possess a
mobility twice as high as normally [3.12]. Another example is the negative-
electron-affinity strained GaAsjosPyos -photocathode that provides electrons of a
particular high degree of spin polarization [3.13]. Technically the strain is realized
by growing the material epitaxially on a substrate which has a larger lattice con-
stant, e. g., Si on Ge or a SiGe-alloy. Under certain circumstances, Si grows then
pseudomorphic with the larger lattice constant of the substrate. Growth and stabil-
ity of such films are determined by the elastic energy stored in the film. We
therefore consider the elastic energy in strained crystalline material in this section.
As for the bulk elastic waves, the easiest access to the problem is achieved by
considering the special case of a thin film with cubic structure with the film plane
parallel to (001). We denote the axis perpendicular to the film as x; (=[001]) and
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take the [100] and the [010]-directions as the x; and the x,-axes, respectively. In a
zero pressure environment (733 = 0) the state of strain is described by

En =5ty 5127 3.61)
Exp =827 + 81T

If the strain is isotropic & =&y = €&, the stresses are also isotropic 7j; = 7, = 7, and
the differential of the energy density dUy,y iS

2

dUe]ast =2rde= £de (362)

i1t 512

The energy density per area J,s is therefore
2

te Y

Vetast = =1¢’ (3.63)
811+ 82 1-v

in which ¢ is the film thickness, and Y and v are Young's modulus and Poisson-
number, respectively, as introduced in (3.55). Written in this form, the expression
for the elastic energy density also applies to an isotropic solid.

If one has a one-dimensional strain (&, =0, £= &) the elastic energy per area
is

j/elasl =te (364)

2—-
2(1-v?)

We note that in the framework presented here the energy associated with a two-
dimensional strain (3.63) cannot be recovered by calculating the energy involved
in two successive, one-dimensional strains orthogonal to each other. The reason is
that the second stretch would be applied to the film already strained in the other
direction. To calculate the energy associated with such an operation one would
have to resort to strain tensors describing finite strains properly, instead of using
the tensor of infinitesimal strain &;;.

Equations (3.63) and (3.64) can be used also for a (111) oriented film plane
provided Y and v are the properly transformed quantities. For cubic crystals the
relevant transformation relations are

sj1 =511 —25(112122 +1313 +112132) Sho = S99 =28 (mim3 +m3m3 +mim?)
Sip =512+ S(PmE + 22 +12m2) st =s4q +4SWPm? +2md +12m)  (3.65)

S=s11=5p—=5
11 12 ) 44
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The coefficients /; and m; are the cosines of the angles of the new axes x; and x,
with the cubic axes, respectively (Fig. 3.14).

[001] T X3

Y7 [010]

Fig. 3.14. Illustration of the cosines of the projection angles of the x{ -axes onto the x; -
axes used in (3.64)

For the (111) surface, e. g., the Young's modulus and the Poisson ratio are

4
Yy=07——7"—"—— (3.66)
28511 +285 +Sys
Vainy = —Ya11(2s11 +10s15 —544) /12 (3.67)

Table 3.3. Young's moduli (in 10" N/m?) and Poisson-numbers for the (100) and
(111) planes of some cubic crystals.

Material Y00y Vi100) Yauy Vi
w 39.5 0.287 394 0.287
Fe 13.0 0.364 214 0.383
Cu 6.66 0.42 9.51 0.361
Ag 4.37 0.428 8.35 0.514
Au 4.29 0.459 8.16 0.573
Pt 13.6 0.419 18.5 0.450
Si 13.0 0.279 16.9 0.262

Ge 10.3 0.273 13.8 0.252
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Table 3.3 shows Young's moduli and the Poisson-numbers for the (100) and (111)
planes for selected cubic crystals. With the exception of W, there is a considerable
anisotropy in the elastic properties. The anisotropy is particular large for the noble
metals Cu, Ag, Au. The large anisotropy is due to the particular shape of the
Fermi-surface which has "neck- and belly states" at the boundary of the Brillouin-
zone along the [111] direction that cause a high modulus of the (111) plane.

3.3.3 Thin Film Stress and Bending of a Substrate

The stress in thin films, which are grown on a wafer substrate, can cause a bend-
ing of the entire wafer. While this may be mostly an undesired effect, it can also
be used to measure the stress in thin films during and after film growth or film
processing. Such measurements serve to learn about growth mechanisms, the
build-up of stress in epitaxial systems, and stress relaxation. Experiments of his
kind have become rather popular lately and this section is devoted to the theoreti-
cal background of the experimental techniques [3.14]. An illustrative example is
displayed in Fig. 3.15 [3.15]. Pseudomorphic silver films are grown on a Fe(100)
substrate. Plotted is the integral over the stress in the silver film, which is the
measured quantity, vs. the film thickness. The misfit between the lattice nearest
neighbor distances on Ag(100) (fcc) and Fe(100) (bce) is &y = 8x107°, the dis-
tance on Ag being smaller.

0.0

-1

-0.5

-1.0

-1.5

Stress x thickness / Nm

Shutter open

1 2 3
Thickness # of Ag-film / nm

o

Fig. 3.15. Integral over the stress in a thin silver film deposited on a Fe(100) substrate at
150 K vs. the film thickness. After completion of the first monolayer the stress agrees with
the stress calculated from the misfit of -0.8% (courtesy of Dirk Sander, [3.15]).
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The stress calculated form this elastic deformation is 7=¢&Y5)/(1—V)o9) =

6.1x10° Nm™, in good agreement with the measured slope of the curve. The first
monolayer, however, is determined by interfacial properties and does not fit into
the scheme.

Frequently, the interface between the substrate and the growing film ranges
beyond one monolayer. For the system Ag/Fe(100) this is the case when deposi-
tion is being performed at 300 K. The intermixing between Fe and Ag occurs in
the first 5 monolayers, and is reflected in the stress curves. Thus, stress curves are
a sensitive, yet not always easy to interpret tool to monitor structural changes dur-
ing epitaxial growth.

We confine the discussion of the stress-induced bending of cantilevers to thin
deposited films. In that case, one may perform the calculation of the bending
caused by the film stress on one of the two sides of the cantilever as if the neutral
plane of the cantilever (the plane that is neither stretched nor compressed) were in
the center. The reason is that a stress on one side is equivalent to a combination of
stresses of opposite sign and of equal sign on the two sides. The component of
equal sign leads to an elongation of the cantilever, which, because of the linearity
of the elastic equations, has no effect on the bending. The stress of opposite sign
must lead therefore to the same bending, and for those stresses, the neutral plane is
in the center. We choose the coordinate system such that the x;-axis is perpendicu-
lar to the film and the cantilever and have its origin in the center plane (Fig. 3.16).

Fig. 3.16. Illustration of the coordinates and the strain in a cantilever, which bends due to a
compressively stressed film on the upper side.

We first consider the case of free unsupported plates and deposited films which
share a common set of in-plane principal axes (denoted as x; and x,) of the
stress/strain tensors, or for which a common set can be chosen because of in-plane
isotropy. Then, the x; and x,-axes are also the principle axes for the curvature. The
corresponding curvatures are denoted as kx; and ;. The calculation proceeds fol-
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lowing the simplifying assumption of Euler and Bernoulli [3.16] (valid if the
thickness of the plate is much smaller then the lateral dimensions). According
Euler and Bernoulli only the stresses, 7j; and 7y, along the direction of curvatures
are important and the strains &; and &, are symmetric around a neutral plane in
the center of the plate (Fig. 3.16). In other words, &, and &, are

Eq(X3) ==K X3,  Ex(x3)=—K, X3 (3.68)

when x; is measured from the neutral plane. The sign convention used in (3.68)
defines the curvatures as negative (downwards as shown in Fig. 3.16) for a com-
pressive, i.e. negative stress in the film. The stress 73; vanishes identically because
of the boundary condition. The curvatures along the principal axes, &3 and &3, can
be calculated by remembering that torques must vanish identically in the solid. An
alternative pathway is to calculate the equilibrium shape of the plate as the shape
of minimal elastic energy (see [3.17]). The torques for the x; and x,-directions are

t/2 t12+t;
f
-t/2 t/2

112 t/2+t; (3.69)
-t/2 t/2

Here, ¢ and # denote the thickness of the cantilever and the film, respectively.
Since only the integral over the stress components in the deposited film enter in
the equations for the bending, it useful to define the integrals 7}’ and 73y as the
"film stresses". If the films thickness is merely of the order of a monolayer or even
less, it is still the integral over the stress that is measured. In Sect. 4.2.2 this inte-
gral will be discussed further as one of the surface excess quantities denoted as the
surface stress Tl-(l-s). As a nonzero surface stress exists even on clean surfaces
(comp. sect. 4.2.2) it is the change in the surface stress Afl-(is) that is being meas-
ured with the bending bar technique. The bulk stresses 7;;(x3) and 7,(x3) can be
expressed in terms of the strains &;(x3;) and &,(x3) and the curvatures x; and &

using Hook's law (3.61) and (3.68).

S €11(%3) = 815 €2 (x3)

7(x3) =

’

’ ’ ’
S118522 ~ 812521

, (3.70)
S11 €22 (3) = 851 E12(x3)

T(x3) = R
S11 522 ~ 812521

in which the s,', are the elastic constants transformed into the plane spanned by x|,
x,-axes. After inserting (3.70) and (3.68) into (3.69) and rearranging the terms one
obtains a set of two equations relating the curvatures x; and &; to the film stresses

z’f{) and z’ég) .
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6 ./ B, O
K =t—2(511711 +512,75;)

(3.71)

6 ./ B, D
K :t—z(szlfn +5275)

For the special case of a system, which is elastically isotropic in the film plane and
has an isotropic thin film stress ™ (3.71) reduces to

K= Mrm. (3.72)

Y
This equation which was first derived for a one dimensional film stress (without
the (1-v”)-term) by Stoney [3.18] and is named after him. Eqs. (3.71) are there-
fore called generalized Stoney-equations.

Technically, the measurement of a cantilever bending requires that the plate
serving as a cantilever be clamped along one edge, which keeps the curvature
fixed to zero along that edge. Fixing of the curvature along one edge causes a
significant perturbation effect on the bending of the entire sheet. The effect be-
comes marginal if the curvatures are measured at the end of a long sheet, which is
clamped on one of the short sides. The magnitude of the disturbance induced by
the clamping also depends on the method by which the bending is measured. Ex-
periments which measure the bending using a capacitor at the end of the cantilever
or the tip of a scanning tunneling microscope detect the deflection ¢ along the x;-
axis. The curvature of the sample, as it appears in (3.71), denoted as & is then

calculated as
K. =2{(L)/ L (3.73)

in which L is the distance between the point of measurement and clamping posi-
tion. If the reflection angle of a light beam is used, the slope ¢’ at the point of

reflection is measured which defines

Ky =C'(L)/L. (3.74)

The change in the angle between two reflected beams determines the curvature
x={" as the difference in the slope between two points. The perturbation in-

duced by fixing the curvature at one end is the smallest on the curvature ¢’ and

the largest on the deflection ¢ It is convenient to express the effect of clamping by
the "dimensionality" D defined by rewriting the curvature x; (3.72) as
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6 ! ’ ’ ’ ’
K = s sl - 2= Dy 57, ]2
(3.75)
_ 6S, ’ ’ ’ ’ -
k) = tzll (=5, /si)l+Q2=D)s}y /5], 757
in which 7" and 7" are the isotropic and antitropic part of the thin films stress
defined by

(f)
7 0
0 r;f;

A corresponding equation holds for x. Eq. (3.71) is recovered by setting D = 2.
The effect of clamping on the bending is expressed by allowing for D < 2. Values
for D have been calculated for thin film stresses on (100) and (111) surfaces of
cubic cantilever materials crystals using finite element methods [3.19, 20].

The results for various anisotropies A’ =2(s{, — s1,)/ sy, and Poisson numbers

1 0 1 0
Lemee®) el -n0)
2 0 1) 2 0 -1). (3.76)

&0

V' =—si, /s, are shown in Fig. 3.17 for the curvatures x; , kx and k- as a func-

tion of the aspect ratio a defined as the length of the cantilever L over the length of
the clamped edge. The results were calculated under the assumption that the point
of measurement is at the end of the cantilever. For (110) surfaces of cubic cantile-
vers, finite element calculations have to be performed for individual systems. The
results of such calculations are conveniently expressed in terms of correction fac-
tors v; in Eq. (3.71)

6 ot F
K =t—2(V11 STy TV S12 7))
6 (3.77)
_ s (D (D
K= t—z(Vzl S50 T V22 22 T33)

Table 3.4 shows sets of correction factors for the (110) faces of Cu, Mo, and Si for
various aspect ratios. The correction factors depend on whether the deflection ¢
or the slope ¢’ is measured. The limiting value v;= 1 is approached very gradu-

ally if the deflection is measured. However, the factors also depend on the elastic
properties. Deviations from v; = 1 are particularly large for elastically anisotropic
materials, e.g. Cu.
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Fig. 3.17. Dimensionality as a function of the aspect ratio for cantilevers made from cubic
crystalline materials with (100) or (111) surfaces [3.19]. Parameters are the elastic anisot-
ropy A’ =2(s{;—s1,)/s44 and the Poisson number v’ =—s{, /s{;. The perturbation on the

curvature is practically negligible if the distance between the point of measurement and the
fixed edge exceeds the length of the fixed edge by a factor 3. The case of free bending is
approached very slowly if the deflection is measured. Corrections have to be made in most
cases when this detection scheme is used.



138

3 Basic Concepts

Table 3.4. Correction factors vj; for cantilevers with {110} surfaces (Klaus Dah-

men, unpublished).

ke Ky

a Vit Vi2 Vai Voo Vit Vi2 Vai V2o
Cu [T10] [001] [110] [001]

1 0.791 0401 0492 0.823 0790 0397 0.538  0.839
2 0.853 0580 0.660 0881 0.884 0.668 0.763  0.917
4 0.907 0735 0.798 0929 0942 0.834 0.882  0.959
\Y% [T10] [001] [110] [001]

1 0971 0701 0698 0970 0965 0.649  0.625  0.963
2 0976  0.754  0.744 0974 0982 0815 0799  0.980
4 0.985 0.846 0835 0984 0991 0907 0.899  0.990
Cr [110] [001] [110] [001]

1 1.00 0979 1021 1001 0995 0.682 0.666  0.994
2 0.997 0837 0834 0997 0997 0817 0797  0.996
4 0.998 0.867 0859 0997 0998 0908 0.897  0.998
Mo [110] [001] [110] [001]

1 0989 0796 0.796  0.990 0983  0.666 0.639  0.982
2 0.989 0781 0.773 0988 0991 0819 0799  0.990
4 0.992 0.855 0843 0992 0995 0909 0.899  0.995
Si [110] [001] [110] [001]

1 0961  0.607 0624 0962 0954 0537 0585  0.958
2 0969 0.697 0716 0971 0975 0.755 0.784  0.978
4 0.980 0.803 0.822 0982 0988 0877 0.892  0.989
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3.4 Elastic Interactions Between Defects

3.4.1 Outline of the Problem

The elastic energy in strained layers was calculated in Sect. 3.2.2 under the as-
sumption that the layer is laterally extended and dislocation free, and therefore
homogeneously strained. Finite size islands of lattice-mismatched layers, how-
ever, are strained inhomogeneously. Lately, ab-initio calculation of large non-
periodic ensembles of atoms have become available and have been applied to the
problem of strain in lattice mismatched heteroepitaxial islands [3.21, 22]. Fig-
ure 3.18 displays the qualitative picture that has emerged from these calculations.
It is assumed that the unstrained bond lengths of the island atoms are 2% smaller
than that of the substrate atoms, which corresponds to a Co-layer on Cu. The dis-
placements in Fig. 3.18 are exaggerated by about a factor of 20. The relatively
large vertical distortions reflect the fact that the surface is most easily deformed in
this direction.

(@)

(b)

Fig. 3.18. (a) Distortion of the surface structure caused by the deposition of an island (light
grey balls) with 2% smaller lattice constant, corresponding to Co deposited on Cu [3.21].
The atom displacements are exaggerated by about a factor 20. (b) The strain field originat-
ing from the island may be considered as arising from forces per length along the perimeter.

Surprisingly, the displacement pattern is very much the same, albeit smaller in
magnitude, for homoepitaxial islands [3.22]. The reason is that the lower coordi-
nation of the surface atoms causes a reduction of the equilibrium bond distance
between the atoms in the surface layer. Hence, even a homoepitaxial island has
some lattice mismatch with the substrate and is under tensile stress.

Because of the inhomogeneity of the strain field, the elastic energy has contri-
butions arising from the displacements of the atoms along the periphery that are
not covered by (3.62). One might expect these contributions to scale as the length
of the periphery; however, things are not so simple. The displacement pattern
extends into the bulk and reaches out laterally. The longer the length of the pe-
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riphery, the more extended is the displacement pattern. This gives rise to a charac-
teristic additional logarithmic dependence of the elastic energy associated with
boundary of strained islands. The atoms at the periphery of the islands have an
even lower coordination than the surface atoms, which causes additional distor-
tions with a characteristic displacement pattern that extends laterally and into the
bulk of the substrate. The elastic distortions affect the island self-energy, but also
induce interactions between islands. The same train of arguments applies to other
defects on surfaces, be it straight steps on vicinal surfaces or point defects. The
elastic self-energy with its curious scaling and the lateral interaction between is-
lands or defects have far-reaching consequences on the equilibrium structure of
patterned surfaces, on the stability of certain configurations, on phase transition
and on nucleation phenomena. In order to treat the elastic energy arising from the
local displacements of the atoms at defects one introduces a trick. Rather than
beginning with the local displacement pattern as calculated from ab-initio methods
and then look for the continuation of that pattern in an elastic continuum, one
places forces at the site of the defect or at the island boundary and studies the
strain field originating from these forces. The type of forces is chosen in accor-
dance with the cause and type of the displacement pattern. For example, the long-
range part of the displacement pattern of the strained island in Fig. 3.18a is the
same as the one caused by a line of force monopoles along the perimeter. The
forces point inwards for a tensile island strain (Fig. 3.18b). The far field of the
displacement pattern arising from the atom displacements at the island periphery,
which result from the reduced coordination, is the same as that of line force di-
poles. The same holds for steps on vicinal surfaces. The strain field of point
defects is again that of a force dipole (Fig. 3.19).

.
°e
O“/‘.\ @

D, D, D,=D, D,=D,

Fig. 3.19. The long-range strain fields originating from defects in various sites is the same
as the strain field of force dipoles placed on the surface at the site of the defect.
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For a defect in atop position, the prevailing component of the force dipole is per-
pendicular to the surface. For a defect in a twofold bridge site, the force dipole has
a significant component parallel to the surface along the direction of the bridge.
Defects in fourfold or threefold sites bear isotropic parallel force dipoles. In all
cases, the strength of the forces remains arbitrary within elasticity theory. If ab-
initio calculations are available, the strength can be chosen such that the elastic
distortions arising from the forces correspond to the calculated displacements. As
mentioned, such calculation have become available only lately with the develop-
ment of theoretical methods and the computing power to handle a very large
number of atoms. Even without the knowledge of the absolute values of the
forces, elasticity theory makes important prediction on the scaling of the self-
energies and interaction energies with the size of the defects and the distance be-
tween effects. These relations are discussed in the following. The starting point is
the strain field arising from a single point force placed at the surface. Within the
framework of linear elasticity the displacement pattern for an arbitrary arrange-
ment of forces, monopoles or dipoles, is simply a superposition of the
displacements of individual forces. The energy E associated with a strain field u(r)
and a force field f(r) is

v [ dr f@yu@r) (3.78)

The factor 1/2 accounts for the fact that all products of forces and displacements
are considered twice in the integration over the volume V. In the problem consid-
ered here the forces are situated at the surface z = 0 so that

fr)=f(x)z). (3.79)

The integral reduces correspondingly. An analytical solution for the displacement
field u(r) that arises from a point force F at x,y,z = 0 exists for an elastically iso-
tropic half space [3.23].

u,(x y)—:—;l[(l— )F, + (xF +yF,) - %FZ} (3.80a)
u, (x, y)—H—;l{(l— )F, +—(xF +YF,)- (l"zﬂFZ} (3.80b)
T r
u,(x, y)—H—Vl{1 2 (XF, + yF,)+(1~ V)FZ} (3.80c)
nY r| 2r

This set of equations is our starting point for the calculations of defect interac-
tions.
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3.4.2 Interaction Between Point and Line Defects

We consider the interaction energy between two point defects represented by a
force dipole in x-direction at a distance r (Fig. 3.20). The interaction energy Ej is

Eint = _Fx[zux(-x’ y)_u(x_d’y)_u(-X+d’ }’)]

2 azux
X
_prltv] o v d-ena® o 15vat
X nY (x2+y2)3/2 (x2+y2)5/2 (x2+y2)7/2

with D, = F.,d.

Fig. 3.20. Illustration of the geometry of two in-plane force dipoles placed at a distance r.

The interaction therefore scales as . Special solutions for x = 0 and y = 0 are

DI(1-v?
im=—x(—‘3/) for x=0
nYr
AD1 5 (3.82)
+
Eim=#3v) for y=0
nYr

Depending on the orientation the interaction changes from attractive when dipoles
are aligned along the y-axis to repulsive when they are aligned along the x-axis.
The method can likewise be applied to the problem of step-step interactions
[3.24]. Due to the reduced coordination, step atoms have a reduced bond length to
their neighbors, which causes an extended strain field around the step (Fig. 3.21a
and b). The strain field is mimicked by force dipoles with x and z-components on
each step atom. In the framework of continuum theory this corresponds to a line
density of force dipoles D, and D,, which are assumed to sit in the surface plane at
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z=0. The actual geometric structure of the stepped surface is neglected in this
approach. Suppose two steps of the same orientation run parallel along the y-axis
at a distance x = L. The dipole in a length element dy in one step interacts then
with all dipoles of the other step. With the integrals

= 4 =4 = 4
—= =2 [ —2 =43, [—2
_:L (1+y2)3/2 _:L (1+y2)5/2 _;[o (1+y2)3/2

=16/15 (3.83)

one obtains after some algebra the step-step interaction energy per unit length for
a pair of steps at distance L.

E - 20-v?) 1

2 2
sep = ?(D +D;) (3.84)
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Fig. 3.21. (a) Schematic sketch of the atom displacements at a step edge. At large distance
the displacement pattern can be mimicked by placing a density of force dipoles with x and z
components on a semi-infinite elastic half-space. (b) Displacements calculated by Shilkrot
and Srolovitz [3.25] for a stepped Au(100)-surface using the embedded atom model (EAM).
The displacements are enlarged by a factor of 100.

This equation was first derived by Marchenko and Parshin [3.24]. The interaction
is repulsive for the force dipole in the x-direction. For the z-component of the
force dipole, the interaction is attractive for steps of opposite sign (Fig. 3.22a) and
repulsive for steps of equal sign (Fig. 3.22b).
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Attempts have been made to improve the classical relation of Marchenko and
Parshin (eq. 3.79) by calculating the strain field in theoretical models [3.25, 26],
by considering the realistic surface structure and by taking the elastic anisotropy
into account. The net result is that the L™ -dependence is well preserved down to
small distances between steps and is not changed by the inclusion of elastic anisot-
ropy. The original proposal of Marchenko and Parshin that the perpendicular
component of the force dipole should be given by the product of surface stress and
step height cannot be held up, however'. This is not so surprising since the surface
stress (Sect. 4.2.2) is a macroscopic quantity of the flat surface while the strain
field of steps results from the change in the local bonding of step atom. Quantita-
tive calculations of the forces dipoles associated with steps using model potentials
yield numbers of the order of 0.2 nN for D, and D,. However the use of model
potentials is questionable since the same models produce too low numbers for the
surface energy and the surface stress [3.28].

(a) - ——

(b)

Fig. 3.22. The figure illustrates that the parallel force dipole leads to step-step repulsion
regardless of the step orientation (a) while for the z-component of the force dipole is attrac-
tive interaction for steps of opposite sign since both displacement field operate in the same
direction in that case (b).

3.4.3 Pattern Formation via Elastic Interactions

In 1988 Alerhand et al. predicted that one-dimensional stripes bearing different
stresses should self-assembly into a periodic arrangement of stripes of a particular
size [3.29]. With the reconstructed Si(100) surface in mind, Alerhand et al. con-
cluded that the surface should even form monatomic up and down steps
spontaneously, and that these steps should arrange with a periodicity given by the

' G. Prévot and B. Croset infered from their calculations that the Marchenko proposition is
sound [3.27]. However, their reasoning is based on an artefact of the model potential. The
surface stress produced by the model potential is far too low!
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ratio of the step formation energy and the difference of the surface stresses on the
stripes with the alternate orientation of the dimer reconstruction (Fig. 1.34). Eight
years later, the spontaneous formation of the striped phase was indeed observed on
boron doped Si(100) surfaces. Earlier, a striped phase with a characteristic perio-
dicity was observed for adsorbed oxygen on the Cu(110) surface [3.30]. The effect
was explained later by the same group in terms of the Alerhand-model [3.31].
Figure 3.23 displays an STM image of the striped phase of oxygen on Cu(110)
together with a model of the local structure [3.32].

Fig. 3.23. (a) STM image of the striped phase of oxygen adsorbed on Cu(110) (courtesy of
Peter Zeppenfeld, [3.32]). (b) Model of the structure showing that the oxygen atoms form
chains with Cu-atoms in alternate sequence. The Cu-atoms are provided by nearby steps or
they are taken Cu-surface atoms whereby vacancy islands are formed.

M

X

Fig. 3.24. Stripe domains of different stress on surface. The elastic strain field originating
from the change in the stress can be mimicked by force monopoles per length of the bound-

ary f,.
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The linear striped phases are the simplest examples of a large family of systems
that show self-assembly into a one or two-dimensional periodic pattern. Well in-
vestigated examples are the checkerboard pattern of adsorbed nitrogen on Cu(100)
[3.33, 34], the periodic arrangement of patches of a Pb/Cu surface alloy on
Cu(111) [3.35], and the chevron superstructure on the reconstructed Au(111) sur-
face (Fig. 1.13) [3.36]. In combination with nucleation kinetics in epitaxial growth
an enormous wealth of patterns has been reported (see e.g. [3.37-39]). Here, we
focus on the simple case of striped stress domains.

The stress can arise from the misfit strain in an epitaxial film. The strain field

caused by the termination of the film stress 7.7

at the edges of the stripes

(Fig. 3.24) is the same as the strain field caused by line force monopoles f, ori-
ented perpendicular to the stripe and parallel to the surface

fi =122 =—[r,,(2.2)dz. (3.85)
The stripes may also consist of differently oriented surface reconstructions, of
stripes with and without an adsorbate as in Fig. 3.23, or of an alloy phase on the

bare surface. In the latter cases, the line force monopole is given by the differences
in the surface stresses (Sect. 3.3.3, see also Sect. 4.2.2, eq. 4.7)

fo= e -7, @ldz =78 1) (2). (3.86)

The strain energy per area produced by a periodic arrangement of line force
monopoles of alternate sign was calculated by Alerhand et al. [3.29] for an elasti-
cally isotropic substrate.

2 _ 1,2
Velastic = _f_x 2(1 Y ) 111{ ll +12 Sin[ ﬂ:ll j} . (387)

n Y, +1,) |2ma, I +1,

Here, Y and v are Young's modulus and Poisson number, respectively, /; and [, are
the width of the stripes, and a. is a cut-off distance of the order of an atom diame-
ter. It is important that the system is periodic with alternate orientation of the force
monopoles as the energy of just two interacting line monopoles diverges. The
elastic energy has a (rather shallow) minimum when the periodicity length L, is

Ly, =2mae/sin(n@,) with @ =1, (I, +1,) (3.88)
If the formation of the stripe domain boundary requires energy, as is the case for

the Si(100) surface where the phase boundaries are formed by steps, then the total
energy contains an additional term
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26
=— 3.89
}/boundary l] + 12 ( )
and L, becomes
Ly = 2ma "7 [sin(noO) (3.90)

in which C, = 2fx2 a —Vz)/[TEY(l] +1, )]. It is remarkable that there is a minimum

in the total energy regardless of the magnitude of the domain boundary energy.
With application to the Si(100) surface this has the interesting consequence that
the Si(100) surface should form a periodic array of up and down steps spontane-
ously, regardless of the magnitude of the step energy and the difference in the
stress tensor for the two differently oriented dimer reconstructions. However, this
result is merely a theoretical one, insofar as the energy gained in the spontaneous
formation of periodic steps becomes marginally small and L,;, becomes very
large. Since the energy minimum exists only for ordered stripes, the natural mor-
phological disorder on the surface as well as the kinetic barriers for atom transport
hinder the formation of ordered stripe patterns.
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Fig. 3.25. Characteristic length L;, in STM images of the striped phase of oxygen on
Cu(10) vs. the coverage of the surface with stripes @, [3.40]. The full line is a fit according
to (3.90) with assumed constant monopole lines forces f,. The dashed line is a fit with the
actual line forces as measured by the bending bar technique.



148 3 Basic Concepts

Equation (3.90) is easily tested for the striped oxygen phase on Cu(110) surface
since the fractional coverage with oxygen stripes is easily controlled by the oxy-
gen exposure. Figure 3.25 shows experimental results Of Bombis et al. that was
obtained from an analysis of STM-images [3.40]. While (3.85) predicts L,;,(6,) to
be symmetric around &, = 0.5 the experimental data show clearly an asymmetry.
Bombis et al. performed stress measurements on the same system and found that
the stress in the oxygen-covered stripes displays a significant dependence on 6.
The stress in the oxygen-stripes and thus the strength of the line force monopole
decreases with ©,. The dashed line in Fig. 3.25 is a fit to (3.85) with the actually
measured line force monopoles f(&;). The asymmetry of the data is then well
reproduced.



4. Equilibrium Thermodynamics

4.1 The Hierarchy of Equilibria

Equilibrium thermodynamics was developed in the second half of the 19th cen-
tury. Its early extension to the description of interfaces by J. W. Gibbs [4.1] was
developed at a time when scientists had little understanding of surfaces and inter-
faces and no knowledge of their atomic structure. The thermodynamics of
interfaces was therefore formulated with a minimum set of assumptions, without
taking into account any specifics of a particular surface or interface system. In-
stead, interface thermodynamics introduced some very general concepts, as e. g.
the surface particle excesses, which - while being defined within the closed frame-
work of thermodynamics - could not, or at least not easily, be identified with
anything measurable outside the framework of thermodynamics. Furthermore,
since, the early formulation of interface thermodynamics took place long before
the concept of equilibrium in the electronic system of metals and semiconductors
could be formulated with the help of Fermi-Statistics one could not conceptually
connect the electronic properties of solid materials with electrolytes. Last, not
least some of the basic assumptions or conventions in early interface thermody-
namics such as the assumption of a global equilibrium and the definition of a
dividing plane turned out to be imprudent in the light of our present understanding
of interfaces on the atomic scale. It is probably therefore that current textbooks on
surface science appear to treat interface thermodynamics more out of a sense of
duty than with care, and, once done with it, seldom refer to that treatment in the
remainder of the text. In recent years however, surface thermodynamics received
considerably more attention, and rejuvenation at the same time. The revolution
introduced by the discovery of the scanning tunneling microscope has, among
other things, brought about the possibility to observe single atoms on surface and
to track their motion. The same instrument permits the observation of epitaxial
growth phenomena during or after deposition on the length scale of microns and
beyond. We are therefore faced with the task to connect single atom properties and
dynamics with macroscopic morphological features, thereby bridging 4-8 orders
of magnitude on the length scale and even more orders of magnitude on the time
scale. Just as it is impossible to observe the development of the morphology dur-
ing an epitaxial growth process on the mm/cm-length scale by keeping track of all
atom motions, it is also impossible to describe the spatiotemporal development of
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large-scale morphological features as a collection of single atom properties. Treat-
ing such multi-scale processes requires means to interconnect single atom
properties with a coarse-grained description. It is here, where thermodynamics has
found its present role.

Connecting single atom properties with large-scale surface features is greatly
facilitated by the existence of hierarchy of quasi-equilibria. What is meant by this
is best illustrated with the help of scanning tunneling microscope (STM) images.
Fig 4.1 displays two STM images of a Cu(111) surface shortly after deposition of
several monolayers of Cu-atoms, and the same surface after a period of 12 hours
during which the surface was held at a constant temperature T = 314 K. The black
cross marks the center of a stack of islands, which has moved from the right side
of the image to the left due to some drift. During that long period of time a consid-
erable coarsening of morphological features has taken place. Small islands have
disappeared and steps have straightened. This coarsening is thermodynamically
driven by the minimization of the step (free) energy.

Fig.4.1. STM image of a Cu(l11) surface (left) shortly after deposition of several
monolayers of Cu and (right) after 12 h (courtesy of Margret Giesen). Each contrast level
corresponds to one monolayer. The black cross marks the same spot on the surface, which
has drifted from left to right. During the time span of 12 h the surface features become
larger and the surface flattens. The mean shape of all islands is the same and stays constant
during the entire time: the islands are in equilibrium with themselves, while the surface is
globally not in equilibrium.

Ultimately, all islands would disappear, and the surface would become flat, at
least on the scale of the image. One feature, however, persists during the entire
coarsening process: Save for some fluctuations, the shape of the islands stays the
same, independent of their size. This is owed to the much faster diffusion of atoms
along the perimeter of an island compared to the exchange of atoms with the ter-
races. In other words, each island is always in equilibrium with itself. Thus,
equilibrium thermodynamics can be applied to the island shapes despite the fact
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that the surface is not in equilibrium on a larger scale. The two-dimensional equi-
librium shape of the islands, e.g., can be obtained by averaging over a sufficiently
large number of individual shapes. A more quantitative analysis of Fig. 4.1 would
reveal that atom exchange between layers of different height is slow compared to
the exchange between islands on the same terrace. Establishing equilibrium be-
tween the terraces of different height therefore takes a much longer time than the
equilibration of islands on the same terrace. Consequently, the surface reaches a
state in which the roughness consists merely of smoothly curved steps with no
islands present any more. STM images such as displayed in Fig. 4.1 are typically
observed in ultra-high vacuum with no Cu-vapor pressure present. The (at
T =314 K extremely) slow evaporation has no effect on the surface morphology.
Hence, even in this simple case one has a hierarchy of equilibria in which each
level of the hierarchy is established on a time scale, which differs by many orders
of magnitude from the next. At each stage, equilibrium thermodynamics can be
applied to some features, which are in (quasi-) equilibrium, and non-equilibrium
thermodynamics can be applied to other features varying slowly on the time scale
considered.
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Fig. 4.2. The hierarchy of equilibria on surfaces (see text for discussion).

Coarsening on a Cu(111) surface is a very simple example for the hierarchy of
equilibria. The hierarchy of equilibria can be substantially more complex if het-
erogeneous interfaces with their adjacent bulk phases are considered. Figure 4.2
displays an overview of various interface features that include 3D nanoclusters of
a different material on a substrate. Each of these clusters may or may not display
an equilibrium shape, the clusters may be in equilibrium or not with respect to
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their cluster size distribution, and the lateral distribution on the surface may or
may not correspond to an equilibrium phase. Spreading the material laterally over
the surface in the form of a thin film may lead to a state of higher or lower energy.
Within the thin film system, one may have features, which display a local equilib-
rium shape. One may have dislocations in the films, and entire network of
dislocations. Furthermore, there may be intermixing of material with bulk, a for-
mation of surface and bulk alloys. All these features and aspects, of which we
have named only a few, are amenable to a properly defined thermodynamic de-
scription, despite the fact that one is far away from the global equilibrium of the
system. The treatise on interface thermodynamics in this section lays the founda-
tion for that endeavor and commences with the thermodynamics of flat interfaces.

4.2 Thermodynamics of Flat Interfaces

4.2.1 The Interface Free Energy

According to the first law of thermodynamics, the sum of the heat Q and the
work OW applied to a system raises the internal energy U of the system by an
amount

dU =80 + W 4.1

with U being a thermodynamic potential, which is a unique function of certain
independent variables. The independent variables for the internal energy U are the
entropy S, the volume V, the number of particles of various types n;, the electric
and magnetic fields, and the electrical charge. The work

W = 6VVmech + 6chhem + 6Vvelectr . (42)

can be of mechanical, chemical, electro-magnetic or electrostatic nature. The elec-
trostatic work is of particular interest for solids immersed in an electrolyte, and
requires a particular careful consideration in conjunction with a specific experi-
mental situation to which we turn a little later. The thermodynamic potential
whose variation at constant temperature 7 is equal to the applied work is the
(Helmholtz) free energy

F=U-TS 4.3)

With the supplied differential heat 3Q being dQ = TdS the total differential of F
for a homogeneous system is

dF ==SdT + VY. 1y, dey, + > pidn,... 4.4
I i
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Here, 7; and &, are the components of the stress and strain tensors and 4 is the
chemical potential of the particles of type i in the system. The second term ac-
counts for the fact that solids in a finite volume may have six independent
components of the symmetric stress and strain tensors. It replaces the —PdV-term
in the thermodynamics of gases and liquids. Note that the sign convention of the
stress is opposite to that of the pressure! The third term describes the chemical
work associated with bringing dn; particles with a chemical potential z; into the
system.

The derivation of the thermodynamics of a surface or an interface requires care-
ful thinking. One reason is that the introduction of an interface makes the system
necessarily inhomogeneous. A second reason is that one would like to use ther-
modynamic arguments even when the system is not in complete equilibrium. A
typical example for a partial equilibrium is a surface of a solid in equilibrium with
a gas phase, however not in equilibrium with the bulk of the solid because of slow
or negligible diffusion of adsorbed components into the bulk. Another example is
encountered in segregation phenomena, where the surface concentration of some
impurity may be in equilibrium with the bulk concentration, but not with the gas
phase. In the first case, the chemical potential of particles at the surface would
equal the chemical potential in the gas phase, but be different from chemical po-
tential of the same particle dissolved in the bulk. In the second case the chemical
potential of the segregating species at the surface equals that in the bulk, differs,
however, from the chemical potential in the surrounding gas phase. These impor-
tant and frequently encountered situations cannot be treated with the instru-
mentation and logical apparatus of conventional Gibbs thermodynamics, since
Gibbs thermodynamics assumes global equilibrium.

For the definition of a free energy that is associated with an interface we con-
sider two phases denoted by I and II. One may think of phase I as a solid and
phase II as either another solid, a liquid, an electrolyte, a gas phase or vacuum.
Inside the bulk, the phases shall be in equilibrium. In order to define a finite sys-
tem without any undesired interfaces one may invoke the trick commonly used in
Solid State Physics. We assume that phase I and II and the interfaces between
them form an infinite periodic sequence along the z-axis (Fig. 4.3) and impose
periodic boundary conditions. In the x,y-plane the system is assumed to be homo-
geneous. The thereby formed supercell has the length L and the area A. The
periodicity length L of the supercell shall be large compared to the extension of
the interfaces so that the bulk of phases II and I are homogeneous. As interface
regions can extend up to um length, the periodicity length L may also be quite
large. To make things easier we assume that the solid has not a polar axis so that
the two interfaces between Phase I and II are identical. In keeping with typical
situations encountered in surface physics, we assume that the external pressure is
Zero.

The supercell as depicted in Fig. 4.3a has a finite and fixed volume V = AL.
The periodic boundary conditions ensure that the number of particles in the cell
remains constant. The thermodynamic potential appropriate for that situation is the
Helmbholtz free energy. We can therefore can define a Helmholtz free energy for



154 4 Equilibrium Thermodynamics

Phase Il:
solid,
gas, liquid

S ___& : X,y

Fig. 4.3. Illustration on the thermodynamics of flat interfaces, see text for discussion.

one supercell with two interfaces, which we denote as F**(L). The free energy can
be calculated as the partition function of the system, at least in principle. The su-
percell method described above is actually the standard procedure in ab-initio
calculations of finite size systems. The system be in total equilibrium. For exam-
ple, the chemical potential of a dissolved species can be different inside phase I
and IL. In particular the concentration of a species might be zero in one phase (cor-
responding to a chemical potential = —o0) even if it were finite, if small in
equilibrium. In order to define the Helmholtz free energy associated with the for-
mation of an interface we reduce the periodicity length by a factor of two such that
we have four interfaces instead of two within the supercell of length L (Fig. 4.3b).
The free energy of that system is denoted as F*(L). The free energy associated
with the introduction of the two additional interfaces is obviously FYL)-F(L).
We can therefore define an interface Helmholtz free energy F* and the area spe-
cific free energy f* as

fO=FOIA=(FDL)-FO(L)/24 .3)

The definition with the help of a supercell and periodic boundary conditions has
the advantage that there is no need to specify where one bulk phase ends and the
next one begins as is done in Gibbs thermodynamics with the Gibbs dividing
plane. The interface energy can be positive or negative. It is always positive for a
free surface since otherwise the condensed phase would be an unstable form of
matter. The interface energy between two solids may be negative if the bonds
between the atoms of the two phases are stronger than between the atoms in each
phase. Still, energy would be gained in that case by creating more interfaces be-
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tween the two phases, but the system may be frozen into a particular state. Cur-
rently interface science deals more often than not with such metastable systems,
which is one more reason to go beyond Gibbs thermodynamics.

We note that no satisfactory experimental method is available to determine the
surface free energy of crystal faces. The existing methods concern either the liquid
phase or the amorphous state at high temperature. Theory has however advanced
to a stage where surface energies can be calculated with fair reliability.

The Helmholtz free energy F is a thermodynamic potential with respect to the
variables temperature, strain, and particle numbers. We now need to define the
corresponding variables for the interface free energy F*. We begin with the dis-
cussion of strain and stress.

1 7,,(2)
Solid phase Gas phase / Electrolyte
=
1p(2)
—

Fig. 4.4. Illustration of the stress 7and the particle density at an interface. Due to a redistri-
bution of the electronic charge, a nonzero stress parallel to the surface may exist in the first
layers of the solid. Gas phase molecules or atoms dissolved in the bulk may accumulate in a
dense layer on the surface because of either segregation or adsorption.

The bulk components of the stress tensor vanish, both in the bulk of the gas/liquid
and the solid phase, because of the homogeneity and the condition of zero external
pressure. Near the surface the stress may have non-vanishing components 7,(z)
within the surface plane of a solid (Fig. 4.4). The interface stress or surface stress

T/E;) is defined as

o) = [ou(2)de (4.6)

interface

where the indices &,/ = 1,2 denote the in-plane components of the stress tensor.
The surface stress in the plane of drawing in Fig. 4.4 is a force per length with the
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length along the axis perpendicular to the plane of drawing. It can also be defined
as the z-integral of all forces per length needed to keep the material unstrained if
in a Gedanken experiment the interface is cut vertically to the surface with the
material on the right hand side being removed. We note that the surface stress 7’
need not be positive! A positive surface stress means that work is required to
stretch the surface elastically. This stress is also called a tensile surface stress. If
the surface stress is negative, it is called compressive. The intrinsic surface stress
of clean metals seems to be always tensile, but may become compressive upon
chemisorption of electronegative adsorbates [4.2]. For semiconductors surfaces
the surface stress may be compressive even when clean [4.2, 3]. The tensile sur-
face stress on clean metal surfaces can be understood to be a consequence of the
redistribution of the bonding charge.
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Fig. 4.5. Illustration of the charge redistribution at metal surfaces and its effect on the sur-
face stress for (a) a free surface and (b) a surface with electronegative adsorbates.

The charge that is not required for bonding because of the existence of a surface
redistributes to enhance the charge between the first and second layer. This causes
the typical contraction of the interlayer distance. The charge also increases the
charge density between the surface atoms to cause an attractive force to the posi-
tively charged cores of the atoms in the surface layer (Fig.4.5a). The atoms
cannot yield to that force since they are hold in registry by the substrate; however,
a tensile surface stress arises from the charge redistribution. Upon adsorption of
electronegative atoms, some of the electron charge between the surface atoms is
removed to cause a compressive surface stress (Fig. 4.5b). Adsorption of electro-
positive adsorbates increases the tensile stress.

Typical surface stresses of solids are of the order of 1 N/m. As the surface
stress originates from a redistribution of the electronic charge at the surface which
is confined to a distance of about 1nm a surface stress of 1 N/m corresponds to a
bulk stress of 1 Gpa. Neglecting external pressures on the surface thermodynamics
of solids is therefore justified as long as the pressures are small compared to
1 GPa.
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When additional interfaces are inserted into the supercell in the procedure de-
scribed above components of bulk constituents may flow towards or away from
the interface to change the particle density there. For the interface free energy, the
variable "particle number" in of total free energy is to be replaced by the surface
excess numbers n,-(s) , which are defined as the integral over the z-dependent densi-

ties 0;(z) minus the bulk densities

n®=A [lp(2)=pyldz. @7

interface

In order to subtract the bulk contributions correctly one has to define where ex-
actly the bulk of the solid ends and the gas/liquid phase begins. Considering the
case of adsorption from the gas/liquid phase, it is useful to place the dividing
plane such that all atoms which belong to the solid state and remain within the
(unaltered) solid state under the given circumstances fall on one side, while atoms
belonging to the gas/liquid phase and adsorbed atoms fall on the other side. If
segregation is considered, the dividing plane would be placed best between the
segregated surface phase and the gas/liquid. The exact position of the interface is
not important in either case, since the concentration is zero in one of the adjacent
bulk phases”. As a function of the independent variables the interface free energy

FY(T, £,,n) can be written as

FOT,e4.n0)=UY =SOT+ AT 106, + Y un’® . (4.8)
kl i

We note that the indices kl denote merely the x and y components of the surface
stress and strain tensors. There is no contribution to the mechanical work from the
z-component since we have assumed that the pressure be zero.

The total differential of the interface free energy is

dF® =-SVdT+ AY 7 dey +> w; dn . (4.9)
K i

In surface science, one often deals with adsorption phenomena where the adsorp-
tion process saturates after a monolayer coverage. The concentration p;(z) can be

written as

? Gibbs has placed the dividing plane such that zi /uini(S) =0 . However, this is inexpedient

for solid surfaces since the position of the dividing plane would change with the concentra-
tion of adsorbed atoms. Nevertheless this convention is frequently cited in many textbooks
which is very confusing as one attempts to apply a thermodynamics based on the Gibb’s
convention to concrete situations (see [4.4])
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P:(2)=nP3(2)/ A. (4.10)

Divided by the area which corresponds to one surface atom 2, nl-(s) defines a
fractional coverage 6,

6,=n"12,. (4.11)

4.2.2 Charged Interfaces

To develop the thermodynamics of electrified interfaces between a solid and an
electrolyte we need to admit the contribution of electrical energy. The cell dou-
bling method requires that the bulk phases be in equilibrium with themselves
within their bulk region. This ensues that there are no electric fields inside the
bulk phases as otherwise the chemical potential of electrons and ions would de-
pend on the position, which constitutes a non-equilibrium situation. Furthermore,
the integral of the charge density over the supercell must be zero to avoid infinite
self-energy terms. Since the Helmholtz free energy has the charge as the inde-
pendent variable, we need to consider the charge distribution inside the interface
for the definition of an interface free energy. Because of the required neutrality,
the charge distribution involves a charge on the solid and a countercharge of op-
posite sign and the same magnitude inside the electrolyte. If the solid is a metal,
the charge on the solid is localized within the screening length that amounts to
about one tenth of the Fermi-wavelength (Sect. 3.2.1, Fig. 3.5). The countercharge
in the electrolyte extends over the Debye-length (Table 3.2). The resulting charge
distribution in the supercell is depicted in Fig. 4.6a. The charge distribution causes
a potential difference between the solid and the electrolyte (Fig. 4.6b). Homogene-
ity in the x,y-plane requires that the charge density and the potential depend on z
only. The electric work term in the free energy is therefore calculated as for a
parallel plate capacitor. The energy of each interface capacitor is directly the elec-
tric contribution to the interface free energy. The total free energy F®' is
therefore

FEoN (T, g,,n®,0,.)= F(T,e,n") +¢™Mq (4.12)

where ¢ is the total charge and ™ is potential on the metal. Without loss of

generality, we set the potential of the electrolyte bulk phase as zero’. Hence, for
the geometry and the side conditions considered one can write dF® as

* If one thinks of electrons as the carriers of the charge ¢ and treats the electrons as particles
one may replace the term ¢™g by —fi.n, in which /i, is the electrochemical potential of

electrons. This notation is typically used in electrochemistry.
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dF® =-S9dT + AY ) deyy + Y w; dn® + 9™ dg . (4.13)
kl i

The differential form of the area specific free energy is obtained by observing that
dF® = Adf® + £®dA 4.14)
so that
df® ==V dr+ Y (7)) - fO5 ) dey + X dIY +9™Mdo . (4.19)
Kl i
Here, we have introduced the surface specific entropy s =§ /A, the surface

particle excess (which frequently is the surface coverage per areal!) [; = nfs) /A,
the specific charge o =g/ A, and we have taken into account that

dA = AY de,, = AY.5,, dey (4.16)
k kl

with dy the Kronecker symbol.

2 P2 I I
Metal Electrolyte
@ o ~ . N
5 2
1 42 |
(b) i
L )
« L >

Fig. 4.6. A supercell with charged interfaces; (a) shows the charge density and (b) the
potential. The mean charge is zero. On the metal surface, the charge is localized within the
Thomas-Fermi screening length. In the electrolyte, the characteristic decay length is the
Debye-length.
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For a surface at constant temperature 7, constant particle excesses /; and constant
surface charge o one has a relation between the surface stress and the specific
surface free energy

af(s)

&y o

oy = f 8, + (4.17)

This relation has been derived by Shuttleworth [4.5] and is therefore known as the
Shuttleworth relation. As this particular Shuttleworth relation refers to an experi-
mental situation in which surface coverage and charge density are held constant,
this form is useful for a surface in a gas phase at temperatures were the exchange
of adsorbate atoms with the gas phase is slow so that the coverage would not
change upon application of a strain to the solid.

We conclude this section by considering the derivative of the free energy with
respect to the charge at the point of zero charge for a surface in vacuum

af(s) o
= , 4.18
o A (4.18)

T.l;,6,,0=0

which is formally a potential according to (4.15). The question is what is the
meaning of that potential? By definition, the variation of the surface free energy is
the work per area on the surface required to bring a charge per area from the solid
into the vacuum. Suppose the charge would be that of one electron and the charge
would be removed from the solid in the form of an electron. The electron would
be brought from the Fermi-level up to the vacuum potential whereby a work
amounting to the work function would be performed on the solid. The quantity

e¢(§M) should therefore be the work function. It is a well-known result of density

functional theory that only the charge density at the surface within some screening
length is changed by removing an electron from a material [4.6]. Hence, the work
required to remove an electron from the bulk of a material is entirely acting upon
the surface and thereby changes only the free energy of the surface and not the

free energy of the bulk! The work @ = e¢(§M) =edf " /00 is therefore the work
function of the material in its given state, that is, with possibly some adsorbate

coverage. For surfaces in an electrolyte @ =edf ® /0o is the work
T.I;,6,,0=0

function of the metal in contact with an electrolyte in the state of zero charge,
however with a Stern layer of bonded water and other molecules on the surface.
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4.2.3 Charged Surfaces at Constant Potential

The area specific Helmholtz free energy £ is the isothermal work per area to
create a surface while keeping the particle excesses 7, the strain and the charge
density constant. It is therefore the appropriate thermodynamic potential for a
surface in vacuum, which is typically uncharged and on which the number of ad-
sorbed particles is fixed. To solid-state physicists f is frequently known as the
surface tension. Metallurgists who often work with materials under high pressure
tend to take the Gibbs surface free energy per area as the surface tension [4.4, 7],
as this so defined surface tension is the appropriate surface property to consider
when the partial pressures i.e. the chemical potentials in the surrounding gas phase
are being held constant. Electrochemists, finally, are interested in (highly) charged
surfaces in equilibrium with electrolytes of defined concentration and at a constant
potential with respect to a reference electrode. They need again a different specific
surface thermodynamic potential referring to the chemical potentials g; of species
in the electrolyte (as determined by the concentrations of neutral and ionic spe-
cies) and the electric potential ¢ as independent variables; a quantity, which is
likewise called surface tension. This can create quite a bit of confusion unless the
independent variables are clearly stated.

The transformation to the surface tension y, which has the temperature 7, the
strain &, the chemical potentials /4, and the electric potential ¢ as independent
variables is performed via the Legendre-transformation

Ay=F% = un,—pq. (4.19)

We eliminate the superscript (s) in ¥ as this symbol is used universally for the area
specific surface tension. By invoking 4.13 and 4.14 one obtains the differential
form of the surface tension y as

AY(T, ey, i, $) == AT + X (2 =y ) dey =3 I dw; — o dg (4.20)
kl i

The Shuttleworth relation for y then reads

S 2
) =y oy + —agy 421)

ki T.u;.¢

We note that the charge density o in (4.20) is the charge density measured in an
experiment with electrodes held at constant potential. This experimental charge
density may have two components, one from loading the electrochemical double
layer, the other from the adsorption of ions, which are unloaded on the surface by
forming a chemical bond with the substrate. These specifically adsorbed ions con-
tribute to the surface excesses /;. Experimentally, one cannot distinguish between
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a current stemming from charging the double layer or from an unloading of ions.
For electrodes kept at constant potential, the interface system remains neutral even
with specific adsorption. The charge provided by the specifically adsorbed ions is
transported away as a current by the external power supply that keeps the elec-
trode potential constant.

A typical experiment in electrochemistry is isothermal (d7 = 0) and involves a
surface on a bulk material of considerable thickness which keeps the surface strain
&y constant (dg; = 0). In that case, one has

dy=-YI;du, -cdg. 4.22)

This equation is known as the electrocapillary equation or Lippmann equation”.
Because of (4.22) the surface tension ¥ has a maximum at the potential where the
surface is uncharged. This potential is called the potential of zero charge (pzc) and
is denoted as ¢, in the following. The value of ¢,,. can be related to the work
function if the surface excesses /; are zero or constant. Suppose the work function
of the surface would change by some amount A®, e.g. by a change in the surface
structure. Then by virtue of (4.18) and (4.19)

o) 97 99
- 0¢ 0o

The first two terms vanish and ¢|0=0 = @, by definition, so that

af(s)
Jdo "

599
Jdo

AD :eA{

+¢|J=0} . (423
o=0

o=0

AD| . = Apy,,

I (4.24)

which is a rather important result! Note, however, that A@ is the change of the
work function of the substrate when in contact with the particular electrolyte! By
integration of (4.22) one obtains

9 o4
Y =V(8pe) = [0(@)d¢ = y(8y,)— [ dg” [C@Mdg" (4.25)
Orne e e

with C the differential interface capacity

_do

C=— .
a¢/4.

(4.26)

* Sometimes 9y/ 8¢|ﬂ_ , =—0 is called the Lippmann equation.



4.2 Thermodynamics of Flat Interfaces 163

The capacity C can be expanded into a Taylor series

C(@) = C@,,)+ Cy (@) +%C2 @=0,) @27)

so that

1
VD) =B =5 Chyu )@= )’ - (4.28)

As shown in section 3.2.3 the interface capacity has a minimum at pzc for dilute
electrolytes. The next term in the expansion (4.28) is therefore the forth order
term. The dependence of the surface tension y on the potential is illustrated with
the example of the Au(100) surface. Under vacuum conditions the Au(100) sur-
face is reconstructed. The surface layer contains about 25% more atoms, which are
arranged in a quasi-hexagonal, incommensurate structure (Sect.1.2.1). For
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Potential ¢ vs. SCE/V

Fig. 4.7. Surface tension of Au(100) surfaces in 0.01M HCIO, [4.8]. The absolute value of
the surface tension is taken from theory [4.9]. The reconstructed surface is stable for poten-
tials below about 0.25 V vs. SCE (Saturated Calomel Electrode), while above 0.25 V the
unreconstructed surface is stable. The lifting of the reconstruction for positive potentials is
indeed observed in scanning tunneling microscopy [4.10, 11]. The variation of the surface
stress as determined experimentally [4.11] is plotted as a dashed line on the same scale for
comparison.
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Au(100) surfaces in contact with an electrolyte both the reconstructed and the
unreconstructed phase may be stable, depending on the potential.

As the capacity C(¢) and the potential of zero charge @, can be determined
from electrochemical experiments, the potential dependence of the surface tension
can be calculated from experimental data. The results shown in Fig. 4.7 refer to
the unreconstructed and reconstructed (hex) Au(100) surfaces in 0.01M HCIO,
[4.8] (1 M is one mole of the species in one mole of H,O). The lower pzc of the
unreconstructed Au(100) surface is due to the lower work function of that surface
(4.24). The work function of the unreconstructed surface is lower because the
work function scales with the density of surface atoms. The relative values of the
surface tensions at their respective pzc can approximately be obtained from the
observation of the stability range of the two phases. Merely for the absolute value
of the surface tension one has to resort to theory [4.9, 12]). The variation of the
surface stress with applied potential has been measured for Au(100) in the same
electrolyte using the bending bar technique [4.11] and is plotted as a dashed line in
Fig. 4.7 for comparison (the absolute value is arbitrary). The surface stress
changes more rapidly with the potential and does not have a maximum at pzc.

4.2.4 Maxwell Relations and Their Applications

Since £ and y are state functions, second derivatives with respect to their inde-
pendent variables do not depend on the sequence in which the derivatives are
made. This gives rise to the so-called Maxwell relations. Consider e.g. the surface
tension with the total differential as given by (4.20). The trivial equality

0%y /10¢0u=0%y/0ud¢ leads to the not so trivial Maxwell relation

or;

09

_do (4.29)

43T .. alul s T ...

Suppose one had means to determine the dependence of the surface charge density
o on the chemical potential 4 and the electric potential ¢, then one could obtain
the surface excess 7; of the species i or surface coverage @. as a function of ¢ for
all values of i by integration

¢ ’
Lipu)= | [ag—f)}wq (4.30)

The lower boundary — oo stands for a potential where the species is not adsorbed
so that /;(—0) =0. Of course, the integrand is also zero there. Alternatively, one

may take the full coverage as a reference where the surface charge is again inde-
pendent of the chemical potential so that the integrand is zero. This method to
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determine surface coverages on surfaces in an electrolyte is called chronocou-
lometrys. While the theoretical foundation of the method is simple, the
experiments are cumbersome and require considerable skill, care and diligence.
An example from a group, which has cultivated such measurements is shown in

Fig. 4.8 [4.13]. The example concerns the adsorption of SO -ions on Au(111)

electrodes in a supporting electrolyte of 0.05 M KC104+0.02 M HCIO, with vary-
ing small concentrations of K,SO, ranging between 5x10° M and 5x10~ M.

3 T T T T T T T T T T T T T
o = 5x10° o XX
E [ e 1xi0° X + e
(@] 5 + &
- A 5x1o_4 X . e Y
o ol v 110 . Y .
— & 5x10* X+ I o "
~ + 1x10° ¢ v M
) 3 X + A °
o)) | X 5x10 L 2 v n
© X * A o
— ® v n
G>J o * A e
o 1+ ¢ v [ ] -
(&) + A o
o) X * I ]
(@] | + v :
..,g X * A [ ]
-} X ; X [ ) "
CD 0 i i x . T ' | ' | ' | ' |

200 300 400 500 600 700 800

Potential ¢ vs. SCE / mV

Fig. 4.8. Surface coverage with SO, -ions on a Au(111) electrode surface as a function of
the electrode potential measured with respect to SCE. Parameter is the concentration of
SOy -ions in the electrolyte, in other words the chemical potential of the electrolyte with
respect to SO -ions (After [4.13]).

The supporting electrolyte serves to keep the conductance of the electrolyte con-
stant. It is assumed that ions of the supporting electrolyte do not adsorb on the

surface. The concentration of SO -ions in the liquid is proportional to the mo-
lality of K,SO,, and for the dilute concentrations (see Sect. 6.2.4) one has the

> The term chronos (Greek "time") presumably refers to the method of measuring charges
by integrating currents obtained in potential sweeps.
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relation between the chemical potential and the concentration
Moy = Mo + kBTln(,oSO;) . 4.31)

The higher the concentration and thereby the chemical potential the lower the
positive potential at which a particular coverage of the surface with SO, -ions is

obtained. A more detailed analysis of the adsorption isotherms is performed in
Sect 6.2.5.

A further useful Maxwell relation is derived from (4.15). Assuming an isotropic
surface stress for simplicity one obtains

1 9z

or®
B T2, 00,

or. 9L

9
o€

4.32)

eT... eT...

in which £, is the area covered by one molecule of the adsorbed species. The cov-
erage dependence of the surface stress 7 can be measured, i.e. by the bending
bar technique [4.2], so that (4.32) provides information on the strain dependence
of the chemical potential of the adsorbed phase. The strain dependence of the
chemical potential is approximately equal to the strain dependence of the heat of
adsorption Q [4.14]. Hence, the not easily measured strain dependence of the heat
of adsorption can be obtained from the more accessible coverage dependence of
the surface stress. A few examples are shown in Fig. 4.9.

As a final example, we consider a Maxwell-relation between the dependence of
the surface stress on the charge density and the strain dependence of the work
function @. For simplicity, we assume that the surface stress is isotropic. From
(4.15) one obtains a Maxwell-relation, which relates the charge dependence of the
surface stress with the strain dependence of the potential ¢. The only way the po-
tential can change upon a strain is when the work function changes. We can
therefore replace the potential ¢ by the work function @ and obtain

ar®
Jdo
T.I,0=0

10
e d¢

(4.33)

T.I;,0=0

The variation of the work function with strain is material specific and in general
not known. For a qualitative picture one may resort to the jellium model (see
Sect. 3.2.1) in which the work function is a monotonous function of the electron
density. If the density is described in the typical way by the radius r, in units of
Bohr (0.529 A) of a sphere which has the volume taken by one electron, the de-
pendence of the work function on the electron density can be described by [4.15]
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Fig. 4.9: (a) Surface stress as a function of coverage for Pt(111), Ni(100) and Ni(111) sur-
faces. The results were obtained using the bending bar technique [4.2]. (b) The variation of
the heat of adsorption with strain calculated from the coverage dependence of the surface
stress [4.14].
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D/eV=4.63-0381r . (4.34)

After some simple algebra one obtains for the strain derivative of the work func-
tion

9@ /eV =038 1 = 0131, (4.35)
3

9€ |71 o0

The variation of the surface stress with the charge is therefore necessarily nega-
tive, which is in agreement with the existing experimental data (cf. Fig. 4.7). Gold
has r,= 3.0, and therefore d7/do = —0.38V . The experimental values are -0.9 V

and —1.6V on Au(111) and Au(100) in 0.1 M HCIO,, respectively [4.16]. While
the simple model predicts the sign of the effect correctly, it fails to account for the
effect quantitatively. One should not be surprised by that, however: The jellium
model underestimates, the surface energy, the surface stress and the work function
of 5d-metals by far [4.15, 17]. This is partly because localized d-electrons are not
considered in the jellium model, partly because these quantities are intimately
related to inhomogeneity of the electronic charge distribution due to the atomic
structure (see Fig. 4.6) which is likewise not included in the jellium model. Fur-
thermore, (4.33) is valid around pzc and for constant 7;. In the experiments on the
surface stress of gold surfaces in an electrolyte, the chemical potentials g were
kept constant, which does make a difference, in particular as a specific adsorption
of ions around pzc from the HC10,-electrolyte cannot be excluded.

4.2.5 Solid/Solid and Solid/Liquid Interfaces

As an application of the thermodynamics of flat surfaces and interfaces, we con-
sider phases, which have a line of contact in common (Fig. 4.10a) which - without
loss of generality- may be assumed normal to the plane of drawing. The condition
of equilibrium requires a relation between surface tensions of the interfaces and
the angles. We assume for the moment that the interface tensions are independent
of the orientations of the interfaces. The interfaces are in equilibrium if the total
interface energy is stationary against a variation of the contact angles. In order to
make that comparison one introduces a “virtual” displacement s of the line of
contact in any arbitrarily chosen direction (arrow in Fig. 4.10a). The condition that
the total interface energy of the three phases considered in Fig. 4.10a be stationary
with respect to the virtual displacement s requires that

Y1080 +¥,C080, +y5c0805 =2 y;cosl; =0 (4.36)

L
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(a) (b)

ydep

Fig. 4.10. (a) Suppose three (or more) phases share a common line, which is assumed per-
pendicular to the plane of drawing. Equilibrium requires that the interface energy is
stationary with respect to any arbitrarily oriented virtual in-plane displacement 5 of the
common line. The interfaces i change length by the amount scose;, with ¢; the angle
between the displacement vector § and a vector pointing from the center along the inter-
face i. For solids, the interface energies change also because of the rotation by the amount
A8, since the interface tensions then depend on the orientation. (b) A special application of
the equilibrium condition is the contact angle of a solid cluster or a liquid droplet on the flat
surface of a substrate.

with ¢; the angles between the interface i and the direction of the virtual displace-
ment®.

Equation (4.36) is occasionally interpreted as a “balance of forces” acting upon
the common line. This is a gross misconception: The virtual displacement 5§ com-
pares different sets of contact angles; it is not an elastic deformation. If (4.36)
were to describe a balance of forces upon an elastic distortion, it would involve

the interface stresses Ti(s) and not the interface tensions ! According to the Shut-

6 Equation (4.36) can also be written in terms of the tensions % and the angles 5 subtended
by the respective two other interfaces j#i (Fig. 4.8a). This operation is achieved by first
writing (4.36) three times each with one of the three interfaces as the plane of projection for
the angles ¢. After converting the angles ¢; into the angles £ and some algebra one obtains
the relation

n __Yn __ 7
sinf, sinf, sinf;

that is well known in the material science of grain boundaries.

(4.36a)
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tleworth relation (4.21) the stress and tension differ by the strain derivative of the
tension which is an intrinsic property of solids involved. The difference between
the interface stress and tension may have an arbitrary positive or negative value. If
(4.36) holds for the tensions it cannot hold for the stresses, except incidentally. In
general, the forces exerted by the interface stresses on the common line are there-
fore not balanced! The unbalanced forces along the common line give rise to long-
range elastic deformations of the phases (cf. Sect. 3.4), which are difficult to han-
dle theoretically and therefore constitute one of the unsolved problems in the
physics of mixed phases.

For crystalline solids, the surface tension depends on the orientation. This con-
tributes a second term to each variation in the interface tensions of the form

a7;
Ay, = —+LA0. 4.37
Vi 26, (4.37)

where A6, is the rotation of the orientation of the interface i due to the displace-
ment vector 5 and the derivative is to be taken at the orientation of the interface i.
The condition that the interface energy be stationary is then

D y; cosa; +%Sinai =0. (4.38)

1

It will be shown in section 4.3 that the derivative of the interface tension with
respect to the orientation is of the same order of magnitude as the interface tension
when the interface is a low index crystallographic direction and forms a “facet”. It
is small only if the surface is thermodynamically “rough” (see section 4.3).

Another application of the principle of stationary interface energy is the calcu-
lation of the contact angle of a solid or liquid deposit on a flat surface (Fig. 4.10b).
In that case, (4.36) turns into the Young-Dupré equation

Vi + Vaep COSA= Y (4.39)

in which ¥, ., and ¥ are the surface tensions of the substrate and deposit and the
interface tension between substrate and deposit, respectively (Fig.4.10b). For
simplicity, we have assumed that the surface of the deposit is “rough” near the line
of contact with the substrate so that 0¥ 4, / 04, << Vgep -

If the sum of the interface tension and the surface tension of the deposit is smaller
than the surface tension of the substrate,

it }/dep <7s>» (4.40)

then the condition (4.39) cannot be fulfilled for any contact angle. Rather one has
a complete wetting of the substrate by the deposit.
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Fig. 4.11. (a) Definition of surface and interface tensions for heteroepitaxial growth; (b)
layer-by-layer growth, or Frank-van-der-Merwe growth; (¢) 3D-cluster or Vollmer-Weber
growth; (d) growth with one or more wetting layers continued by 3D-cluster growth,
known as Stranski-Krastanov growth.

The condition (4.40) and its opposite
it J/dep >7s (441)

constitute an important criterion for the preferred growth mode in heteroepitaxial
growth. The criterion is named after E. Bauer [4.18]. If (4.40) holds, heteroepi-
taxial growth proceeds in a layer-by-layer manner. One monolayer is completed
before the next one begins to grow (ideally). This growth mode is also called
Frank-van-der-Merwe growth (Fig.4.11b). If (4.41) holds, the growth mode is in
the form of 3D-clusters. This growth mode is called Vollmer-Weber growth
(Fig.4.11c).

Heteroepitaxial growth is frequently pseudomorphic which means that the de-
posit grows with a lattice constant matched to the substrate. Since the natural
lattice constants of the deposited film a; and the substrate a; may differ, the depos-
ited film is in a state of strain if the growth is pseudomorphic. The misfit strain &¢
is

S Sl (4.42)
a

£

N
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For simplicity, we assume that the pseudomorphic strain and the elastic properties
of the deposited film are isotropic. Because of the misfit, the film carries an elastic
energy of

rY R
Vet =57 Eme +AT ey (4.43)

per area. Here, Y is the Young modulus of the deposited film, v the Poisson ratio
and 7 the thickness of the deposited film. The change in the surface stress A7 is
the total change in the surface stress due to film deposition. Depending on the sign
of A7® and the sign of the misfit, the second term can be negative or positive, sta-
bilizing or destabilizing Frank-van-der-Merwe growth. For larger film thickness,
the elastic energy always works in favor of 3D-clusters, hence Vollmer-Weber
growth. Pseudomorphic growth therefore frequently begins as Frank-van-der-
Merwe growth and turns into Vollmer-Weber growth after one or more layers.
This growth mode is known as Stranski-Krastanov growth (Fig. 4.11d). Alterna-
tively, the elastic energy in pseudomorphic films may relax by the formation of
dislocations (Sect. 1.3.1) after a critical thickness t..

4.3 Curved Surfaces and Surface Defects

4.3.1 The Crystal Equilibrium Shape

For crystalline materials, the surface tension is a function of the orientation of
surface. The equilibrium shape minimizes the total surface energy for a given
volume. Which thermodynamic potential is the relevant surface energy depends
on the environment and the parameters that are kept constant during the equilibra-
tion process, and whether with the environment equilibrium is established at all.
For a crystal in vacuum, e.g., the equilibrium shape is established via surface or
bulk diffusion. The number of atoms in crystals remains constant. The relevant
energy is then the Helmholtz surface free energy f*. For a crystal held in equilib-
rium with its own vapor phase the relevant surface energy is the surface tension .
Since typically a crystal in that case will be uncharged, the Legendre-
transformation with respect to the surface charge and potential (4.19) is irrelevant.
One may also ask for the equilibrium shape of a crystal in a vapor phase of a gas,
which can absorb on the surface but contains no atoms of the crystal substrate. Let
us assume further that the temperature is low enough so that there is no evapora-
tion of the substrate material. In that case, the number of substrate atoms is kept
constant while vapor phase atoms or molecules may adsorb on the crystal surface
to build up surface excesses. In that (not untypical) experimental situation the
appropriate surface energy is a particular surface tension for which the Legendre
transformation over the species i is performed for all but the species which make
up the bulk of the substrate. It is not sufficient to treat this case by making the
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surface excess of the substrate species zero by definition: with the equilibrium
vapor pressure being zero for substrate atoms their chemical potential would di-
verge to minus infinity, leaving the product of surface excess and chemical
potential undefined, unless special models are invoked describing the mathematics
of this limit. One may also consider a crystal in equilibrium with an aqueous elec-
trolyte with some finite concentrations of ions, however with zero concentration of
ions of the substrate material. With regard to the substrate atoms, the case is
equivalent to a crystal in vacuum at moderate temperatures. The gold surface in a
H,SO4- electrolyte (Fig. 4.8) is an example. Here, the appropriate surface tension ¥
is one where the Legendre transformation (4.19) is performed with respect to
SOj - ions and the surface charge, however not for the gold atoms. In summary,
the appropriate surface energy function depends entirely on the details of the ex-
perimental conditions. In what follows we denote the surface tension that suits the
specific experiment by the symbol y and keep in mind that ¥ is not the same in
each case. With that important caveat, the condition for the equilibrium shape is
that

7% = [y(i)ds (4.44)

should be minimal for a given total volume of the crystalline material. Here, n
denotes a unit vector perpendicular to the surface and dS is an element of the sur-
face. For the special case of crystal in vacuum, /7% is the Helmholtz surface free
energy F'®. If the surface tension is isotropic as for a liquid, /7% is minimized by
a spherical shape. For a general anisotropic surface tension, the equilibrium shape
is obtained from the Wulff-construction, which is illustrated in Fig. 4.12 (For the
nontrivial proof of the Wulff-construction see e.g. [4.4, 19]): On each ray connect-
ing the origin with the point of () in a polar plot (dotted lines in Fig. 4.12)
perpendicular lines are constructed (dashed lines). The area inside the ensemble of
all the dashed lines marks the equilibrium shape of the crystal in the plane of
drawing. Figure 4.12 shows two examples. In the first one (upper Wulff-plot),
¥(6) is a continuous differentiable function everywhere and the equilibrium shape
has a finite nonzero curvature.

Surfaces, which have a finite curvature on the equilibrium shape, are called
rough surfaces. The equilibrium shape has a corner at §=45°, which means that
certain orientations of high y(8) are missing. In the lower half of Fig. 4.12 y(6)

has a cusp at 8= 0°, in other words, y(8) o< |9| . The equilibrium shape is then a
flat plane with a particular lateral extension, which depends on the azimuthal ori-

entation. These areas are called facets or singular surfaces. Physical realizations
of facets are the low index crystal planes.
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| Equilibrium shape |

Fig. 4.12. Wulff plot and equilibrium shapes when @) has no cusp (upper panel)
and when y(6) has a cusp at = 0 (lower panel).

In Fig. 4.13 a low index (& k [) surface is depicted together with crystal planes,
which are slightly tilted to the (& k I) plane by an angle +6. Tilted planes are com-
posed of a regular sequence of (h k [)-terraces separated by steps of height 4. One
may think of these steps as being one atom layer high as this would be a typical
realization of a tilted surface. However, thermodynamics can be formulated with-
out having a specific atomic model in mind. The ensemble of (hkl)-terraces has the
same energy as on the non-tilted surface. The creation of steps requires additional
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(a)

(b)

Fig. 4.13. Surfaces, which are tilted with respect to a low index plane (% k [) (a) by an angle
6 (b, ¢) have a higher surface tension due to the step line tension £.

work, which is inversely proportional to the distance L between the steps
(Fig. 4.13b,c). By expressing the step density in terms of the step height / one has

(3)
YP( )= L; Yo+ ﬂ |tan l9| (4.45)

With %,(68) we have introduced a surface tension defined with respect to a length
scale projected on to the surface with the angle 8= 0. The quantity 8 is the step
line tension of steps of height /. The plus or minus sign refers to the sign of the tilt
angle. In case of centrosymmetric surfaces, e.g. a {100} surface of an fcc-
structure, B = 7. On {111}-surfaces of fcc crystals, the A- and B-steps (Sect.
1.3.1) have a different structure and thus a different energy so that 8 = .
For uncharged surfaces in vacuum, the line tension is equal to the step free energy,
which in turn at 7= 0 K is equal to the step energy. At moderate temperatures, the
step free energy is a little lower, but still roughly equal to the step energy since the
step entropy is small (cf. Section 5.2.1).

Equation (4.45) can be considered as the first step of an expansion in powers of
p=tand
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Vo (P)=¥atnp+12p” + 730 +74p" (4.46)

in which the higher order terms correspond to step-step interactions. The term

Wz(i"t) =7, p? represents a step-step interaction proportional to L™ and so forth.
/AR ) (4.47)

Models for step-step interactions are considered in Sect. 3.4.2 and 5.2.2. Here we
are concerned with the consequences of the various terms on the crystal equilib-
rium shape in the vicinity of a facet. We describe the shape function around a facet
as z(x) in which the z-axis is parallel to the orientation which corresponds to =0
and the x-axis is orthogonal to the z-axis in the direction of an advancing &
(Fig. 4.14). Both the x- and the z-axis have their origin at the center of the equilib-
rium shape, which is also the center of the polar j~plot (Wulff-point).

The shape function z(x) is obtained most easily in a parameterized form [4.20]
by making use of the Wulff-construction. According to Fig. 4.14 one has the fol-
lowing relation between the surface tension y(6) and the distance of a point on the
shape curve R in which the slope is 8 and the origin.

@ = 5c0s(90° -0-a)= Esin(é’ +a)
z z
Yo o L. (4.48)
= —(sincosf + cosasinf@) = —(zcosl + xsin H)
20 <0
In the reduced coordinates
X=xyylzy Z=2Y¥y/2 (4.49)
equation (4.48) becomes
Yp(P)=2+Xp. (4.50)
The parameterized form of the shape function is therefore
X=y,(p) =1 +27,p +3y;0° +4y,p° ...
(4.51)

2=y,(P)=V5(P) P=Vo—72P” =2730" =3¥up" .

in which %'(p) is the derivative of y(p) with respect to p. Assuming that all coef-
ficients ¥, are positive (repulsive step-step interactions) the slope of the shape
curve is negative definite and approaches zero continuously as x decreases.
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Surface tension y(8)

y(6=0), 2,

Fig. 4.14. Tllustration for the derivation of the shape function z(x) (see text for details). Note
that (6) and R(8) represent a different metric.

The slope becomes zero at a finite value of X which marks the extension of the
facet x;

A Z
X =y,=pF1h xf:&

hy, . (4.52)
k=7 f =2

The size of the facet is therefore proportional to the step line tension. As a general
trend, the step line tension decreases with rising temperature because of the in-
creasing vibration and configuration entropy. Eventually, the line tension of steps
and thus the facet may even vanish completely prior to melting of the crystal. This
phase transition is called the roughening transition, and the temperature at which
this happens is called the roughening temperature Tgr. Models for the temperature
dependence of the step line tension based on statistical physics are considered in
Sect. 5.2.4. The dependence of the step line tension on the electrode potential for
surfaces in an electrolyte is discussed in section 4.3.5.

Standard models for the step-step interactions consider elastic interactions
(Sect. 3.4.2) and entropic interactions (Sect. 5.2.2). Both are repulsive and depend
on the step-step distance L as L, and therefore contribute to a positive j;-term.
The corresponding projected surface tension is plotted in Fig. 4.15a as a dashed
line. Many qualitative and quantitative experiments support the understanding that
L -interactions are dominating in general [4.21, 22]. The solution for the shape
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function for ;, 55 >0; % = 5% =0 is therefore of particular practical importance.
The resulting shape function

Z=zo—g L(x—xf)y2 X2 X¢
3\ 3z075 (4.53)

i=2 xSxf

is known as a Pokrovsky-Talapov or Gruber-Mullins shape [4.23, 24] (dashed line
in Fig. 4.15b). The shape function changes quantitatively but not qualitatively for
nonzero, positive » and y; [4.20]. Qualitative changes of the equilibrium shape are
introduced by attractive step-step interactions. The transition between the facet
and the rough surface becomes abrupt with a finite contact angle. Effective attrac-
tive step-step interactions and finite contact angles have been observed, e.g., for
Au(100) and Au(111) surfaces [4.25]. In that case, they can be attributed to the
reconstruction of gold surfaces. The reconstruction tends to make particular step-
step distances energetically favorable over others. It is, however, inappropriate to
describe the surface tension of these surfaces by an expansion in powers of the
inverse distance. Rather one has pronounced minima in the energy relative to the
expansion in powers of p for certain “magic” orientations for which the terraces
sizes fit to integral numbers of reconstruction cells [4.26].

Stepped surfaces in an electrolyte experience attractive interactions of the 5 <0
type (Sect. 4.3.5). We therefore take that case as an example and calculate the
contact angle at the facet boundary from (4.51) by looking for nontrivial solutions
of z(x) = zo for 5 < 0.

z=20: p (Y, +2y3p)=0 (4.54)

In addition to the facet solution p = 0 one has a solution for p > 0 corresponding to
a finite contact angle &; between the facet and the rough section

Oy = arctan(=y, /2y3) . (4.55)

In case of attractive interactions, the size of the facet is no longer described by
(4.53). The size does not only depend on the step line tension either. By inserting
(4.55) into (4.51) one obtains

2
g 1z
;= ﬁ__o_?’z. (4.56)
hyy, 47370
In case of partly attractive interactions, the facet size shrinks compared to purely
repulsive interactions! The effect of a negative js-term on the projected surface



4.3 Curved Surfaces and Interfaces 179

QUD) T T T T T T
8 16 @ ]
L7
= V= Yy Ve A y
I 7/
S —yz=-1.5 ,
‘% 14L - 1=0 it 4
[ Ve
2 Ve
10} .7
O rd
£ -7
€ 12} - i
) 7
°© -
o =
(&)
q_'). 1.0 1 1 1 1
09_ 0.0 0.1 0.2 0.3 0.4
tan o0

2.5

Fig. 4.15. (a) Projected surface tension y(8)/cos@ as function of tané for attractive interac-
tions % and repulsive interactions 3 and for repulsive interactions y; only, solid and dashed
line respectively. (b) The equilibrium crystal shape.

tension },(6) and on the equilibrium shape is illustrated by the solid lines in
Fig. 4.15a and 4.15b, respectively.

Experimental studies on crystal equilibrium shapes are tedious and therefore
rare. Figure 4.16a displays an STM image of a lead particle which was deposited
on a Ru(0001) surface at 420 K after equilibration for about 20 h. Various facets
are clearly seen. In images with enhanced contrast, the first step marking the
boundary is clearly discernible Fig. 4.16b. With the boundary of the facet exactly
fixed accurate experimental results are achieved on the transition region between
the facet and the rough surface as well as on shape function (for further details the
reader is referred to the review of H. P. Bonzel [4.20]).
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(@) (b)

Fig. 4.16. STM images of lead particles equilibrated on a Ru(0001) substrate (courtesy of
Christian Bombis). The particles grow well with their (111) face on the basal plane of Ru
since the lattice mismatch (4.22) is only about +4.7%. (a) Total view of the particle imaged
in reduced contrast. The step marking the facet boundary is clearly seen in images with
enhanced contrast (b). A step originates where a dislocation line of a dislocation with a
screw component penetrates the surface (white arrow in (b)).

4.3.2 Rough Surfaces

We consider a rough surface of a solid in an experimental situation where the
number atom of the solid remains fixed, so that, concerning the atoms of the solid,
the Helmholtz free energy is the appropriate thermodynamic potential. The solid
may nevertheless be in contact with an electrolyte or a vapor phase so that ions or
gas atom/molecules of different nature than those making up the solid substrate
can absorb on the surface. The appropriate thermodynamic potential is then one in
which the n; y; -Legendre transformation is performed for all but the substrate

species. As with regard to the latter, the surface tension keeps the property of the
specific Helmholtz free energy, namely that the chemical potential of the substrate
atoms j is obtained by the derivative of the Helmholtz free energy of the solid with
respect to the number of atoms j: u; =0F /dn;. We are now interested in the

work required to create a small extension of the area of curved surface of the solid.
Let A and B two points on the surface on the surface, with A defining the origin
on the x-axis and B a second point on the x-axis at the distance L, from the origin
(Fig. 4.17a). Between the points A and B the surface profile has a contour
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(a) (b)

Fig. 4.17. Illustrations for the derivation of (a) the surface stiffness and (b) the chemical
potential of a curved surface.

described as z(x) with a total length L. Orthogonal to the plane of drawing the
profile is assumed flat over a length unit L,. We calculate the thermodynamic po-
tential 77* as a function of the length of the contour L.

B B
% /L, = [y@(x)ds , L= [ds. (4.57)
A A

The integrals are to be taken along the surface contour z(x). The surface tension
depends on z(x) only via the angle 8(x). The integral is converted into an integral
along the x-axis by replacing the length element ds along the contour by
dx = cos@ds. By expanding the surface tension and cos '@

, 1,
7(0)=y(0)+ ¥ (0)0 + 5 7 (0)6>...

L _ile
cosd 2

(4.58)

and by observing that the integral over #(x) vanishes one obtains

E (0(x)) IRCATS
dx=y(0)L 0 0))|—6 dx
J 0s00n) y()x+(y<)+y(>)/{2 (x) 50

= y(0)L, +(¥(0)+ 7" (O)XL—L,)

17“)/
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since

L, B
L= [dx/cosf(x)= j{l+%92(x)}dx. (4.60)
0 A

The quantity, which describes the variation of the thermodynamic potential /7%
per area with the length of the contour L, is known as the stiffness of the surface

y(O)=y@)+y"(0). (4.61)

With the help of the surface stiffness 7, one can calculate the chemical potential
of a body that is enclosed in a curved contour and is in equilibrium with the sur-
face. Suppose one has an element of the surface with a particular radius of
curvature R (Fig. 4.17b). By expanding the radius by AR while keeping the curva-
ture constant the surface area increases by L, AL =L, ARAg. The number of

particles in the body increases by AN = L, AR Ap R/ <2 with £ the volume of an

atom. Because of the homogeneity with respect to the surface area, equilibrium
between bulk and surface requires that g AN =¥ L, AL and thus

u=927%IR. (4.62)

The sign of the chemical potential of the surface is positive if R has its center in-
side the body (concave surface). When the center is outside (convex surface) the
number of particles in the body is shrinking for an increasing contour length and
the chemical potential is negative. We therefore describe the local surface contour
K, at any point of the surface as positive for a concave surface. With curvatures
orthogonal to the plane of drawing denoted as ; the chemical potential is

1=82[F 0K +70,)x,). 4.63)

This equation is referred to as the Herring-Mullins equation. The derivation of
(4.63) requires merely that bulk and surface be in local equilibrium in the particu-
lar area considered. With the understanding that the coordinates x, y are defined on
a coarse scale so that each “infinitesimal” element dx, dy contains many atoms
one may therefore define a position dependent chemical potential of a surface
L (x, y). The Herring-Mullins equation then serves as a basis for a local thermody-
namic description of a surface, thereby providing an important link between the
macroscopic world and quantum physics. Equation (4.63) is a useful starting point
for the description of surface self-diffusion (Sect. 10.2.2), e.g., or for the process
of two- and three- dimensional Ostwald ripening (Sect. 10.4).
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If surface and bulk are in global equilibrium with each other then the sum of the
products of surface stiffness and the curvature is a constant all over the surface
contour. Applied to a liquid droplet one has ¥ =y and thus

2Qy
Hg == (4.64)
and since f o< Inp
22y
p=p.e K (4.65)

with p., the vapor pressure of the flat surface. Equation (4.63) may therefore be
considered as a generalization of the Gibbs-Thomson equation to anisotropic sol-
ids.

The principle of the derivation of the Herring-Mullins equation may also be
applied to derive a useful relation between the distance of a facet from the center
of a crystal equilibrium shape, the surface tension of the facet and the chemical
potential of the crystal. Let z; be the distance of a particular facet from the center
and ) the surface tension of the same facet. Consider a uniform expansion of the

crystal with z, being expanded by Az,. The area of the facetis A; =¢ zg with ¢ a

constant depending on the facet shape. The area of the facet then varies upon an
expansion by AA; =c2z,4z, and the number of particles changes by

AN = A; Az / 2 . Equating the change in the thermodynamic potentials of surface
and bulk as above leads to the equation

u=20" (4.66)
2p

which holds for any arbitrary facet (Gibbs-Wulff Theorem).

4.3.3 Line Tension and Stiffness

With (4.45) we have introduced the step line tension as the additional contribution
to the surface tension due to the presence of steps. Accordingly, the step line ten-
sion may be calculated formally as the difference between the surface tension of
stepped and flat surfaces per step and step length, and this is how one actually
proceeds in total energy calculations of the step energy. Since the definition,
meaning and value of the surface tension depends on the thermodynamic bound-
ary conditions, the step line tension likewise refers to specific boundary
conditions. This is of particular importance for surfaces held at constant potential
in an electrolyte. The same remark applies to other surface defects. These aspects
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are covered in Sect. 4.3.5. Here, we focus on the step line tension of surfaces in
vacuum where it is identical to the step free energy per length. While the step line
tension in a coarse-grained description can be defined for steps of arbitrary height
and orientation, we now use the term in a more restricted sense as the line tension
of a monolayer high step. Steps of this kind are found experimentally on the low
index surface orientations (Sect. 1.3). On any given surface orientation, the step
line tension depends on the orientation of the step on that surface. On the (100)
surface of an fcc-crystal, e.g., step atoms have the highest coordination (coordina-
tion number = 7) for steps oriented along the [011] direction. Steps running in this
direction have therefore the lowest energy of all orientations on the (100) surface.
Since entropic contributions to the free energy of steps along the [011] direction
are small at moderate temperatures, the [011] orientation is also the direction of
lowest free energy. Deviation from the [011] orientation require the formation of
kinks in the steps which costs energy because kink atoms have a lower coordina-
tion number (= 6). Hence the energy increases with increasing deviation from the
[011] orientation, regardless which way the deviation goes. One might therefore
think that the angular dependence of the step line tension £(€) near the direction
of dense packing of atoms (defined as &= 0°) should be described by an equation
analogous to (4.45) with a term proportional to Itan8|, the proportionality constant
being the free energy of kinks. The Wulff-construction of the equilibrium shape of
a two-dimensional island would then reveal facets at (011) orientations. This is not
so! Two-dimensional islands have no facets. In other words, steps are thermody-
namically rough for temperatures above T=0K and the free energy of kinks
vanishes. This is a special consequence of a general theorem that there are no
phase transitions in one-dimensional systems at finite temperature for interactions
decaying faster than 1/x* when x measures the distance along the chain. The
physical reason beyond the formalities is that the fluctuations in 1D-objects sim-
ply are too large. Steps may be considered as 1D-objects, mostly at least.
Exceptions may be steps on surfaces with reconstructions, such as on the clean
Au(111), Au(100), Ir(100), Pt(100) surfaces. Experiments indicate that the unit
cells of the reconstruction are structurally correlated with the steps. In that case,
steps are no longer 1D-objects and monolayer high islands may have facets. The
same may apply to surfaces, which are reconstructed because of adsorbate layers.
So far, however, no case of a faceted monolayer island has been reported. This
may be partly owed to the difficulty to distinguish between a faceted edge and an
edge, which has an extremely small, but finite curvature.

Figure 4.18 displays experimental island equilibrium shapes for the Cu(100),
Ag(111), and the Pt(111) surface for two temperatures each [4.27, 28]. The higher
the temperature, the more roundly the islands are shaped. This implies that the
entropy of steps is larger for steps with orientations off the direction of dense
packing. It will be shown in sections 5.2.1 and 5.3.2 that this larger entropy is a
configurational entropy due to the presence of many kinks in the steps. For tem-
peratures approaching 7=0K the equilibrium shapes eventually become
polygons. For (100) surfaces, e.g., the equilibrium shape would be a square or a
square with truncated edges, an octagon. For (111) surfaces, the T=0K
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Cu(100) Ag(111) .- Pt(111)

[001] [121] [121]
[011] [011] [011]

Fig. 4.18. Experimentally determined equilibrium island shapes on (a) Cu(100), (b)
Ag(111), and (c) Pt(111) [4.27, 28]. The higher the temperature the rounder is the shape,
eventually approaching a circle. For Ag(111), and also for Cu(111) A- and B-steps have
nearly identical step line tensions, for Pt(111) the line tensions for A- and B-steps differ.

equilibrium shape is a truncated triangle or a hexagon if A- and B-steps have the
same formation energy. As for rough surfaces, one may calculate the change in the
free energy of a curved step upon elongation of the step contour. This leads to the
definition of a step stiffness /, which depends on the orientation of the step.

Analogous to (4.61) one finds
B(6,) = B6,)+3*B(©6,)/96; (4.67)

in which 6, denotes the orientation of the step (as opposed to the polar angle)
pointing towards the step denoted as & (Fig. 4.18)). The relation between the stiff-
ness, curvature and chemical potential is (4.63)

u=2pB6,)x®,). (4.68)

Since the chemical potential is constant along the periphery of an island that has
its equilibrium shape, the stiffness varies along the periphery to keep the product
of curvature and stiffness constant. For the, at low temperatures, nearly straight
sections of the steps in the (011) directions of close packing this means that the
stiffness becomes very large and diverges as T approaches zero. The divergence is
inversely proportional to the concentration of thermally excited kinks (Sect. 4.3.7).
With (4.66) a relation between the ratio of the surface tension of a facet and its



186 4 Equilibrium Thermodynamics

distance from the center to the chemical potential was derived. Although steps
have no facets, one may nevertheless apply the equivalent of (4.66) to 2D-islands

u=2 Byly,. (4.69)

Here, £, is the area of an atom and £ and y, are the line tensions of the steps at
the points of minimal curvature and the distance from the center, respectively. For
islands on the {111} surface the index O stands for either A- or B-steps. Equation
(4.69) can be proved also directly by assuming the 7= 0 K polygonal shapes. For
very high temperatures for which all equilibrium shapes converge to a circle
(4.69) is just the Gibbs-Thomson equation in two dimensions. The size depend-
ence of the chemical potential of islands on surfaces gives rise to a 2D-Ostwald
ripening: larger islands grow at the expense of smaller ones. Eventually all islands
disappear and the atoms migrate to straight steps which typically exist in sufficient
abundance on surfaces.

_ /| AE =2¢

_/!AE=0

Fig. 4.19. The chemical potential of a square island in the Kossel-model. The free energy of
the island does not change upon removal of all but the last atom in an edge. The Gibbs-
Thomson chemical potential of the island is entirely due to that last atom.

It is interesting to contemplate the microscopic origin of the Gibbs-Thomson
equation. For that purpose, we consider a simple model for the bonding of atoms:
The atoms are represented by cubes that bond to each other via the faces of the
cubes. This model is known as a Kossel-model. For islands on a (100) surface of
an fcc-crystal, it is equivalent to a nearest neighbor bond model (Fig. 4.19). The
total energy associated with the perimeter of an island of N atoms is E =4eN "2
The chemical potential in the continuum approximation is
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As seen from Fig. 4.19 the microscopic length of the perimeter does not change
with the removal of a corner atom or atoms from kink sites. The total energy of
the island does not change in this case and the “chemical potential” for these at-
oms is zero. Only the removal of the last atom in a row reduces the length of the
perimeter by two units. The chemical potential of that last atom is therefore 2&.
The probability for an atom to be the final one in the row is N2, so that on the
average = 2&N 2. The continuum equation is thereby recovered. The fact that
only a fraction of atoms carries the message of a higher chemical potential of an
island does not hurt as all thermodynamic quantities are defined as averages over
large ensembles. This has to be seen apart from the question whether deviations
from the Gibbs-Thomson equation exist for small islands. Such deviations would
arise, e.g., from next-nearest neighbor or long-range interactions.

We conclude this section with the remark that the concepts of line tension and
line stiffness also apply to other line defects. Domain walls between ordered ad-
sorbate regions are of particular interest.

(4.70)

4.3.4 Point Defects

The hierarchy of equilibria on surfaces is established by the difference in the
speed of transport processes along step edges, on terraces and across step edges.
The carriers of the transport processes are single atoms (or molecules for molecu-
lar crystals), but also single atom vacancies. Occasionally the random motion of
units of several atoms may contribute to the mass transport, however in most cases
the contribution of adatoms or single atom vacancies prevails by far. The transport
is driven by local gradients in the chemical potential of transporting species. For
the transport along a step edges the local chemical potential is given by the curva-
ture of the steps. Diffusion along steps can thus be described by considering the
local curvature and certain transport coefficients (Sect. 10.2). For the purpose of a
quantitative description of atom transport across terraces in the continuum ap-
proach one needs to know the chemical potential of the transporting species on
terraces. In most practical cases, the concentration of the species is very small, so
that interactions between them can be neglected. The diffusing species then form a
dilute 2D, and therefore non-interacting lattice gas (cf. Sect. 5.4). Each site on the
surface may or may not be occupied by the defect; hence, one has occupation
numbers 0 and 1. The appropriate statistics is the Fermi-statistics. By inverting
(3.7), one obtains the chemical potential as a function of the fractional coverage @
of a site as

U=ty +kgTI[O/(1-O)] = pty +kgTIn O . 4.71)
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Here, kg is the Boltzmann constant and £, is the ground state energy of the defect.
In order to calculate the equilibrium coverage 6., we need to recall the special
property of a kink site, namely that it repeats itself after removing or adding an
atom to a step the kink (Fig. 4.19). The equilibrium coverage is therefore given by

W

Opq =¢ "' (4.72)

with Wy the work required to generate the defect from the kink site. The work is
equal to the change in the appropriate thermodynamic potential of the surface. For
uncharged surfaces in vacuum, this is the change in the Helmholtz free energy,
which can be approximated by the change in energy, such as can be calculated in
total energy calculations. For surfaces in an electrolyte environment Wj is a differ-
ent quantity (Sect. 4.3.6). It is useful to consider the order of magnitude of the
equilibrium coverage ©,,. The adatom formation energy on Cu and Ag surfaces is

about 0.7 eV, hence 6, = 107" at 300K. The neglect of interactions in (4.71) is

thus well justified. Despite the smallness of the equilibrium concentration, trans-
port process can be quite rapid on these surfaces even around room temperature.

4.3.5 Steps on Charged Surfaces

The surface tension of stepped surfaces differ from the flat surface for two rea-
sons: one is the additional Helmholtz free energy required to generate steps on
surfaces. A second reason, which comes to bear only for charged surfaces, is that
surface steps carry a dipole moment with the positive end pointing outwards. The
dipole moment originates from the non-perfect screening of the sharp contour of
the positively charged ion cores. This effect, the Smoluchowski effect [4.29] was
discussed in Sect. 3.2.1. The step dipole moments reduce the work function of
vicinal surfaces, and, since a shift in the work function causes a corresponding
shift in the potential of zero charge (4.24), steps shift the potential of zero charge
towards negative potentials. The relation between the shift in the work function
and the step dipole moment is

14
AD/e= ¢pzc,9 _¢p2c,0 = . az L’ (4.73)
0

in which p, denotes the dipole moment per step atom, ¢ is the length of an atomic
unit at the steps (the atom diameter for a densely packed step), & is the absolute
dielectric permeability, and L is the (mean) distance between steps.
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Fig. 4.20. Shifts in the work function (circles) and the potential of zero charge (squares) for
stepped Au(111) surfaces [4.30, 31].

Table 4.1. Dipole moments per step atom p, for steps on silver, gold and platinum surfaces.
Data refer to a non-aqueous electrolyte, an aqueous electrolyte and to surfaces in vacuum.

Surface Step type p.leA Environment Reference
Ag(111) 1 TO] (111), B-Step 0.0138 non-aqueous [4.32]
Ag(111) [ITO] (100), A-Step 0.0238 non-aqueous [4.32]
Ag(100) [1 TO] (111) 0.0054 non-aqueous [4.32]
Au(111) 1 TO] (111), B-Step 0.06 aqueous [4.31]
Au(111) [110] (111), B-Step 0.041 vacuum [4.30]
Au(111) 1 TO] (100), A-Step 0.042 aqueous [4.31]
Au(111) 1 TO] (100), A-Step 0.056 vacuum [4.30]
Pt(111) 1 TO] (111), B-Step 0.184 vacuum [4.30]
Pt(111) [110] (100), A-Step 0.094 vacuum [4.30]

The dipole moments of step atoms need not be the same in vacuum and in an elec-
trolyte. For aqueous electrolytes, e.g., the arrangement of the dipolar water
molecules around the step atoms may differ from the flat surface, which may
cause either a reduction or an enhancement of the dipole moment. Figure 4.20
displays a comparison of the shift in the work function and the potential of zero
charge as a function of the step density [4.31]. Interestingly the dipole moment of
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steps in an aqueous electrolyte is higher than for steps in vacuum in case of B-type
steps, however lower in case of A-type steps. Table 4.1 summarizes a few data on
the dipole moments of steps as determined from the shift in the pzc for silver sur-
faces in non-aqueous electrolyte, for gold surfaces in an aqueous electrolyte and
from the change of the work function of gold and platinum in vacuum.

J/pzt:,e

J/pzc,l) i

S

C

9o

2

Qo — (¢, C>0

o = = ¢, C=0 N
g - = (9, C0

a —-=,(¢), C=0

0
Potential ¢ '¢pzc,o

Fig. 4.21. Surface tensions (schematic) for flat and stepped surfaces, with and without
charge (C >0 and C =0) as function of the potential (solid line: flat surface, C > 0; dotted
line: flat surface, C = 0; dashed line: stepped surface, C > 0; dash-dotted line, C = 0).

Figure 4.21 illustrates the effect of the shift of the pzc on the surface tension. The
surface tensions for a stepped and a flat surface in an electrolyte are plotted sche-
matically as dashed and dotted lines, respectively. It is assumed that the interface
capacity is the same in both cases, so that the parabolae (4.28) have the same cur-
vature. Merely the potential of zero charge is shifted towards negative potentials
for the stepped surface. The apex of the parabola representing the stepped surface
is shifted upwards compared to the flat surface. The amount of this upwards shift
must correspond to the difference in the specific Helmholtz free energy of the two
surfaces which is the appropriate surface tension for uncharged surfaces. This can
be seen by the following argument: Suppose the capacities C are made zero by
going to an infinitely dilute electrolyte, then the parabolas degenerate to horizontal
lines through the apices. With the capacity equal zero, the surfaces become un-
charged, regardless of the potential and the difference in the surface tension is the
difference in the specific Helmholtz free energy.
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For an arbitrary potential ¢ and capacitance C, the step line tension is the differ-
ence between surface tension of the stepped and the flat surface multiplied with
the length L between the steps. Since we are interested in the line tension of iso-
lated steps, we take the difference in the limit of large L.

9 4
@)= lim L{ypzc,g— Jo0 @40 ~ Ve + Jao<¢'>d¢’}

Pozc0 Bozc.0
¢ ¢pzc,ﬂ +A¢pzc
= ngn L Byl L= [(0y(@)—0o@Ndg’ —  [0,(4)de’ 4.74)
“ [ Porc.o

¢
=By~ lim Ly [(0,(¢" —ao(¢’>>d¢’}

pzc,0

The second integral vanishes in the large L limit since its value is proportional to
(A¢)pzc)2oc L% With (4.74) the potential dependence of the step line tension is
expressed in terms of the potential dependence of the difference in the charge
densities on the stepped and flat surfaces. A significant contribution to the differ-
ence in the charge densities, which exists under all circumstances, arises from the
shift in the pzc by A@,,.. In addition to the effect of the pzc-shift, the charge den-
sity on stepped surfaces may differ because of a change of the interface capacity
due to the presence of steps, and because of a specific adsorption of ions, which
may adsorb in different quantities and at different potentials at step sites compared
to the flat surface. The effect on the capacity has again two contributions; one is
due to the enhanced polarizability of the substrate electron system near steps and
tends to increase the interfacial capacitance [4.33]. The capacity is reduced by the
screening of the part of the terrace surface adjacent to the steps due to the geomet-
ric structure of the step [4.34]. Both effects are very small and partly compensate
each other so that a variation of the capacity due to steps can be neglected to a
good approximation [4.33]. In the absence of specific adsorption or in case the
specific adsorption at steps is as on the flat surface, the shift in pzc is the therefore
prevailing effect on the charge density. Figure 4.22 illustrates the variation in the
charge density in such a case. The charge density for the stepped surface with the
pzc shifted by A¢ can be written as an expansion in powers of A¢ in terms of the
charge density of the flat surface.

0y(9) = 00 (9 + 49) + A0, (9)

0

= 0y (9) + ai; A...+ Ao, (D) (4.75)
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Fig. 4.22. Surface charge density vs. potential for flat and stepped surfaces (schematic). A
rise in the slope at a certain potential and a leveling off is typical if ions are specifically
adsorbed in that potential range. The dashed line representing the stepped surface is merely
shifted horizontally, which is equivalent to the assumption that the specific adsorption of
ions is not altered near step sites.

The term Aow(¢) stands as a reminder that there could be further contributions due
to specific adsorption at step sites or a change in the capacity due to a different
polarizability of the stepped interface. Neglecting those one obtains for the step
line tension the remarkably simple equation

@)= By~ lim L{ag04(9)}= s -0 (9) (4.76)

o

The potential dependence of the line tension can therefore be expressed in terms
of the step dipole moment p, (which may be potential dependent also) and the
charge density of the flat surface. For small deviations of the potential from ¢,
the contribution arising from Aoi(¢) can be expressed in terms of the difference in

the capacitance per step length AC of the stepped and non-stepped surface as
AC (¢—¢pzc)2 /2 . The latter contribution is, however, small, at least in the ab-

sence of specific adsorption and for low to moderate electrolyte concentrations.
This was confirmed by a microscopic theory in which the charge distribution was
calculated by a simultaneous solution of the jellium model for the solid and the
Poisson-Boltzmann equation for the electrolyte [4.33]. The charm of equation
(4.76) lies in the fact that the surface charge of the flat surface at any given poten-
tial and the dipole moment p, (via the change in pzc) can be measured
independently, so that the potential dependence of the line tension can be deter-
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mined from independent experimental data. If the surface charge is measured for
both the stepped and the non-stepped surface, the potential dependence of the step
line tension can be determined from the experiment even without any further as-
sumption (first line in (4.74)).

An interesting aspect of (4.76) is that it predicts the existence of an electro-
chemical roughening transition for positive potentials when f(¢) = 0. By taking
approximate numbers for ,szca” from clean surfaces in vacuum as 0.22 eV,
0.25 eV, and 0.34 eV one calculates critical charges of +0.37, +0.17, and +0.07
e/atom for the (111) surfaces of Ag, Au, and Pt, respectively. These charges are
within the experimentally accessible range.

In section 4.3.1 we have considered the expansion of the projected surface ten-
sion in powers of p =tand and the effect of the various terms on the crystal
equilibrium shape. Here, we show that charging of surfaces necessarily leads to an
effective attractive step-step interaction term of the j»-type. The projected poten-
tial dependent surface tension is

cos@  cosd P
pzc.0

70,0 =L 20 _ 1{mw I%wmé} @.77)
By inserting (4.75) one obtains

B 1 ¢ toleg ,
}/p (6, ¢) = }/pzc,O +7Hp _w{%?{ ( O(¢ ) + ¢O A¢pzc\Jd¢}

IBH pz
= +| —————0
ypzc,() ( h an”h 0(¢) p

Eoayh

2
1 1
—(1+5p2...j gcpzc[ P: Jp + jao(;/))dq) (4.78)

Prze.0

2
¢
7,(0,0)= mwwﬂW)—icwﬂﬁ7]+j%ww¢p2

2 o Do

Here, (@) and S(@) are the surface tension of the flat surface and the step line
tension (4.76), respectively, 4 is the step height and C,,. is the (mean) capacitance
in the range @, 9< @< Ppsc0 -The last term in (4.78) has a negative sign and is
proportional to p It therefore corresponds to an attractive step-step interaction
proportional to L. According to (4.55) the equilibrium crystal shapes in an elec-
trolyte has therefore always a finite contact angle between the facet and the rough
surface! Consider Ag(111) surfaces as an example: the repulsive interaction term
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y; is about 1.75 meV/A? [4.21]. With the data from Table 4.1 one calculates
p=-1.1 meV/A? and —3.4 meV/A? and thus contact angles of 33° and 62°, for A-
and B-steps respectively. The contact angle increases with the potential further
away from pzc when the second contribution to the p’-term gains importance.

Interactions between steps are observable directly via the step-step distance
distribution on vicinal surfaces. Vicinal surfaces in vacuum display a Gaussian
distribution of step-step distances due to repulsive interactions. The width of the
Gaussian reflects the strength of the interaction (Sect. 5.3.2). Attractive interac-
tions, on the other hand, are evidenced by the formation of step bunches. The
formation of step bunches with time on a surface, which initially, due to the sur-
face preparation, displayed a regular step distance distribution, has been observed
on Ag(19 19 17) surfaces in a 1 mM CuSO4+0.05 H,SO, electrolyte [4.35].

4.3.6 Point Defects on Charged Surfaces

The hierarchical structure of equilibration processes on surfaces brings about local
varying chemical potentials, which act as driving forces for ripening process on
surfaces. Atom transport in these processes is either via single adatoms or via
single atom vacancies, rarely also via small clusters as the diffusion species. The
thermodynamics of these defects is therefore important for the potential depend-
ence of ripening effects as well as for surface diffusion processes in general. It is a
common observation that the speed of surface self-diffusion processes increases at
positive potentials, occasionally also at negative potentials. The term electro-
chemical annealing has been cast to stress an apparent analogy to the speed-up of
equilibration processes at higher temperatures. As is shown in this section the
expression is misleading insofar as the increase in the speed is due to a lowering
of the activation barriers rather than being akin to a raise in temperature.

The activation energies in surface transport process involve the work required
for the formation of the atom transporting species and the activation energies for
diffusion. For uncharged surfaces in vacuum the formation energy is the Helm-
holtz free energy AF 4 required for the creation of an adatom or a vacancy from a
kink site (Sect. 4.3.4, see also Fig. 4.19). For charged surfaces kept at constant
potential, the making of, e.g., an adatom from a kink does not change the charge
distribution at the step, as the kink reproduces itself in the creation of an adatom
(Fig. 4.19). However, the newly created adatom on the surface gives rise to a flow
of charge in response to the locally varied potential around the adatom. The effect
of this variation in the charge distribution on the thermodynamics of defect crea-
tion is calculated by the same method as for the step line tension on charged
surfaces, namely as the difference of the surface tension of surfaces with and
without the defect. By writing (4.74) for point defects rather than for a line defect
one obtains
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With the expansion (4.75) the defect energy becomes
E (9) = AFy — % 0o(9) . (4.80)

0

Here, p, is the dipole moment of the adatom or the vacancy, and oy(¢) is the sur-
face charge density of the surface without defects as before. We can also
immediately write down the potential dependence of an activation energy, e.g. in a
diffusion process as

A
Epo(9) = Byt ($) L2 00(9) 481)

€o

with Ap, the difference between the dipole moment in the activated transition state
and the initial state. As the surface charge depends linearly on the potential ¢ (at
least in a small range) the two equations (4.80) and (4.81) state that to first order
formation energies of defects and activation energies of defect migration depend
linearly on the potential. All processes of surface self-diffusion should therefore
increase exponentially for positive potentials. This is the physical reason for a
multitude of qualitative observations on electrochemical surfaces, which have
been summarized under the name electrochemical annealing. A few quantitative
studies which confirm the exponential increase of coarsening processes have also
been reported lately [4.21].

4.3.7 Equilibrium Fluctuations of Line Defects and Surfaces

This section considers the spatial equilibrium fluctuations of steps or other linear
systems and of rough surfaces for which the surface tension is a continuously
differentiable function. Temporal aspects of these fluctuations will be considered
in Sect. 10.5. We begin with the fluctuations of a line, and generalize the result to
the two-dimensional case later. The line profile is described as a position x(y) so
that y represents the mean direction of the line. The work associated with the fluc-
tuations of the line profile is
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(L Lol dx )
AE = ﬂ{ Ids—LO] =p I[d_] dy, (4.82)
0 o\ 4y

in which B is the line stiffness (4.67) for the y-direction and Ly is the length along
this direction. To avoid finite size effects L, can be chosen as the length unit of
periodic boundary conditions. The position x(y) is then expanded into the Fourier-
series of partial waves of wave vector g = 2nn/L, with an integer number running
from —oo to +00

:L iqy 4.83
=T (4.83)

In thermal equilibrium, each capillary wave of amplitude 7, carries the energy
kgT/2. The thermal fluctuations of a line can therefore be calculated by summing
up the contribution of all capillary waves. Because of

zei(q—q’w =5 (4.84)

99
q

the expansion has the inversion

Ly )
[dyx(yye . (4.85)

_ 1
=L

After differentiation of (4.83), insertion into (4.82), by using the identity

L
[dyel @t DY =15, (4.86)
0

and
Ny =14 4.87)

which is a consequence of the reality of x(y), one obtains the energy in terms of
the amplitudes of the partial waves as

AE Z%EZ|77q|2q2 . (4.87)
q
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According to the equipartition principle each capillary wave contributes kg7/2 to
the total energy so that

2 kgT
| =25 (4.88)
Bq
We are now interested in the mean square deviation of the amplitude x(y)
() =((x() =20 ) =2((GF ) -2xmar).  @89)

G(y,y’) is frequently called the correlation function of the line system, although,

strictly speaking, the correlation function is only the second term on the right hand
side of (4.89). The first term on the right hand side is obtained by inserting the
Fourier-expansion (4.83) and by using (4.84) as

Wm>:—ﬂ|2%32— (4.90)

The second term is

2(x(y)x(y)) = <Zm‘w_/*”>
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which by using (4.84) becomes
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With the standard substitution of the discrete variable g by a continuous variable k

— —>— dk 4.93
LToa as
one obtains
2kB 1 *
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By solving the integral one arrives at the desired expression for the mean square
fluctuations

: (4.95)
B

<(X(y) - X(y'))2> =

ly-]

The term kgT/ ,[7 is called the diffusivity of the line. The spatial fluctuations of a
linear system, e.g. a step, therefore increase linearly with the distance from the
origin, and they are inversely proportional to the stiffness B , which is an intui-
tively appealing result.
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Fig. 4.23. Spatial correlation function for steps on the Cu(1 1 13) surface at 285 K. In order
to avoid the problem of the absolute reference direction the difference in the position of two
adjacent steps Ax(y) is plotted. A kink energy of & =0.128 eV is obtained from the slope
[4.36]. The offset at | y— y'| =0 is due to random noise in the STM-image.

Figure 4.23 shows experimental data of the step correlation function on a
Cu(1 1 13) surface which confirms the linear dependence [4.36]. The steps on this
surface vicinal to the (100) plane run along the densely packed [011]-direction. In
this case, the diffusivity has a straightforward microscopic interpretation (see also
Sect. 5.2.1). At any atom position there is a finite probability Py for having a kink
in the positive or negative direction. If the temperature is not too high P, << 1 and
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kink length larger than one atom are thereby excluded. The probability to find a
kink of one atom length unit a, is
&

P =2e Wl (4.96)

with & the energy required to make a kink in the step. The factor of 2 arises be-
cause kinks can be in the positive or negative direction. Due to these kinks the step
engages in a random walk concerning the x-direction and the mean square dis-
placement in that random walk is

(x»=201)1ad = R |y=yT/ay. (497

Here, q, is the atomic length unit along the y-direction (for the (100) surface
a, = a, ). The line stiffness of a step on a (100) surface along the [011]-direction

is therefore

N (4.98)

For low temperatures, the stiffness is much higher than the line tension £ (4.67)
and diverges as T — 0 K. For the equilibrium shape of an island this means that
the curvature of steps along the [110]-direction approaches zero (4.68, 4.69).

Steps and domain walls are frequently pinned at point defects, e.g. impurity
atoms on the surface. In that case, one is interested in the fluctuations of a line
over a distance L between two fixed points. Obviously, the fluctuations are zero at
the pinning defects and have their maximum at midpoint between the pinning
centers. Rather than the magnitude of the fluctuation as a function of the distance,
one takes the average of the fluctuations over the entire length L as a measure of
the intensity of the fluctuations. The natural capillary wave expansion for this
problem is the expansion into functions sin gx with g = n/L withn =1,2,3...

x= i 2.1, sin(mny/L). (4.99)

\/Z n>0

Writing the fluctuation energy in terms of the capillary waves and applying the
equipartition principle now leads to amplitudes 7,

2 _ ksTL* 1
"B on?

(4.100)

The mean square of the fluctuations is then
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15, _kgT
<x >—Z(_)[x (y)dy_ﬁL (4.101)

With this result, the line tension of step can be determined from the fluctuations of
steps between two pinning centers. The method has been applied to determine the
step stiffness on Si(111) surfaces at 900 °C [4.37].

Equation (4.94) can be generalized to the two-dimensional spatial fluctuations
of a thermodynamically rough surface. The profile of the surface be described by
the height function A(r) with r a two-dimensional vector. The generalization of
(4.94) to the 2D-case is

2kgT 1 7 1
h(r)—h())* )= =2 dg— (1-cosq-(r—r’ 4.102
() =he F )= =25 T sli=eosg-r=r) - @102

with ¥ the surface stiffness. By introducing polar coordinates dg = gdgde this

becomes

, T Gmax ,
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in which Jj is the Bessel function and ¢, is a cut off wave vector which is of the
order of the inverse of an atomic distance a. The integrand is free of poles in the
entire range. For small arguments, J, approaches one and the integrand vanishes.
We are interested in the correlation function for large distances, in particular in the
mathematical form of the divergence. In the limit of large arguments x = g Ir—+'l,
the Bessel function J, oscillates symmetrically around zero and its contribution to
the integral vanishes therefore. The height correlation function therefore diverges
as

<(h(r) - h(r’))2> - k;—:ln('r%] (4.104)

for large distances. We see that for a 2D-system the correlation function diverges
logarithmically, significantly slower than for a linear system. The atomic distance
a, and thus the absolute value of the roughness, remains undefined within the con-
tinuum theory. From the physics point of view, a cut-off wave-vector should have
been introduced into the continuum theory of linear fluctuations as well. It is,
however, mathematically not necessary there since the integral converges nicely.
Furthermore, the microscopic result from random walk theory yields exactly the
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same result for all length scales. Equation (4.97) therefore holds for all distances
on the y-axis.

4.3.8. Island Shape Fluctuations

This section considers the thermal fluctuations of steps forming the perimeters of
homoepitaxial monolayer islands or any other closed loops of a linear boundary
that possess a line tension. An example for the shape fluctuations of a monolayer
island is shown in Fig. 4.24 which displays the equilibrium shape on a Cu(100)
surface at 7= 408 K [4.38] (solid line) together with the shape observed in a sin-
gle STM-image (dashed line). The systematic measurement of shape fluctuations
provides an elegant method to determine absolute values for the step line tension.
The theory behind the method is akin to the theory of the fluctuations of linear
systems; it deviates, however, in detail from the theory for infinitely long lines or
lines extending from point A to a point B. The differences arise from different
boundary conditions, from the different energy functional, and from a different
normal mode expansion. The boundary condition here is that the number of atoms
in the islands stays constant. The energy functional is

E-= 4 B(n)ds (4.105)

in which n is a vector normal to step orientation. For simplicity we consider the
mathematical simple case of an orientation independent line tension f#(r) = £ The
theory nevertheless applies also to equilibrium shapes such as displayed in
Fig. 4.24 as long as the orientation dependence of 4 is not too strong (for highly
anisotropic systems see [4.39]). For an angle independent line tension £, the equi-
librium shape is a circle of radius R. Because of the fluctuations, the actual radius
in any instantaneous image j of the island is different at each point of the perime-
ter, which is denoted by a radius r(6, j) with @ the polar angle. The relative
variation g(6, j) defined as

. r@,j))—R
g0, j)="0N"R (4.106)
R
can be expanded in a Fourier series
g0.)= Y g,(je"’ (4.107)

n=—co

with g,(j) the Fourier coefficients.
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Fig. 4.24. Equilibrium shape of an island of one monolayer of atoms on a Cu(100) surface
at a temperature of 7= 408K (solid line). The equilibrium shape is obtained experimentally
by averaging over several hundred STM-images. In each of these images, the shape of the
island deviates from the equilibrium shape due to thermal fluctuations. One individual
shape is shown as a dashed line [4.38].

The side condition of constant area reads then

) 1 2n 5 ) ) R2 2n [ . ) ]
R =—— [r(0,pd0 =R+~ — [d0Pg(0, )+’ @, )] (4.108)
0 0

2n
The identity of the left and right side of the equation requires that
2n 1 2n )
[g(0,))do= 5 [g°(6,))d6b. (4.109)
0 0

The length element ds in (4.105) expressed in terms of g(8, j) is

1
ds=Rd9([l+g(6,j)]2 +g’2(9,j))5 (4.110)

in which g’=0dg /06 . For small fluctuations g<<1 and ds is approximately
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dszRd9+(g(6’,j)+%g'2(6’,j)]d6’ @.111)

With (4.109) and (4.111) the energy (4.105) is

2n
E=E, +% I[g’z(e,j)—gZ(e,j)]de. (4.112)

0

The second term is the additional energy due to excursions from the equilibrium
shape. This term is now expanded into the normal modes (4.107).

n -m

2n o
[8°0.)d0=23 g8, [0
0 0

2
=203 88O = 22| 2,] (4.113)
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We have made use of the fact that g(6 j) is a real function so that g_, = g: .In
terms of the amplitudes of the normal modes the energy E is

E = Ey+1fRY|g, () (n* = 1) (4.114)

The contribution of the term with n =0 to the energy is zero. The reason is that
this term does not represent a shape fluctuation but rather a motion of the center of
mass, which does not change the energy. The fluctuation associated with g, # 0
corresponds to the Brownian motion of the entire island. As before, the equiparti-
tion principle requires that in the mean over a large ensemble each of the normal
modes carries the energy kg7/2 so that

2 kgT
=B 0 4.115
<|g,,| > 2nﬂR(n2 -1 "t ( )

The experimental data concern the ensemble average of the fluctuation function
G(j) defined as

] R2 2n ) )
G)="— (820, )d0=R*Y|g,()’. n#0. (4.116)
0 n
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The term with n =0 is excluded if the origin of the radius (8, j) lies in the center
of gravity so that the integral Ir(@, j)dé vanishes. With (4.115) the ensemble

average of the fluctuation function <G> becomes

(G()), = el (4.117)

I 4nf

Thus, <G( j)>_,' is proportional to the mean radius R of the island. A similar equa-

tion can be derived for non-circular equilibrium shapes [4.40]. The numerical
factor changes slightly and the line tension £ in (4.117) is to be replaced by a
complicated mean over the angle 6. The mean can be disentangled to obtain the
full dependence of the line tension on the angle with the help of the equilibrium
shape (see [4.40, 41] for details). As experimental data on the perimeter position
have a certain noise, which is independent of the radius R, the line tension £ is
best obtained from the slope of a plot of (G(j)); versus the radius R, or versus the
product of the radius R and the temperature 7.

10} O ¢=+300 mV vs. SCE: Ba= 35+2 meV
B in vacuum: ga, = 170+80 meV

Au(100)
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Fig. 4.25. Mean square fluctuations <G(r)> of Au(100) islands in a 50 mM H,SO, electro-

lyte at a potential of +300 mV vs. SCE and of the same surface in vacuum (open and solid
squares, respectively).
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Figure 4.25 shows two examples of such plots, one referring to Au(100) in vac-
uum (solid squares), the other to the same surface in an H,SO, electrolyte (open
squares). The fluctuations are larger in the electrolyte and the line tension is there-
fore lower. This may be partly due to the fact that the Au(100) is unreconstructed
in the electrolyte at +300 meV and reconstructed in vacuum. The largest contribu-
tion to the difference, however, is presumably owed to the positive surface charge
in the electrolyte (Sect.4.3.5). A summary of step line tensions obtained from
island shape fluctuations is shown in Table 4.2.

Table 4.2. Step line tensions obtained from island shape fluctuations.

Surface o) comment reference
Cu(100) 220 £11 meV/atom UHV [4.38]
Cu(111) 256 22 meV/atom UHV [4.38]
Ag(111) 233 £13 meV/atom UHV [4.38]
Au(100) 170 +80/-17 meV/atom UHV [4.41]

Au(100) 40-60 meV/atom in 0.05M H,SO, [4.42]
TiN(111) 210+40/290£60 meV/A strong anisotropy [4.43]




5. Statistical Thermodynamics of Surfaces

The advantage of the continuum thermodynamics of surfaces in the coarse-grained
view is that the results are exact and model independent. On the other hand, the
quantities defined in the coarse-grained description do not translate into an atom-
istic picture unless models for the surface structure and the interactions between
the atoms are invoked. This section discusses the most important atomic scale
models that are used in statistical thermodynamics. We begin with the definitions
of the standard thermodynamic potentials within the framework of quantum statis-
tics.

5.1 General Concepts

5.1.1 Internal Energy and Free Energy
The internal energy U of system is by definition

E.

i

T kgT
S Ee " E;

i d T kgT
U=-+t— =k, T>—InYe " . 5.1
E LU Zl: (5.1

So
i

The summation index i counts all discernable quantum states of the system. De-
generate states are counted according to their degeneracy. In general, i is a
multiple infinite index number, and the sum (5.1) is an exceedingly complex one
that can be solved only in a few simple cases. These cases and the results derived
for the simple systems form the core of our understanding of the thermodynamic
properties of large ensembles of atoms.

Phenomenological thermodynamics proves that the isothermal mechanical
work OW executed on a system (leaving the particle number, volume, charge, etc.
constant) enhances the Helmholtz free energy F of the system by the amount
OF =06W . Phenomenological thermodynamics shows further that the free energy
can be expressed in terms of the internal energy as
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T
_ U(T") ,
F=-T| AT (5.2)

2
0

Inserting (5.1) leads to the well-known result

E.

i

F=-kgTInYe " =—k,TInZz (5.3)
i

in which Z is the partition function of the system with a fixed number of particles,
the microcanonical ensemble.

5.1.2 Application to the Ideal Gas

The partition function is easily calculated for an ensemble of N independent parti-
cles having merely translation degree of freedoms along the x, y, and z-axes. The
energy levels of a free particle are

2
E:;l—m(kf+k)2,+kz2) (5.4)

where k,, k,, and k, are the components of the k-vector and m is the mass of the
particle. The system is assumed to be infinitely large. The eigenstates are never-
theless countable by assuming that the system is periodic with the periodicity
length L in all three directions.

ky,.=2mn /L —o<n < oo (5.5)

X,y X,¥,2 X,¥,2

The partition function for one particle Z, is the product of the partition functions
of the independent translations Z,, Z,, Z,

h2k2 h2n2 hzxz
— X o - X 5 o — 5 L
Zx — ze 2mkgT _ ze 2mkgTL” _ J‘e 2mkgTL dx = Z(znkaT)I/Z (56)

k, oo -

The partition function for N independent particles is

2=(2,2,2.)" I N\ =V QumkyT 1122 1 1 (57)

x&y&z

in which V = L’ is the volume. The division by N! eliminates the identical configu-
rations obtained by changing the enumeration of particles. With the Stirling-
approximation
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InN!'=NInN-N (5.8)

the free energy F becomes
_ N > 3/2
F =kgTN —1+1n7(h [ 2mmkgT) 5.9
Writing (5.9) in terms of the pressure p of an ideal gas p = NkgT/V one obtains

F= kBTN(—IHn%(hZ /2nkaT)3/2j. (5.10)
B

If the particles are molecules then the partition functions for the rotational and
vibrational degrees of freedom Z,, and Z;, contribute to the free energy. With the
energy levels of the harmonic oscillator

E, =n+1/2)ho, (5.11)
the vibrational partition function becomes

Zvib :He—hwi/ZkBT(l_e—hwi/kBT)_] ) (5.12)
The rotational energy levels are

hz
E_ =—J(J+) (5.13)

rot E

with I the moment of inertia. Considering the (2J+1) degeneracy of the rotational
energy levels, the partition function is calculated to

Zyo = 20kgT 1 1% (5.14)

We finally calculate the chemical potential of the ensemble of independent parti-
cles, i.e. an ideal gas of molecules

h2 3/2 |
=kgTIn-2 . (5.15)
kgT \ 2mmkgT Z.oZ v

rot

_or
=N

V.,T..

Note that the derivative is to be taken at constant volume V, which means y is the
derivative of (5.9) with respect to N.
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5.1.3 The Vapor Pressure of Solids

As a first application of (5.15), we calculate the equilibrium vapor pressure of a
solid. The condition for equilibrium of two phases is that the chemical potentials
be equal. We therefore equate the chemical potential of the vapor phase with the
chemical potential of the solid. We consider the case of an elemental solid and
assume that the vapor phase consist of single atoms, which is typical for most
metals. In Sect. 1.3.2, it was argued that the cohesive energy of a solid is the bind-
ing energy of an atom in a Halbkristallage, a kink site in a densely packed row of
atoms. The energy of an atom in that position with respect to the ground state in
vacuum is therefore —F,,. The chemical potential of the atom in the kink site has
a contribution from the vibrational partition function. For simplicity, we replace
the vibration spectrum by three Einstein-oscillators per atom with a frequency
@ = kOp /1 . In the high temperature limit the chemical potential of the solid

with reference to the ground state level of the vapor phase is
U, =—E ., =3kgTIn(T/6Op). (5.16)

Equating the chemical potentials of the solid (5.16) and the vapor phase (5.15)
yields the equilibrium vapor pressure py,,

T T T T T T T

S 0.01 || Vapor pressure of Silver -
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oy 1E4} g
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O 1E8} g
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® 1E-10} g
3

1E-12 | - J
S Theory with E,_,=2.95 eV
g 1E-14 - O Experimental data §
© 1E-16} g
>

600 . 800 . 1000 . 1200
Temperature / K

Fig. 5.1. Vapor pressure of silver according to (5.17) (E.;, =2.95¢eV, G =225 K) and
experimental data (solid line and open circles, respectively) [5.1].
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E coh

3/2 3
2nmkgT O, -
Puap :(h—sz kBT[TD) e ! (5.17)

Fig. 5.1 shows the vapor pressure of silver (solid line) together with the experi-
mental numbers. Equation (5.17) may be compared with the Clausius-Clapeyron
equation of phenomenological thermodynamics

1op_ 0 (5.18)
poT  kgT

in which Q is the heat of vaporization per atom. The comparison shows that the
heat of vaporization

1
Q = Ecop = kT (5.19)

is but for a trifle equal to the cohesive energy.

5.2 The Terrace Step Kink (TSK) Model

5.2.1 Basic Assumptions and properties

The Terrace Step Kink (TSK) model of surfaces assumes that the surface consists
of flat terraces separated by steps in such a way that an unequivocal numbering of
the steps by an index n is possible. The steps are allowed to have kinks, but no
overhangs so that the position of a step is uniquely described by one coordinate
x,(v). Figure 5.2 shows a top view on step positions on a surface with square

symmetry (e.g. <1 10> steps on {100} surfaces of an fcc-material). The terrace

heights to the left and right of steps differ by the step height 7. We remark that this
latter fact is of no consequence for the statistical thermodynamics of steps unless
the height of the surface at a particular position is addressed, as e.g. in the height-
height correlation function. The results of this section therefore apply also to other
ensembles of linear systems such as domain walls in adsorbate phases (Sect. 1.3.1)
or in thin film magnetism (see e.g. [5.2]).

In Sect. 4.3.7, we have considered the low temperature limit for the probability
Py that the step has a kink of one atom length (4.96)

P, =2exp(-¢, /kzT) (5.20)
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where & is the energy required to generate the kink (cf. Sect. 1.3.2). We now ex-
pand the considerations to arbitrary temperature. The probability to find a kink of
the length of n atomic units a; is

_&(n)
2e ksl
P.(n)= — (5.21)
1+23e fof
n=1
Xn(y) Xn+1(Y) X
y
n n+1

Fig. 5.2. Top view on step positions in the TSK-model. The position of a step »n is uniquely
described by x,(y). Kinks have the length of one or more atom units.

The mean square of the length of a kink in units of a is therefore

_&m)

ZHZC kT
2\ _ n=1
<n >_2—Ek(n). (5.22)
1+2Ye *7
n=l1

Due to the equal probability for the existence of kinks of positive and negative
sign, the steps undertake a random walk with respect to the x-coordinate as the
step progresses along the y-direction. The randomness of the walk entails that the
mean square displacement of the step in the x-direction is a linear function of the

y-coordinate, the proportionality factor being <n2> .
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()=, 00272 = (0 )y = vol (5.23)

Here, q, is the atomic length unit along y-direction. Equation (5.21) is the TSK-
equivalent of (4.95), which was derived in the continuum approximation. Hence,
the step stiffness B in the TSK-model is

[3 =kgTq, /<n2>ai . (5.24)

Further evaluation requires the knowledge of the dependence of the kink energy as
a function of the step length. Experimental data on probability to find kinks of a
particular length on Si(100) showed that &(n) is well described by a corner energy
and a linear dependence on the length [5.3]

Em)y=¢€,+éen. (5.25)

For steps on Si(100) &, is about three times &. This entails that once the tempera-
ture is high enough to have thermally generated single atom kinks one has also a
large probability for kinks of multiple length. For metal surfaces on the other
hand, the reverse is true. The step energy per atomic length unit is typically about
twice as high as the energy of a one atom long kink. A kink of a length n > 2 con-
sists of an inner corner, an outer corner and step of length (n-2). While there
appears to be no information available on the energy of a kink with length of two
atom units, the energy of kinks with n > 2 fits to (5.25) with a negative corner
energy &, =€, —q,f and & =qf . Using (5.25) with arbitrary values of & and &

we calculate <n2> as

_ & _ &
<n2>: 22cq(1+q) — c=e W g kT (5.26)
(I1-¢)"(1-q+2cq”)
which reduces to
2
<n2> -—— = (5.27)
q+q -2

if the corner energy &, vanishes.
The denominator in (5.22) is the partition function for a step in the TSK-model
with no step-step interactions. The free energy per step atom of a step is therefore
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F = B(T)a, = f(0)a, —kgT In(1+ ZCiq")
n=l

(5.28)
2cq

l1-¢q

= f(0)a, —kgT In(1+ )

with A(T=0)q, the step free energy per atom. Equation (5.28) has the low tempera-
ture expansion

€k

B(TMa, = BO)ay —2kgTe " (5.29)

in which & = £+¢ is the energy to create a single kink. The second term in (5.28)
and (5.29) represents the configuration entropy that results from the thermal me-
andering in space. With increasing temperature, the entropic term can become as
large as the step energy so that the free energy of the step vanishes. At this tem-
perature, steps are spontaneously created and the surface becomes
thermodynamically rough (Sect. 4.3.1).
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Fig. 5.3. Step free energy according to the TSK-model for non-interacting steps (solid line)
for A0)a) = & =0.1eV. The corner energy is assumed to be zero so that the energy of a
single atom kink is & = &. According to the model, the step free energy becomes zero at
the roughening temperature Tg = 1.13&/kg. In reality, the roughening transition is ap-
proached very gradually because of step-step interactions (dashed line).
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According to the TSK-model of non-interacting steps the roughening temperature
should be Tgx= 1.13 g/kg when ,B(O)aH = &. However, the TSK-model predicts an
unrealistic value for the slope of the step free energy at the roughening tempera-
ture where steps are created spontaneously. Actually, steps repel each other by
elastic as well as entropic interactions (to be studied in the next section). Because
of the repulsive interactions between the steps, the energy cost for the creation of
new steps increases with the density of already existing steps. Consequently, the
free energy does not dive into the zero line as the TSK-model of non-interacting
steps suggests, but rather approaches the zero level gradually with even a zero
slope at the roughening temperature 7x.

5.2.2 Step-Step Interactions on Vicinal Surfaces

We now study the meandering of steps on vicinal surfaces with step-step interac-
tions taken into account. We consider merely repulsive interactions so that vicinal
surfaces are stable. Repulsive interactions arise from two sources. One is the elas-
tic repulsive interaction as investigated in Sect. 3.4.2. The second interaction is of
entropic nature and arises from the fact that steps are in each other's way so that
their meandering is hindered. The following analysis requires that the vicinal sur-
faces are thermodynamic rough (Sect. 4.3.7). Later, Sect. 5.2.4 shows when this
requirement is fulfilled.

The elastic interaction considered in Sect. 3.4.2 is non-local as each step at
position x,, y interacts with all other steps x,, at any y'. The simple L > dependence
of (3.80) was derived for straight steps separated by a constant distance L, whereas
we now wish to consider explicitly meandering steps for which the distance to
next step varies along the y-axis. The problem is not solvable in full generality.
One usually reduces the interaction to a local pair interaction potential between
steps v[x,.1(y)-x,(v)]. With this interaction potential and the further assumption
that the kink energy be proportional to the kink length (no corner energy) the
Hamiltonian is

H =Y &x,(y)=x,(y+D|+v[x,., () - x,(»] (5.30)

n,y

We have dropped the index in the notation of the kink energy & The variables x
and y are now discrete and in units of the atomic length @, and g, respectively.

The free energy of the system is given by the grand partition function
F = —kgT In[Trexp(-H{x, (y)}/ kgT)] (5.31)

in which Tr denotes the trace. This harmlessly looking expression is in general a
rather unapproachable beast. For the ansatz (5.30) the Hamiltonians in each line y
are independent of each other and the partition function separates line wise so that
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2=2" =(Trexpl-H  (x,) 1 ks T]" (5.33)

with N number of y-values, i.e. the step length in atomic units. We see that the
Hamiltonian (5.30) corresponds to N independent systems, each possessing p, in
general interacting particles (steps). Analytical solutions require still further sim-
plifications concerning the interaction potential. The simplest case is no
interaction at all. Another solvable case is a mean field approach in which the
potential V = zn’yv[xn a0 =x,( y)] is replaced by a potential V(x,(y)) that is

the same for all steps, regardless their position with respect to the other steps.

We consider first steps with no explicit interactions. An elegant way to solve
(5.33) is to map the problem onto an equivalent quantum mechanical problem.
The method is called transfer matrix method. To this end, we describe the system
with p steps at position y by a state vector

) =[x, x5,x, ) (5.34)

where the x; denote the positions of the steps. Steps in the state vector |l//> are

created by the usual creation operators c* so that
+ o+ +
W) =|x, %52, ) = cheh et |0) (5.35)

Since no two steps exist at the same place, the occupation number for a step at x;

. . 7 + .
is either 0 or 1. The operators ¢, and c¢_ are therefore fermion creators and
k

annihilators, respectively. The operator cIk Cy has the eigenvalue O or 1, depend-

ing on the existence of a step at x;. Kinks are created by removing a step at
position x and creating another one at x-1 or at x+1; i.e. kink are created by the

pair of operators c and ci,c,. We consider the matrix element

x-1€

X

<l//y |Z y|l//y +1> which transfers the system from line y to y+1. If there is a kink in

the step it must have the value exp(—&£/kgT) in the low temperature limit. Hence,

Z, can be written as

Z,=1+e My el e e 11536

Xk

+ + - —&lkgT + +
X cxk Xi ka -1 =€Xp| e Z ka cxk X ka -
Xk

The Hamiltonian H, in (5.33) that yields the correct partition function is therefore

" This condition is also referred to as the no-crossing rule for steps.
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_ —&lkgT + +
H,=-kgTe "™ Y cicg ey cy - (5.37)
Xk

For a large ensemble N, the value of the partition function is determined by its
maximum eigenvalue, hence by the minimum eigenvalue of H,, which is the
ground state. The solution we are looking for is therefore the ground state of the
Hamiltonian (5.37) to which one might add a mean field potential

Vmeanﬁeld = ZV(xk )C;—k cxk . (538)

X

We now move from the particle representation to the space representation in
which the states are described by a many particle wave function ¥ (x;,x;,...x,,)

that has the usual meaning of a probability-amplitude to find the steps at the posi-
tions x;. We furthermore represent the many body state y(x;,x,,...x,) by the

product of single particle wave-functions ¥/ (x; ), which is equivalent to the single
electron approximation for a general fermion gas. This last approximation is not
necessary if there is no interaction as the Hamiltonian of a non-interacting Fermi-
gas can be solved exactly, but it simplifies the analysis considerably. Mapped onto
the step problem this means we now consider the behavior of a single step in a
mean field potential provided by all the other steps. The Schrodinger equation for
the single step wave function is then

—kgTe " [y (x+ D +y (e =D+ V(O (x) = fyr(x) (5.39)

We have dropped the index k. The eigenvalue f is the free energy of the step per
atom length, which follows from the general definition of the free energy (5.3) and
(5.33). Moving over to a coarse-grained description one may consider x as a con-
tinuous variable and return to the normal metric by replacing w(x+1)+w(x—1)

first by w(x+a,)+w(x—a,) and then by ai w”(x) + 2y (x) . Our tour de force

through the transfer matrix method applied to steps is then finally rewarded with a
nice equation for the probability amplitude ¥ (x) to find a step at position x.

—kgTe ™ T a2 () +V (X)W (x) = (f +2k,Te "y (x).  (5.40)
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5.2.3 Simple Solutions for the Problem of Interacting Steps

The Gruber-Mullins model

We consider two solutions of (5.40). The first is the particle-in-a-box solution,
which here means that a step is assumed to meander freely between the boundary
set by two neighboring steps at their mean distance —L and +L. Evidently, the
solution is

| cos(xm/2L) (5.41)

V/(X)=ﬁ

The probability to find a step at x is therefore
1 >
P(x)= Ecos (xmt/2L) (5.42)

Equation (5.42) is known as the Gruber-Mullins solution of the step-step interac-
tion problem [5.4]. By observing that the step position x =0 corresponds to a
terrace width L = <L> the normalized terrace width distribution is

P(s) =sin*(ns/2), (5.43)

in which s = L/(L) . The terrace width distribution is plotted in Fig. 5.4. Inserting

the wave function into (5.40) yields the free energy per atom length as

2 2
f=—2kyTe/MT +kBT%e_£/ kol (5.44)

Evidently, the energy of the ground state at 7=0 comes out as zero. To make
contact with the real world we have to add the internal energy. The final result in
our standard notation is therefore

2 2
B(T)ay = BO)ay - 2kyTe " 7 + kBT%e‘” kT (5.45)

Compared to the solution for a single step (5.29) equation (5.45) contains an addi-
tional L-dependent term, which represents the entropic repulsion of steps.
However, the hard wall model overestimates the entropic repulsion. In reality, the
neighboring steps also wander about which reduces the entropic repulsion some-
what. In the exact result obtained from the free fermion solution the 4 in the
denominator of the third term in (5.45) is replaced by a 6 [5.5].
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Fig. 5.4. Normalized terrace width distribution according to the Gruber-Mullins model, the
free fermion model, and the harmonic oscillator model (solid, dashed and dotted line, re-

spectively).

With (5.45) we have a microscopic solution for the third term of the expansion of
the projected surface tension },(p) (4.46) in which p was defined as |tan 9| with &
the angle of inclination of the surface with respect to a low index surface. With the
correct factor 6 inserted in the denominator of the last term of (5.45) one obtains
for y; in (4.46)

Tn’al _
Vs = kg nzaJ_ o€ /ksT (5.46)
6h

in which £ is the step height. By introducing the line stiffness B (5.24) the free
energy is expressed in terms of macroscopically defined quantities.

T)? T)?
B(T)a, = fO)a _(kBN) a +(“kB ) q

% o7 (5.47)

and p; becomes
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(nkgT)* g
=— =" = 5.48
e’ 649

The harmonic oscillator model

The second solution of (5.40) that can be expressed in analytical form is obtained
for elastic interactions (Sect. 3.4.2). In keeping with the definitions in Sect. 3.4.2
we write the elastic step-step interaction for one atomic unit step length as a; A/L*.
The single step considered meanders therefore in a potential

V(x) =a”Ai[ ! ! ]

2t 2
n=1\ (nL—Xx) (nL+x)
_ a”Asz a”ATC4

61> 1514

(5.49)

2

Here, x denotes the deviation from the central position between two neighboring
steps. It is also assumed that all other steps on the vicinal surface are at their mean
position. The sum of the interactions to the next-nearest steps and all steps farther
away adds a factor of m*/90=1.082 to the next-nearest neighbor interaction. The
resulting potential is harmonic as long as x << L. With (5.49) equation (5.40) be-
comes the Schrodinger equation of a harmonic oscillator. The probability to find a
step at position x is a Gaussian

2
X

] = e (5.50)
S+/27
with
2 174
S=ILw=L 1f“ikBT (5.51)
4a,An” exp(e/ kgT)

Transformed into the normalized terrace width distribution P(s) (5.50) becomes

_G=)?

P(s)= e 2w (5.52)

1
w21

Figure 5.4 shows this distribution as a dotted line with data for A and ¢ that corre-
spond to Cu(100) vicinal surfaces (A =7 meVA, £= 126 meV [5.6)).
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As for the Gruber-Mullins model, one can calculate the step free energy and ob-
tains

B(T)ay = BO)ay, —2kgT e """ +

2
T q A 2 -
I 1+\/12alkBTexp( ElkgT . (5.53)

6L 5a,A

As expected, the free energy rises with the strength of the step-step interaction.
The largest contribution is the temperature independent part of the third term,
which simply arises from the constant term in the interaction potential (5.49).

Both the Gruber-Mullins and the harmonic oscillator solution yield a symmetric
terrace width distribution. Experimental terrace width distributions are typically
skewed with a higher weight for larger step-step distances. Einstein and Pierre-
Louis [5.7 962] have proposed a general representation of the terrace width distri-
bution based on a generalized Wigner surmise on random matrix theory, which
reads

—b,s?

P(s)=a,s"e " . (5.54)
The parameter o is determined by the interaction constant A

2ae "Mk T p(p-2)
q 4 '

A=

(5.55)

The other constants are determined by normalization and the requirement that P(s)
must have a unit mean. Equation (5.54) is exact for p=1, 2, and 4. The case p=2
is equivalent to A = 0, the case of non-interacting fermions [5.8]. This distribution,
originally proposed heuristically [5.9] to describe the result of a complex ap-
proximate form derived by Jods et al. [5.8], is shown in Fig. 5.4 as a dashed line.
Experimental data on the terrace width distribution seem to have the general form
(5.54) and step-step interactions have been determined using (5.54) and (5.55)
[5.10, 11].

5.2.4 Models for Thermal Roughening

In Sect. 4.3.1 the concept of thermodynamically rough surfaces and the roughen-
ing transition was introduced. Within the framework of the continuum theory, it
was shown that the height-height correlation function diverges logarithmically
above the roughening temperature Ty (4.104).

=const T <Ty

lim ((h(r)-h(r')) =

|[r—r'|—>e0

(5.56)
oc 1n|r —r'| T>Ty
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Microscopic models with analytical solutions for the roughening transition also
exist. However, the models require drastically simplifying assumptions about the
solid so that they have little predictive value for the roughening transition of real
solids. Villain et al. [5.12 717] introduced the most realistic model. It concerns the
special case of the roughening transition of vicinal surfaces. The model considers
the Hamiltonian

H=eY o, v+ D)—x, 0 + Wy X, () -x,0F . (5.57)

n,y

The second terms describes the step-step interaction as quadratic in the distance.
With reference to (5.49) W, can be expressed by the interaction constant A as

2_4
_@qain’A

= (5.58)
"o

The quadratic dependence of the kink energy on the kink length assumed with the

first term in (5.57) is unrealistic but hurts little as the roughening transition occurs

at temperatures well below &kg. The model predicts the roughening temperature at

2
Wai e €lkTy T (5.59)
kBTR 2

The step-step interaction constant W has been determined experimentally from
the terrace width distribution for a number of surfaces [5.6, 13]. A rather complete
set of data exists for the Cu(11n) surfaces [5.9]. For this series, the roughening
temperatures are calculated in Table 5.1. With the exception of the (113) surface,
all the Cu vicinals should be rough above room temperature. This is satisfying
since the random walk model for steps as explicated above is applicable only to
thermodynamic rough surfaces.

Table 5.1. Roughening temperatures Ty for Cu(1 1 n) surfaces, calculated using (5.59) with
A =7.1 meVA and the kink energy & = 128 meV.

Surface (113) (115 (117) (119 (1111) @1113) (1115 (1117)
To/K 388 270 223 197 180 168 159 152

For the roughening transition of facets, two analytically solvable models exist.
Both models involve severely simplifying assumptions. In one model, the solid is
assumed to consist of columns of height 4; with the atoms in the form of cubes
(Kossel crystal, cf. Sect. 4.3.3) and the Hamiltonian is expressed in terms of the
nearest neighbor difference in the columnar height
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H =§z§|h | (5.60)

in which & corresponds to the energy required to "break a bond". The sum over &
extends over the four nearest neighbor columns. The factor 1/2 accounts for the
fact that each "bond" appears twice in the sum. The model is referred to as Abso-
lute (height difference) Solid On Solid (ASOS) model. The model possesses a
roughening transition at

Ty (ASOS) =1.24¢ [ kg (5.61)

In the other solvable model the absolute value of the height difference is replaced
by the square

H=2%(h-h g (5.62)
i,0

£
2

The model is called Discrete Gaussian Solid On Solid (DGSOS) model. Its
roughening temperature

Ty (DGSOS) = 1.46¢  ky (5.63)

is somewhat higher as for the ASOS-model since the energy increases more rap-
idly for larger differences in the columnar height. The models are useful insofar as
their study has revealed the nature of the roughening transitions to be of the Kos-
terlitz-Thouless type. However, the predicted roughening temperatures are
excessively high. Furthermore, the models provide no clue to the dependence of
the roughening temperature on the crystallographic orientation of the facet, which
is the most interesting aspect of roughening, at least from the experimental side.

5.2.5 Phonon Entropy of Steps

As important as the configuration entropy of steps is for the terrace width distribu-
tion and the roughening transition, the prevailing entropic term at room
temperature stems from the phonon spectrum. Due to the different bonding of the
atom at step sites, the local vibration spectrum around step atoms from the spec-
trum of flat surfaces. The phonon contribution to the free energy of surfaces and
steps has been addressed by the Rahman group in a series of papers [5.14-18]. The
authors find that the change in local bonding not only affects the vibration spec-
trum of the step atoms but also that of their neighbors. The vibrational
contribution to the step free energy per step atom is
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= .. hw
Fuo = ksT [In(2sinh =21 vea (@) = g (@) Jdao (5.64)
; 2T

Here, ngepped(@) and ngy(@) denote the spectral densities per atom for a sample
with and without a step. As an example, the free energy of steps on copper sur-
faces are shown in Fig. 5.5 [5.18]. The differences between the various steps are
quite remarkable. For the steps on the Cu(100) surface, the vibrational free energy
is marginally small, however steps on Cu(111) have vibrational free energy that
amounts to 5-8% of the step energy (Table 4.2) at 300 K. It has been proposed by
this author to estimate the step free energy by invoking an Einstein oscillator
model [5.19]. Based on the scaling properties of a Morse-potential the oscillator
frequencies wg were proposed to be proportional to the square root of the coordi-
nation number. According to this crude model, the vibration spectrum of a surface
atom would be characterized by an Einstein temperature (6O =hw/kg)

Ouus =/8/12 Oy and Oy =4/9/12 O, for the (100) and (111) surfaces,
respectively. The Einstein temperatures for the step atoms would be

Oyep =4/ 7/12 Oy, for all steps considered here.

Step free energy per atom / meV

20 | 4
Cu(511): steps on (100)
o5 | === Cu(331): B-steps on (111) ]
ceceees Cu(211): A-steps on (111)
_30 1 1 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300

Temperature / K

Fig. 5.5. Free energy of steps on Cu(001), B-steps on Cu(111) and A-steps on Cu(111) are
shown as fat solid, dashed and dotted lines, respectively [5.18]. The thin solid and dashed
lines represent calculations for the (100) and (111) surfaces, respectively, using an Einstein
oscillator model with a simple scaling of the characteristic frequencies.
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In this model, the vibration free energy would amount to

Sfuip =3kgT ln(sinh(@Step 12T/ sinh(B ¢ /2T)) (5.65)
The high temperature limit of (5.65) has a particular easy form, which is

S (100) =3k5T In(7/8)'" (5.66)
Foin (111) =3k T In(7/9)"? (5.67)

for steps on the (100) and (111) surfaces, respectively. With &, = 343K, Oy,
and 6, inserted, the thin solid and dashed lines in Fig. 5.5 are obtained for steps
on Cu(100) and Cu(111). By construction, the model cannot account for a differ-
ence between A- and B-steps. The model also fails in any other quantitative sense
as it underestimates the step free energy on Cu(l11) and overestimates on
Cu(100). Despite this obvious failure, the model has been (ab)used several times
in the analysis of crystal and island equilibrium shapes where quantitative values
for the step free energy enter crucially [5.20, 21].

5.3 The Ising-Model and the Crystal Equilibrium Shape

5.3.1 The Model and the Shape Function

The Ising-model is popular in many fields of physics because it is comparatively
simple and can be solved analytically in two dimensions. The Hamiltonian is

H ging = ZJl-jsisj (5.68)
ij

in which the indices i, j run over the nearest neighbors Jj; is the interaction strength
and s; = 11 are spin variables. In the context of surface problems, one writes the
Hamiltonian in terms of nearest neighbor occupation numbers

n=(s;+1)/2=0,1 . (5.69)

With a nearest neighbor interaction energy V, and after introducing a nonzero
chemical potential the Ising-Hamiltonian becomes

1
H ging =EVOZninj —,uan- . (5.70)
L] i

In this form, the Hamiltonian is used as a starting point for the theoretical analysis
of two-dimensional phases and phase transitions. A special mean-field solution
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will be discussed in Sect. 5.4.4. Here, we address the problem of the crystal equi-
librium shape in two dimensions. Analytical solutions have been derived for the
square and the honeycomb lattice [5.22, 23]. These solutions have found applica-
tion in the description of the equilibrium shape of two-dimensional islands to
which problem we now attend.

(a) (b)

Fig. 5.6. Kinked steps in the square (a) and hexagonal lattice (b). In the square lattice, step
atoms have one broken bond, kink atoms two. The kink energy is therefore equal to the step
energy per atom. In the hexagonal lattice, each step atom has two broken bond and the kink
energy is one half of the step energy per atom.

In the Ising-model, the energy of a step is proportional to its microscopic length.
For the square lattice, this means that the kink energy is equal to the step energy
per atom. On the honeycomb lattice (henceforth named "hexagonal"), the energy
per atom of the densely packed step is twice as large as the kink energy (Fig. 5.6).

We denote the energy parameter in the Ising-model that corresponds to the kink
energy as & The equilibrium shapes are given by implicit expressions. For the
square lattice the shape is described by [5.22]

coshe(x— y)/ 2kgT | coshle(x+ y)/ 2kgT )= A, , (5.71)
with
Ay = %cosh(s/kBT)coth(e/kBT) . (5.72)
For the hexagonal lattice the shape is [5.23]

cosh(2ye/kgT) + cosh((\/gx + y)é‘/kBT)

(5.73)
+ cosh((\/gx -ye/ kBT)= Apex

with
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A _cosh®(2K") +sinh’ (2K ")
hex sinh(2K ™)

(5.74)
tanh(K*) = exp(-2&/kgT) .

The coordinates x, y are chosen such that for both lattices the nearly straight sec-
tions at low temperature are oriented parallel to the x-axis. The scaling of the
cartesian coordinates is so that y(x=0) = 1 in the limit exp(-&kgT) << 1, and that
the size of the islands described by (5.71) and (5.73) remains approximately con-
stant with temperature.

e Cu(100) T = 400K
----- Ising model £=0.128 eV
Ising model £= 0.086 eV

Fig. 5.7. Comparison of the experimental equilibrium shape of islands on Cu(100) at 400K
with the Ising-shape (5.67). The Ising-model describes the experiment well if the parameter
£1is fitted. Using the experimental kink energy £=0.128 eV makes the island too squared.

The Ising-shapes describe the experimentally observed equilibrium shapes of 2D-
islands quite well if the parameter & is fitted to the experiment. Figure 5.7 shows a
comparison of experiment [5.24] and theory for the equilibrium shape of one atom
layer high islands on Cu(100). The experimental shape is missed when the Ising-
parameter is equated with the experimentally measured kink energy of
£=0.128 eV [5.24, 25]. The reason is that the experimental step energy per atom
a)f is about twice as high as the kink energy (¢;8= 0.22 eV [5.24]) and not equal
to the kink energy as the Ising-model for a square lattice has it.
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5.3.2 Further Properties of the Model

For moderately low temperatures, i.e., in the limit exp(-&kgT) << 1, Ay (5.72) and
Apex (5.74) are approximated by

=—ef/kl (5.75)

1
4
Aper = %e””‘BT . (5.76)

With these approximations, the distances from the center of the island to the point
of minimum curvature y(x = 0) are

Vg (x=0)=1 _ 2kl eyt (5.77)
£

Vhex (X =0) _1 KT ermr (5.78)
&

Because of the mechanics of the Wulff-construction, the minimum and maximum
distances from the center of the island possessing a tangent orthogonal to the ra-
dius vector are proportional to the step free energy. After multiplication with the
step energies in terms of the parameter £ one obtains for both lattices

a,f(T) = a,f(T =0)—2kzT e """ . (5.79)

We have thereby recovered the low temperature approximation to the free energy
of a step running along the direction of dense atom packing (5.29).

By using Wulff's theorem in two dimensions (4.66) and the chemical potential
M in terms of the step energy at 8= 0 (4.69)

u=2BO)(0)=2O=0)/y(x=0), (5.80)

one can calculate the step stiffness B(GzO). With the product of curvature
y”(x=0) and y(x=0)

, - 2kgT -
vy kT =2¢e E/kBT[l——Be E/kBTjE 2ee ¢/ kel (5.81)
5q,x=0 e
" mmelkgT( 1 kBT —ekyT | _ mo—elksT
Y | okeT =3ee 1-—2—¢ =3¢ce (5.82)
T E

one obtains
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kil T

By(0=0)= ; N etk (5.83)
‘h

Brex (0=0) = et/keT (5.84)
aJ_

To arrive at (5.83) we have inserted the scaling units @, and a, . In order to obtain

(5.84) one has to consider that on the hexagonal lattice kinks involve an advance-
ment along the step direction by 3/2q) and that the step energy that corresponds to
this advancement is 3& Equation (5.83) is the same as (4.98), and (5.80) can be
obtained accordingly from (4.97) when the metric of the hexagonal lattice is taken
into account. We have therefore recovered the TSK-expressions for the stiffness.

The TSK-stiffness in combination with 5.80 can be used to determine the kink
energy from an Arrhenius-plot of the curvature multiplied by kg7 [5.24]. Because
of the considerable difficulties to determine the curvature exactly at =0 the
method is inferior to the use of the step-step correlation function (cf. Fig. 4.23).

Of interest are also the aspect ratios, defined as the ratio of the radii to the "cor-
ners" and the "straight" sections rys+/ry- and r3g/ro- for the square and hexagonal
lattices, respectively. These ratios represent the ratios of the free energies of the
steps where, forced by the orientation, every atom is a kink atom (100% kinks) to
the free energy of the steps with thermal kinks only. Here, the Ising-results are

L5 o ﬁ[l —EkBT)/( %—BTe‘f”‘BTJ (5.85)
Tye &
Ao 2 In2, ; J/[ L1 e‘f”‘BTj . (5.86)
Tye \/5 2€ E

The leading terms for the temperature dependencies of the ratios are the linear
terms in the numerators. The denominators in (5.85) and (5.86) are proportional to
the free energies of the straight steps. While (5.85) and (5.86) are derived in the
low temperature limit, the equations represent a good approximation also for mod-
erately high temperatures. Figure 5.8 compares the approximation with the exact
(numerical) solution of the Ising-shape. The approximation agrees well with the
exact result up to kg7 = 0.4 € and 0.5 &, for the square and hexagonal lattice, re-
spectively. This condition corresponds, for example, to temperatures of 700 K,
680 K, and 580 K for Cu(100), Cu(111) and Ag(111), respectively. At these tem-
peratures, islands disappear very quickly due to diffusion. Experimental
observations on the equilibrium shapes of these islands therefore concern lower
temperatures.
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1.6 : T . T :
Ising-model for square and hexagonal lattice
- — —— Approximations to first order in exp(-£/k,T)
o numerical solution square lattice
14~ A numerical solution hexagonal lattice —

Aspect ratios

0.0 0.2 0.4 0.6
kBT/ £

Fig. 5.8. Comparison of the low temperature approximation of the aspect ratios and the
exact solution of the Ising-model.

Fig. 5.9. The various possible paths of a step with a mean direction corresponding to the
100% kinked step on the square and hexagonal lattice, (a) and (b), respectively. Only the
paths closest to the center path have sufficient statistical weight to survive in the macro-
scopic limit. (¢) A second path of significant statistical weight corresponds to adding the
dashed atom. Boundary atoms with coordination numbers C =6 and C =8 are thereby
replaced by two atoms with C =7.
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The entropic In2 -terms in the numerator of (5.85) and (5.86) can also be derived
directly by considering the free energy of the 100% kinked steps on a square and
hexagonal lattice. Figure 5.9 displays the possible paths of the steps in the two
cases. The entropy arises from the various configurations of the steps which all
have a mean orientation along the direction of the 100% kinked step and are ener-
getically equivalent in the Ising-model. These various paths are illustrated by
dashed lines in Fig. 5.9a and b, for the square and hexagonal lattice, respectively.
The configuration entropy is calculated easily by making contact with gambling
theory [5.26]: The number of possibilities in a coin tossing game with N trials to
arrive at N/2 "head" and N/2 "tale" results is N!'/[(N/2)!]. The entropy is therefore

N!

S=kgln——7>, (5.87)
[(N/2)1]
which by virtue of Stirling's formula becomes
S =NkgIn2 (5.88)

in the macroscopic limit (N—e0). Hence, the entropy per atom on the kinked step
is kg In2 and the partition function per atom is Z = 2. This means that in the mac-
roscopic limit only two alternative paths per atom survive. Those ones stick
closest to the center path and correspond to adding or removing one atom to the
step as illustrated in Fig. 5.9c. All other paths have a statistical weight lower then
¢" and vanish therefore in the macroscopic limit. With the entropy (5.88), the free
energy per atom for the 100% kinked step becomes

a B0, T)=a f6.T=0)—kyTIn2. (5.89)

Here, ayx denotes the length per atom of the kinked step which is g /2 and

a”\/g /2 for the square and hexagonal lattice, respectively, and & is the angle of

the 100% kinked step with respect to the "straight" steps. With (5.89) one calcu-
lates the ratio of the free energies of the 100% kinked step and the "straight" steps
and thereby the aspect ratios of the islands as defined before

5(6,.0) a ln2k T
Yo _ aB6,.T) _ APt a " (5.90)
) @,8(0,T) 2k, T _ . .
0,0 1 _ B Ex /kBT
b )[ a,5(0,0) ‘ J

This equation is equivalent to (5.85 and 5.86, see also Fig. 5.9) since
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@ B(6,.,0) (5.91)

a BOO)

Equation (5.90) offers an interesting way to determine the step energy «,£(0,0)

from experimental island equilibrium shapes by fitting the experimentally ob-
served aspect ratios as a function of temperature to (5.90). Since the kink energy
can be determined in independent experiments, this fit involves matching two
parameters to the experiment.

One may relax the requirement that the energies of all paths depicted in
Fig. 5.9a,b be equal, and make allowance for a (small) energy difference AE; be-
tween the two paths next to the center path. The two paths correspond to adding or
removing the dashed atom in Fig. 5.9. Boundary atoms with coordination numbers
C =6 and C = 8 are thereby replaced by two atoms with C = 7. In the Ising model,
the energies of the two states are the same. However, also in more realistic models
with a curved form of the energy vs. coordination number, the energy difference is
small as the energy vs. coordination number is rather linear around C=7
(Fig. 1.45).

9
T 110F o Cu(100) -
= A Cu(111)
3 Ag(111
o 0| 7 AN 1
<
1.06 |- -
1.04] 1
" 1 " 1 " 1 " 1
250 300 350 200 450

Temperature / K

Fig. 5.10. Experimental data on the aspect ratio vs. temperature for Cu(100), Cu(111), and
Ag(111) [5.24]. The solid lines are fits with aqf=0.2240.02eV, 0.2740.03 eV, and
0.2520.03 eV, respectively.
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With the energy difference AE, the partition function per atom is

2 4
z=2cosh(AEb/2kBT)521+i AL, +i AE, ] (5.92)
21\ 2kgT M\ 2k T

The additional terms can be ignored as long as (AE, /2kgT)?* << 1. If that condi-
tion is not fulfilled, the absolute value of the partition function is affected by AE,,
and the partition function becomes temperature dependent. The experimental as-
pect ratio then obeys

To |- 2ksT eiiyr |_ BOO)  aInZ(T) kT (5.93)
) @,5(0,0) B00)  aya,5(0,0)

The three unknown parameters in (5.93), 0,0), AE,, and the ratio 5(6,0)/(0,0),
can be determined from a self consistent fit of the temperature dependence of the
aspect ratio. This three-parameter fit requires that the data have sufficiently low
noise over a wide temperature range.

Figure 5.10 shows experimental data on the aspect ratios of 2D-island equilib-
rium shapes for Cu(100), Cu(111), and Ag(111) [5.24]. The solid lines are fit with
(5.86) from which the data in Table 5.2 were obtained. The data agree well with
those obtained from island shape fluctuations (Sect. 4.3.8).

Table 5.2. Step free energies and the ratio of the step energy in the corners and the straight
sections at 7' = 0 K obtained from the aspect ratios of 2D-islands vs. temperature [5.24].

Surface ayBleV B(6)/30°) [eV
Cu(100) 0.22+0.02 1.24+0.01
Cu(111) 0.27+0.03 1.138+0.008
Ag(111) 0.2510.03 1.13620.009

5.4 Lattice Gas Models

5.4.1 Lattice Gas with No Interactions

The interaction potential of atoms (or molecules) that are chemically bonded to the
surface varies strongly with the lateral position of the adsorbed species. Such
chemisorbed atoms primarily reside in defined surface sites. On crystalline sur-
faces, these sites have a periodic structure described by a translation lattice. Any
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statistical model of chemisorbed adsorbate layers must account for this basic
property. If adsorbates assume a random position in the available sites (which they
obviously can do only if the fractional coverage is less than unity), they are said to
form a lattice gas. The alternative is the formation of highly coordinated ensem-
bles or even ordered structures. In a more general sense, all models dealing with
the occupation of a periodic arrangement of sites, stochastically or ordered, are
called lattice gas models.

The simplest approximation one can make is to assume only one type of sites,
and further that the adsorption energy for a site is independent on the occupation
of neighboring sites. This model is called the non-interacting lattice gas. The
model is easily amended by introducing a mean field interaction. In taking the
most important property of an adsorbate layer into account, the model is a good
approximation to the real world with respect to segregation and adsorption iso-
therms. It fails (as all mean field models do) in the description of the evolution of
different phases as a function of the adsorbate coverage and the transitions be-
tween various phases. In the following, we study the basic properties of the non-
interacting lattice gas. To be able to consider the equilibrium with species dis-
solved in the bulk or with a surrounding gas phase we calculate the chemical
potential as a function of fractional surface coverage.

The allowed occupation numbers for each site i are n; =0 and n; = 1. For the
non-interacting lattice gas, the occupation statistics is therefore the same as for
electrons in the free electron approximation and we can borrow the result for the

mean occupation number <n> per site from there,

(n)= 0,4 =(1+expl(E,y — t1,0) kT (5.94)

In the context of adsorption, the mean occupation number per site is called frac-
tional coverage, or simply coverage, which we denote as G,y. E,q and 4,4 are the
energy of the adsorbate and its chemical potential, respectively. Solving (5.94) for
the chemical potential yields

Uog = Eoq +kgT 1n1 92 . (5.95)
— Yad

Adsorbed atoms and molecules may possess low-lying vibrational energy levels so
that the vibrational partition function (5.12) differs from unity. Adding the corre-
sponding term yields

log = E,q +kgT In 1_92; —kgTInZ 0 - (5.96)
ad

The vibration partition function contains a factor with the ground state energies
(1/2)Aw, of the harmonic oscillators in the exponent (5.12). The sum of these
ground state energies adds a temperature independent contribution to E,y. The
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remaining contribution of the vibrational partition function is small for most
chemisorbed species since their vibration quanta are typically of the order of
300 K kg or higher. There is a noteworthy exception, however. The vibrational
degrees of freedom that correspond to translations parallel to the surface can have
very low frequencies of the order of a few meV. For example, the vibration fre-
quencies of the CO translation modes on Ni(100) are /@, =3.2 meV and
hWyrigge = 3.7 meV, for the atop site and the bridge site respectively [5.27]. The
atop-site translational mode is twofold degenerate. This site has therefore the lar-
ger entropy. The higher vibration entropy reduces the free energy level so that at
room temperature occupation of the atop site is preferred over the bridge site. At
low temperatures, the bridge site with its larger binding energy wins. An entropy-
induced conversion of adsorption sites for CO on Ni(100) [5.28, 29] is the conse-
quence.

Molecules frequently dissociate upon adsorption into atoms or other fragments.
In case of adsorption of a diatomic molecule like H,, N, or O, the atoms reside in
the same type of sites with the same energy. The chemical potential of that adsor-
bate phase is

Uy = 2E,q +2kgT In ; _Qa@d —2kgTInZ 3 o (5.97)
ad

An attractive or repulsive interaction between the adsorbed species can be mim-
icked in a mean field approach by adding a coverage dependent energy term
W(O,q) to (5.96). The mean field approximation works particularly well for iso-
therms. In the context of adsorption, this mean field approximation goes under the
name Bragg-Williams approximation. The approximation is equivalent to the mo-
lecular field approximation in magnetism.

5.4.2 Lattice Gas or Real 2D-Gas?

As an alternative model to the lattice gas model, one might neglect the lateral cor-
rugation of the potential completely and assume that the atoms are bonded to the
surface in a one-dimensional trough. Atoms can then be treated as two-
dimensional van-der-Waals gas in which the atoms interact merely via a hard-core
repulsive pair potential and can move about freely otherwise. If N denotes the
number of atoms in the surface area A and A4 the area occupied by a single atom
the total available area is A-NA,q. Writing (5.9) for two dimensions and replacing
the total area by the available area leads to an expression for the free energy of the
2D-van-der-Waals gas. After differentiation with respect to the number of parti-
cles at constant area, one obtains the chemical potential as

o n? 1 6
—E +kyT—28 4k Tln — >.98
Hopvaw = Lag TRp 1-6, B 2nmkgT Ay 1=y o
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in which we have introduced the coverage @,y = NA,4/A.

It is an interesting question whether an adsorbate is better described by the
lattice gas or by the van-der-Waals gas model. The answer must depend on the
magnitude of the lateral corrugation of the potential as well as on the temperature.
Figure 5.11 shows an illustration of the potential (solid line) and the localized
states of adsorbates in the potential as dotted lines. The energy levels near the
minimum are approximately described by a harmonic oscillator. With rising en-
ergy, the levels moves closer together and eventually merge into a continuum of
states. The lattice gas approximation assumes that the atoms sit in the ground state
with some small occupation of the higher vibrational levels if one adds the corre-
sponding term to the chemical potential (5.97). The 2D-gas model describes the
chemical potential of atoms in the continuum of states above the potential
maxima. For high enough temperatures, the atoms occupy primarily the contin-
uum and the 2D-gas model should apply, whereas at low temperatures the atoms
should reside in the ground state and form a lattice gas. The question is whether
one can find a criterion for the transition temperature. The issue was already ad-
dressed in 1946 by Hill [5.30] and later again by Doll and Steele [5.31] who
included the vertical motion of the adsorbate atoms in their statistical model. For a
2D-cosine potential, they found that the transition between the lattice gas and the
free gas takes place at 7. = 0.2 V, /kg, in which Vj is the difference between the
top and the bottom of the potential, i.e. approximately the activation energy for
diffusion Ediffs. A qualitative, model independent estimate of the transition tem-
perature may be obtained from the comparison of the chemical potentials of the
independent lattice gas f4, (5.95) and the chemical potential of the 2D-gas t4p
(5.98) considering the ground state of the latter as being shifted upwards by the
amount V. The atoms prefer the state of lower chemical potential. Hence, the
lattice gas model should be appropriate if 4, < tbp. This condition is equivalent to

(5.99)

V> kBT{ln 2umkpT Ay O }

h2 1_Qad

According to (5.99) the atoms should always prefer the localized sites for higher
coverages: in the 2D van-der-Waals gas, the atoms would be so much in each
other's way that the chemical potential of the 2D-gas increases steeply.

In the low coverage limit, there is a temperature dependent critical depth of the
potential V. beyond which the system behaves like a lattice gas. Figure 5.12 shows
the critical potential V, for an atom of mass 16 and a hard core area A,4 of 4 A? for
coverages between @,y =0 and 0.8 in steps of 0.1. According to Fig. 5.12, strongly
chemisorbed atoms like oxygen, carbon, and nitrogen should always form a lattice

¥ Doll and Steele discuss this result as being identical to the earlier result of Hill obtained
without considering the vertical movement of the vibrating atoms. However, Fig. 1 of Hill's
paper [5.30] clearly shows that Hill has the transition temperature a factor of four lower
than the value quoted by Doll and Steele.
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X

Fig. 5.11. Illustration of the lateral corrugation of the surface potential (solid line), the
discrete energy levels of localized adsorbates (dotted lines), and the continuum of states at
higher energies.
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Fig. 5.12. Critical value of the potential corrugation in the limit of zero coverage (solid
line) and coverages @, =0.1,0.2,...,0.8 for an atom mass m=16 with a hard-core area
A =4 A% The dash-dotted line is the result of the solution for a 2D-cosine potential [5.31].

gas. Weakly chemisorbing species such as CO, in particular on metals with a filled
d-shell, are closer to the limit. CO molecules do reside in defined sites; however,
their chemical potential is affected by lowering the vibrational levels of the hin-
dered translations. For higher coverages, CO is displaced from the low coverage
sites by the lateral interactions and incommensurate or high order commensurate
lattices are formed (see also Frenkel-Kontorova model, Sect. 1.3.1). Physisorbed
layers are even more in the realm of 2D-gases, however without really conforming
to the simple 2D-van-der-Waals models since the corrugation of the potential is
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still too strong for that. In summary, many systems are well described by the lat-
tice gas model; hardly anyone conforms to the 2D-gas-model.

5.4.3 Segregation

A simple and illustrative example for the application of the lattice gas model is the
problem of segregation. Bulk single crystal materials always contain impurities
from the refining or the growth process. Some of these impurities do not form a
substitutional alloy with the material, but rather they are dissolved in interstitial
sites. The binding energy in these interstitial sites is frequently lower than on the
surface, simply because there is more room at surfaces and the surface atoms of
the substrate have free bonds ready to become engaged in bonding. If the tempera-
ture is high enough for effective diffusion, the bulk impurity atoms will segregate
to the surface and form an adsorbate layer there. Typical examples are carbon and
sulfur in metal crystals. In Section 2.2.3, we have remarked that segregation can
be a significant problem for the preparation of clean surfaces. With the help of the
lattice gas model, we show what precisely the nature of the problem is. Since the
concentration of the impurities in the substrate is very small, we can write for the
chemical potential g of the dissolved impurities

4, =E, +kTIne, (5.100)

in which Ej is the energy of the impurity in the solid solution and c; is the concen-
tration per available site in the bulk. By equating t,; and 4 one obtains for the
equilibrium surface coverage G4

a s

l+cs_le

Figure 5.13 shows a typical example. It is assumed that the initial bulk impurity
concentration is 10 ppm (107). The difference in the binding energies at the sur-
face and in the interstitial site is assumed to be E,; — E, = —0.7 eV. The solid line
in Fig. 5.13 is the equilibrium surface concentration for that case. However, below
a certain temperature bulk diffusion stops so that the equilibrium coverage is not
reached. In Fig. 5.13, the temperature below which there is no further segregation
is assumed to be T, = 500 K. For the initial bulk concentration, the surface
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Fig. 5.13. Surface equilibrium concentration of a segregating impurity as a function of
temperature for three different bulk concentrations c;. It is assumed that the difference in
the binding energy at the surface and in the interstitial site is E,y— E;=-0.7 eV. The
shaded area marks the region where there is no diffusion, so that the actual surface cover-
ages found experimentally after annealing are the ones marked at the upper diffusion limit,
which is assumed to be at 500 K.

concentration is nevertheless quite high. This surface concentration can be re-
moved effectively by sputtering the surface with noble gas ions (Sect. 2.3.2). In
order to heal the surface damage the substrate must be annealed, whereupon fur-
ther impurity atoms segregate to the surface. By repetitive sputter-annealing
cycles, the bulk impurity concentration is reduced. This in turn reduces also the
surface concentration but the removal of impurities by sputtering becomes less
and less effective as the leaching process advances. Since many experiments re-
quire a surface cleanness of 10 to 10, surface preparation can become quite
tedious.

Figure 5.14 illustrates the basic principle of segregation and the experimental
problem it might cause. Actual experimental data on segregation rarely fit the
simple isotherm so perfectly as the typical segregating impurities carbon and sul-
fur form various ordered phases as a function of coverage. Carbon may even form
a graphitic overlayer. Figure 5.14 shows the segregation of carbon on Ni(100)
[5.32]. The sample was intentionally doped with carbon. The segregation curve is
fitted to (5.101) with E-E,q = 0.35 eV and a carbon bulk concentration of 0.5%.
The fit is not unique, however, since the experimental data do not conform to a
simple isotherm.
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Fig. 5.14. Equilibrium carbon coverage on Ni(100) surface due to segregation from the
bulk [5.32]. Coverage @, =1 is defined with respect to the maximum coverage with a
¢(2x2) layer. The solid line is a fit to (5.101) with a carbon bulk concentration of 0.5% and
a segregation energy of 0.35eV. The fit is not unique, however.

5.4.4 Phase Transitions in the Lattice Gas Model

The field of 2D-phase transitions is enormously rich, in experiment as well as in
theory. Even comparatively simple adsorption systems display complex patterns
of various phases, commensurate, incommensurate or disordered ones as a func-
tion of coverage and temperature. Transitions between phases, especially the
order-disorder transition as a function of temperature have been studied exten-
sively using diffraction techniques. Particular attention was paid to the critical
exponents, e.g. the temperature dependence of the intensity of a diffracted beam as
the system moves from order to disorder. These critical exponents where dis-
cussed in terms of universality classes of particular theoretical models. Other
interesting aspects concern the spatial distribution of coexisting phases and the
domain walls separating the phases (Sect. 1.3.2). The material has been reviewed
by Persson [5.2] and Patrykiejew et al. [5.33].

In the field of phase transitions, it proved to be more difficult than in most other
areas of surface science to make theory match the experimental data. The theory
of phase transitions, in particular if concerned with the critical exponents assumes
a perfect homogeneity on the surface. By definition, critical exponents reveal
themselves close to the phase transition when the spatial fluctuations of the system
involve large surface areas. The closer the system is to a phase transition the more
extended are the fluctuations. Small amounts of impurities or defects have there-
fore drastic effects on the behavior of the system. The intensity of a diffracted
beam in an order-disorder transition, e.g. which according to theory should dive
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into the zero line as (1 —T/Tc)zﬁ with £ the critical exponent characteristic for a par-
ticular universality class, in reality displays a rounded shape and approaches zero
rather gradually. This may render an unequivocal determination of the critical
exponent impossible, likewise the unambiguous determination of the type of lat-
eral interactions between the adsorbates. We exemplify these statements with the
thoroughly and carefully studied order-disorder transition of hydrogen on Pd(100)
[5.34, 35].

I/l
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—— Pd(100)c(2x2)H

02} - - - - Finite size Monte Carlo B
- _lIsing model
00 1 1 1 1 1 1 1 h
100 150 200 250 300 350

Temperature / K

Fig. 5.15 Normalized intensity of the (1/2, 1/2) diffraction peaks. Solid line: experimental
result for Pd(100)c(2x2)H with @,y = 0.5 [5.34]. Dashed line: Monte Carlo simulation with
repulsive nearest neighbor and attractive next-nearest neighbor interactions [5.35]. The
dotted line is the intensity according to the Ising model with nearest neighbor interactions.

Figure 5.15 shows the experimental intensity of the (1/2, 1/2) spot for the c(2x2)
hydrogen overlayer [5.34] as a function of temperature (solid line). As an example
for the result of analytically solvable models, the intensity according to the Ising
model with nearest neighbor interactions is plotted as a dotted line. The insuffi-
cient modeling of the lateral interactions causes the deviation between experiment
and theory at lower temperatures. The qualitatively different behavior near the
phase transition however is caused by inhomogeneity of the surface in the experi-
ment. The inhomogeneity is crudely simulated by performing the calculation on a
small lattice. The dashed line is the result of a Monte-Carlo simulation on a 40x40
lattice with periodic boundary conditions by Binder et al. [5.35] with repulsive
nearest neighbor and attractive next-nearest neighbor interactions. The simulation
matches the low temperature regime quite well and displays a tail beyond the tran-
sition temperature, in qualitative agreement with the experiment.



242 5 Statistical Thermodynamics of Surfaces

Fig. 5.16. Adsorbates in a square lattice with nearest-neighbor repulsive interactions. Black
and white circles represent the A- and B-sites.

In order to elucidate the relation between the qualitative features of the phase dia-
gram and the lateral interactions between the atoms we consider the Ising
Hamiltonian (5.70) on a square lattice. We assume repulsive interactions V|, be-
tween the nearest neighbors. Suppose one has a fractional coverage of @,4=0.5.
The system is perfectly ordered in a c(2x2) pattern if only every other site is occu-
pied (black circles in Fig. 5.16). At the same time, the energy is minimal as no
nearest neighbor sites are occupied. We denote the sublattice with the black circles
by the letter A and the other one by B. Perfect order is then characterized by the
fractional coverages

©=0,/2, 05=0. (5.102)

Here, © denotes the fractional coverage with respect to all sites. At higher tem-
peratures, some of the nearest neighbor sites may become occupied, whereby the
system becomes disordered. Half order diffraction spots persist, albeit with a
lower intensity. Above a particular transition temperature 7., the half order dif-
fraction peaks vanish completely and the system is disordered. The state of
disorder is characterized by an equal occupation of the sublattices A and B.

O=0, = 6 (5.103)

We want to establish the relation between the transition temperature 7. and V. A
state close to the order-disorder transition is described by

0,=0+4, 0,=0-4 (5.104)

We assume now a mean field model in which the actual interaction V; of an atom
in a particular site i of the sublattice A with its neighboring atoms, which would
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depend on the actual occupation of the neighboring sites, is replaced by the inter-
action with the mean occupation of the neighboring sites.

4
Vai = ZVO@l-ﬁ = V,=4V,6;. (5.105)
o=1

The sum is over the four nearest neighbors. The mean interaction potential V,
renormalizes the energy of all sites by the same amount. The occupation statistics
remains Fermi-statistics. With (5.104) the fractional coverage @, becomes

1
ARG
kT 4

O,=0+A4= (5.106)

(S

Expanding (5.106) for small 4 and considering the limit A — 0 leads to the self-
consistency equation for the transition temperature 7,

T, =40(1-O)W, / k. (5.107)

This mean field results for the phase diagram is plotted in Fig. 5.17. The maxi-
mum value of T, occurs at @= 1/2 and is

Tc,meanﬁeld = VO /kB . (5 108)

This is considerably higher than the exact solution of the Ising-model

T, tsing = 057V /s - (5.109)

The reason that T is so much higher in the mean field model is the total neglect of
fluctuations. The fluctuations are also responsible for the fact that in the Ising
model the ordered c(2x2) is confined to a narrow coverage range between 0.37
and 0.63 (Fig. 5.17, dotted line). The inclusion of additional next-nearest neighbor
attractive interaction stabilizes the c(2x2) structure in a wider coverage range. The
dashed lines in Fig. 5.17 mark the range of stability for a ratio between next-
nearest neighbor interactions V,,,, to nearest neighbor interactions V,, of -1/2. For
Viunn <0 the phase diagram shows a coexistence of the c(2x2) structure with a di-
lute and dense lattice gas phase, at low and high coverages respectively. Tricritical
points occur at @= (0.31 and @= 0.69. All theoretical phase diagrams are symmet-
ric around @=0.5 (particle-hole symmetry), whereas the experimental phase
diagram displays some asymmetry. Such asymmetry may come about by three-
body forces [5.35] or by energy associated with the displacement in the atom posi-
tions due to the lateral interactions. Such displacements occur if the nearest or the
next-nearest neighbor coordination are not symmetric [5.2]. As shown by Persson
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[5.2], the consideration of the lateral relaxation in the atom positions skews the
phase boundary towards the left, in agreement with the experimental data
(Fig. 5.17).

At the time when the phase diagram Fig. 5.17 was first investigated experimen-
tally, the distribution of atoms on the available sites could merely be inferred from
the diffraction data or obtained from Monte-Carlo simulations under the assump-
tion of a particular interaction potential. After the advent of the scanning tunneling
microscope, direct observations of the position of atoms became possible. The
coexistence of ordered phases with a lattice gas was observed in STM-images e.g.
by Wintterlin et al. [5.36].
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Fig. 5.17. Phase diagram for a square lattice. All curves are normalized to their specific
maximum transition temperature 7, at @= 1/2. The solid line is (5.108) obtained for the
mean field model with repulsive nearest-neighbor interactions. The dotted line is obtained
from a Monte Carlo simulation with the same type of interaction [5.35]. The dashed lines
mark the phase boundaries for a system with additional attractive next-nearest neighbor
interactions. The data points (black squares) refer to the Pd(100)c(2x2)H system of Behm
et. al [5.34].



6. Adsorption

Surface Science is an interdisciplinary field. This is particularly true for the sci-
ence associated with adsorption and desorption. Physics and chemistry of
localized and delocalized bond formation, thermodynamics and statistical physics,
molecular dynamics as well as electrochemistry and catalysis meet here. Starting
from a general discussion of bonding mechanisms, this sections deals with the
thermodynamics of equilibrium phases and the kinetics of adsorption and desorp-
tion. The section concludes with a discussion of chemistry and the physical
properties of the most common adsorbates.

6.1 Physisorption and Chemisorption — General Issues

The nature of the bonding that is involved in adsorption is addressed by the some-
what antiquated terms physisorption (= physical adsorption) and chemisorption (=
chemical adsorption). The terms are not well defined since in the older literature
the distinction between physisorption and chemisorption was made according to
the adsorption energy, with physisorption denoting the realm of lower adsorption
energies. There are, however, weak chemical interactions as well. In the follow-
ing, we confine the term physisorption strictly to adsorption mediated by van-der-
Waals forces. Van-der-Waals forces originate in the ground state fluctuations of
the electronic charge of an atom, which generates a dynamic dipole moment pgye.
The electric field emerging from this fluctuating dipole at the position of another
atom at distance r is proportional to —pg./r". The field induces a dipole moment
Ping Of strength ping o pruedr” in the second atom. The energy of the induced dipole
Pina 10 the electric field of the original atom is negative (attractive interaction) and
proportional to 7 °. Consequently, atoms attract each other even in the absence of
chemical bonding. At smaller distances, Pauli-repulsion between closed shells
eventually balances the attractive van-der-Waals interaction. Pauli-repulsion is
proportional to the overlap of wave functions and increases therefore exponen-
tially with decreasing distance. For convenience, the exponential dependence is
traditionally replaced by an r'*-dependence in analytical calculations. The result
is the Lennard-Jones potential

. 12 ’ 6
V(r)=v0{(70j —2[7‘)) } (6.1)
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in which -V, is the potential at the equilibrium distance r,’. For a physisorption
system, this potential is the only interaction between the adsorbate and the atoms
of the solid phase. In contrast to chemical interactions, the van-der-Waals interac-
tion is with all atoms of the solid. The interaction potential between an atom at
T'yom and the surface is therefore the sum over all two-body potentials (6.1),

12 6

I I
vsurf (ratom) = v() z 0 | -2 :

.o |\ [Fatom ~ o,

6.2)

7 atom _rn,a|

The sum goes over all unit cells denoted by the triplet n = (n, n, n;) and the at-
oms in the unit cell denoted by ¢ For the repulsive part only the nearest neighbors
matter, for the attractive part, however, the summation has important conse-
quences for the functional dependence of the physisorption potential on the
distance z from the surface. For not too small distances, the sum can be replaced
by the integral

(6.3)

e, T 2mrdrd?  wigpV,
V(z)—proVOOI(( " 2)3_ 37°
2+ ) +r

in which p is the density of atoms. The integration over three dimensions reduces
the 7 ® power law to a 7 dependence of the potential. Figure 6.1 displays the re-
sulting potential for an fcc-structure when the van-der-Waals pair equilibrium
distance ry is 2.6 in units of the substrate bond distance a,, which is chosen to ap-
proximately represent the case of Xe on Pt(100). The lateral variation of the
minimum in the potential (6.2) is illustrated in Fig. 6.2. Shown is the variation
from the atop-position to the fourfold site where the potential has its minimum.
The potential is rather anharmonic around the minimum. If represented by a two-
dimensional Fourier-expansion, higher order Fourier-components must be em-
ployed. The z-position of the minimum potential varies with the lateral coordinate.
The eigenstates of the physisorbed atoms are therefore not simply eigenstates of a
two-dimensional oscillator (see also Sect. 5.4.2).

As straightforward as it is to write down an atom/surface potential for phy-
sisorption, the result is meaningful only in the limit of large distances from the
surface. As the atom approaches the surface, other, chemical interactions come
into play even in case of rare-gas adsorption. A well-studied example is the ad-
sorption of rare-gases on transition metals. Experiments show a considerably
higher heat of adsorption than expected for physisorption [6.1, 2]. The large re-
duction of the work function (> 0.5 eV) is indicative of a considerable charge
transfer from the rare-gas atom into the solid. More importantly, the description of

? Occasionally, V(r) is expressed in terms of a hard-wall distance. Then the factor 2 in the
second term vanishes.
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Fig. 6.1. Van-der-Waals bonding to a surface of an fcc-crystal. The parameters are chosen
to represent Xe on Pt(100). The distance z is in units of the surface lattice constant a,. Solid
line is the numerical solution for a pair-wise Lennard-Jones Potential. The dashed line is the
continuum solution for the attractive part (6.3).
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Fig. 6.2. Relative corrugation of the minimum in the physisorption potential (solid line).
The potential deviates significantly from a simple cosine-function (dotted line).

the interaction of rare-gas atoms with surfaces in terms of van-der-Waals interac-
tions yields a qualitatively wrong picture of the preferred adsorption site, the
lateral interactions between the adsorbates and the vibrational states.
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An early attempt to invoke density functional theory for the description of rare-gas
adsorption was made by N. D. Lang [6.3] who studied rare-gases on a jellium
substrate. J. E. Miiller investigated the bonding of rare-gas atoms to transition
metals [6.4]. Figure 6.3 shows the schematic picture developed by Miiller for the
example Xe on Pt. The overlap of the occupied XeSp-states with the occupied
Pt5d-states leads to bonding and anti-bonding states (dashed lines in Fig. 6.3). As
both, the bonding and antibonding states are occupied the interaction is repulsive
(Pauli-repulsion). The mixing with the unoccupied Pt5d states (named polariza-
tion states by Miiller) leads to an overall downshift of the bonding and
antibonding states, and thereby to a weak chemical bonding. Transferred into spa-
tial coordinates Miiller found that the polarization of the metal causes a charge
increase where the Coulomb-potentials of the metal and the Xe-atoms overlap.
This effect is stronger when the Xe-atom sits in an atop position! This is contrary
to what the van-der-Waals bonding predicts (Fig. 6.2). Needless to say, that also
the magnitude of the lateral corrugation of the potential as well as the curvature of
the potential in the z-direction is not at all represented by the Lennard-Jones po-
tentials! It is therefore no wonder that earlier attempts to describe experimental

Pt5d, unocc

Pt5d, occ Xe5p

Fig. 6.3. Schematic picture of the bonding of rare-gas atoms on a transition metal for the
example of Xe on Pt: The coupling of the occupied XeSp-states with the occupied Pt5d-
states leads to occupied bonding and anti-bonding states (dashed lines) and thereby to
Pauli-repulsion. Mixing with the unoccupied Pt5d states (polarization states) leads to a
considerable charge transfer and to an overall downshift of the electron states, and thereby
to a weak chemical bonding.

observations concerning the adsorption energies, lateral interaction energies and
the vibration modes of the Xe-atoms in terms of Lennard-Jones potentials failed.
The theory provides furthermore an understanding of what causes the large work
function shift. The unoccupied d-states are localized on the substrate. The partici-
pation of these states in the bonding requires a charge transfer from the Xe-atom
to the surface. The associated dipole moment with the positive end pointing away
from the surface causes the reduction of the work function. The charge transfer is
nicely exemplified with charge density contours. Figure 6.4 displays the contour
lines of the charge density o(r) in a Pty-cluster with one Xe-atom adsorbed. In
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order to emphasize the changes brought about by the bonding the charge density
of the bare cluster and the bare Xe-atom is subtracted, so that
or) = A XePty)—o(Xe)—o(Pty,) is plotted in Fig. 6.4. The dashed and solid lines
correspond to charge deficit and surplus, respectively. The charge transfer from
the Xe-atom to the Pt-cluster is clearly visible. A significant part of the charge is
located not on the Pt-atom to which the Xe-atom is bonded but rather in a ring
around the Pt-atom. This has consequences for the bonding of the adjacent Xe-
atom residing on the next-nearest neighbor Pt-atom (dashed circle in Fig. 6.4)
since this second Xe-atom finds the states into which it would donate charge as a
single atom already occupied by the first Xe-atom. The charge transfer to the sub-
strate is therefore hindered. This causes a repulsive interaction term that partly
compensates the attractive van-der-Waals interaction. The interaction remains
attractive (18 meV), but is significant lower than a pure van-der-Waals interaction
(30 meV) [6.4]. The hindered charge transfer for a neighboring Xe-atom causes
also a considerable downshift in the frequency of the vibration perpendicular to
the surface from %@ =8.5meV for a single Xe-atom to 7iw =3.7meV for a full

monolayer or a Xe-island [6.5].

Fig. 6.4. Left panel: top view on the Pty,-cluster with an adsorbed Xe-atom. The neighbor-
ing Xe-atom is drawn as a dashed circle. Right panel: charge density difference
o(r) = p(XePty)—p(Xe)—o(Pty,) along the intersection AB shown on the left. Dashed and
solid contour lines indicate charge deficit and surplus, respectively. Note the net charge
transfer into the substrate!

The specific bonding described above predicts that the strength of the Xe-metal
interaction scales with the deepness of the metal potential, which in general corre-
lates with the density of states at the Fermi-level. The bonding is particular strong
on transition metals, but it should exist also for sp-metals and even for semicon-
ductor surfaces and graphite, because of the unoccupied conduction band states.

It should be noted that the picture developed here is based on a localized, quan-
tum-chemical approach to the problem. In that approach, the natural basis-set of
wave functions are the eigenstates of individual atoms and the discussion is in
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terms of local charges and bonds. A somewhat different picture emerges from
theories that start from periodic lattices and describes the results in terms of the
global density of states [6.6]. Neither one picture can be proven right or wrong.
They are just different, more or less appealing ways to rationalize a result of quan-
tum mechanics.

While the existence of a genuine van-der-Waals bonding on any of the surfaces
that are in the mainstream of interest remains elusive, van-der-Waals forces domi-
nate at large distance from the surface. The 7 *-dependence of the attractive van-
der-Waals interaction (dashed line in Fig. 6.1) exists for all molecules approaching
the surface. The van-der-Waals attraction together with a polarization interaction
and a Pauli-repulsion at close distances is therefore a basis for the discussion of
the adsorption of chemically saturated molecules to which we turn now. Cases of
particular interest are the dissociative adsorption of the diatomic molecules H,, O,
and N,. These molecules, when they approach the surface, experience a potential
similar to the one drawn in Fig. 6.1: a van-der-Waals attraction at large distances
and a Pauli-repulsion at short distances, if the molecule does not dissociate. In
addition, a state of molecular bonding may exist. The O, molecule, e.g., binds
strongly as a molecule.

Figure 6.5 illustrates the energetics of the adsorption process. The energy' of
the undissociated molecule as a function of distance from the surface z is plotted
as a solid line. This may be the physisorption energy or the energy of the chemical
bonding of the undissociated molecule with the surface. The figure also shows two
examples of the energy variation of the atoms when the molecule is dissociated in
the gas phase (dashed and dash-dotted lines). At large distances from the surface,
the curves begin at half the dissociation energy of the molecule Egg. Evidently,
dissociation upon adsorption occurs only if the energy gained in bonding is larger
than the dissociation energy. Depending on the dissociation energy, of the adsorp-
tion energy, on the equilibrium distances in the bound states, and on the overall
shape of the potential curves, the crossover point between molecular and dissocia-
tive adsorption may or may not lie above zero (with reference to the ground state
of the molecule in the gas phase). If the crossover point is above zero, the mole-
cule has to overcome an activation barrier for dissociative adsorption.

The one-dimensional model for dissociative adsorption as displayed in Fig. 6.5
grossly oversimplifies the problem. The molecule has internal degrees of freedom
(vibration, rotation, equilibrium distance between the atoms), the adsorbed atoms
and the solid have vibrational degrees of freedom, and the molecule approaches
the surface from different angles and strikes the surface at a different position with
respect to the surface structure. For each vibration or rotational eigenstate of the
molecule, for each angle of approach, each point of contact, one has a different
energy/distance relation. Furthermore, while the molecule is on its course of ap-
proach, the bond length, the vibrational levels, the rotational energies respond to
the interaction with the solid, the occupation of the energy levels in the molecule

"% For simplicity and generality we use the term energy. The term stands for the correct
thermodynamic potential according to the thermodynamic boundary conditions (Chapt. 4).



6.1 Physisorption and Chemisorption - General Issues 251

Energy

!

Fig. 6.5. Grossly simplified illustration of the energetics of the adsorption process for dia-
tomic molecules: The solid line represents the physisorption potential or the potential of
whatever bond the molecule may establish as a whole with the surface. The dashed and
dash-dotted lines show two possible cases for the energy of the dissociated molecule. De-
pending on the energy of dissociation in the gas phase, the equilibrium bond distance and
the adsorption energy for the atoms, there may be a barrier for dissociation or not.

changes, rotational energy is transferred into vibrational energy and kinetic energy
is converted into phonons. Even electronic states may be excited, so that one
leaves the realm of the Born-Oppenheimer approximation. Adsorption induced
electronic excitations can give rise to chemo-luminescence [6.7] and hot electron
emission [6.8]. In recent years, laser-technology has developed to a point where
one is able to control and select the exact eigenstate of molecules in the gas phase.
The energy transfer to the solid can be investigated in femtosecond pump-probe
experiments, which has opened the new field of state selective chemistry [6.9].

Because of its extreme complexity and its multidimensionality, the problem of
dissociative chemisorption is not amenable to a full quantum theoretical treatment.
Currently, calculations involving 7 degrees of freedom are state of the art. A clas-
sical approach using molecular dynamics in connection with a potential derived
from ab-initio calculations is however possible (see e.g. A. Gross [6.10])

Without straining mental and computer capacities too much, one may move up
one step from the simple scheme in Fig. 6.5 and consider the approach of a dia-
tomic molecule with a fixed orientation with respect to the surface. Vibrations and
rotations as well as the structure of the surface are neglected. As an example, we
consider the approach of a molecule, which has its axis parallel to the surface. Far
away from the surface, the distance between the atoms is at its gas-phase equilib-
rium value r,. Figure 6.6 displays the equipotential contour lines of the molecule
as it approaches the surface. It is assumed that no molecular adsorption state (as
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typical for CO or O,) exists. The molecule travels along the path of minimum
energy (dotted line). For smaller distances from the surface, the wave functions of
the molecule and the solid begin to overlap and the equilibrium bond distance
between the molecule increases. The molecule may or may not encounter an acti-
vation barrier; eventually the potential becomes completely flat with respect to the
distance between the atoms: the molecule is dissociated. For a structured surface,
one would have a different 2D-potential for each x, y-starting position in the gas-
phase with respect to the structured surface and each initial orientation of the
molecule. The potential would also depend on the initial angle of the molecular
trajectory with respect to the surface. The orientation of the molecule would
change as it approaches the surface. In total, the model would involve six inde-
pendent coordinates.

While calculations that include vibrational and rotational excited states can be
performed nowadays, one would like to explore what can be said about the ther-

Distance from surface

m Distance between the atoms

Fig. 6.6. Schematic drawing of the contour lines of the atom potential for a molecule ap-
proaching a flat surface ("elbow plot"). For large distances, the potential has a minimum at
the gas-phase equilibrium bond distance. As the molecule draws closer to the surface, the
bond distance increases. Eventually the potential is independent of the atom-atom distance.
The molecule may or may not encounter an activation barrier along the path (solid and thin
dash-dotted contour lines).
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modynamics of dissociative adsorption without resorting to sophisticated theory.
With respect to the probability of dissociative adsorption, a simple approach is to
postulate that the molecule travels on the hypersurface of coordinates along the
path of minimal energy so that the effective activation barrier is the minimum
barrier along this reaction coordinate. The probability of dissociative adsorption,
the sticking coefficient, can then be expressed in terms of certain properties of the
transition state, which leads to the transition state theory of rates (Sect. 10.2).

The complexity of the molecule-surface interaction is also reflected in the de-
sorption process. Dissociatively adsorbed molecules recombine during desorption.
If the molecules travel along a path that involves an activation barrier, they must
gain kinetic energy. Concerning the velocity component perpendicular to the sur-
face, the desorbing molecule must have a kinetic energy that reflects the height of
the activation barrier. Part of the energy may also go into vibrational and rota-
tional excitations. Even in the absence of an activation barrier, the occupation of
rotational and vibrational states is in general not given by the thermal equilibrium
distribution that would correspond to the substrate temperature 7;. One might
think of building a clever perpetuum mobile (perpetual motion engine) by adsorb-
ing molecules at surfaces and receiving hyperthermal molecules desorbing in
return. Alas, the principal of detailed balance ensures that the second law of ther-
modynamics is not violated. For each direction of the impinging molecule, each
velocity, each point of impact, each internal excitation, the sticking coefficient is
such that the differential fluxes in and out are identical in equilibrium. Alterna-
tively, one may argue that the principle of detailed balance is the reason why
desorbing molecules have a nonthermal velocity distribution and a nonthermal
distribution on the vibrational and rotational levels since evidently these molecules
in general should have a different sticking probability.

Detailed balance is an extremely powerful principle. It can be used to perform
calculations on the kinetics starting at either end of a process and obtain informa-
tion on the reverse process. It is also an indispensable check on quantum statistic
calculations that detailed balance is obeyed. Not all models or assumptions one
might be inclined to make or to employ for the sake of easing the task fulfill this
requirement. On a more elementary level, the principle of detailed balance can be
applied to express the rate of desorption into a particular angle in terms of the
sticking coefficient of molecules traveling the reverse direction and the chemical
potential of the adsorbed phase. This is helpful insofar as the sticking probability
is a measurable quantity, and it is often close to unity in case of non-activated
adsorption.
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6.2 Isotherms, Isosters and Isobars

6.2.1 The Langmuir Isotherm

We consider the equilibrium between an ideal gas and an adsorbed phase de-
scribed by the non-interacting lattice gas model. By equating the chemical
potentials (5.15) and (5.96, 5.97) one obtains

(24 E,—0E,4
B4 —e e h’ 1 Ziya
kyT 2umkgT)'? Z,  Z,

(6.4)

Here, E, is the ground state energy level of the gas phase and « denotes the num-
ber of (equal) atoms into which in molecule dissociates upon adsorption, hence &
is either 1 or 2. For ar= 1, equation (6.4) represents the Langmuir Isotherm. The
isotherm describes the equilibrium between two phases, the gas phase and the
adsorbate phase. It is therefore, that only the properties of the two phases enter,
and not the pathway by which the equilibrium is established.

This statement may warrant a further remark. In the chemical literature, the
Langmuir Isotherm (and other equilibrium properties) is almost exclusively de-
rived by considering adsorption and desorption kinetics and by equating the
adsorption rate with the desorption rate to allow for equilibrium. This treatment
introduces (within that framework) undefined kinetic parameters, and thereby
obscures the true nature of the Langmuir Isotherm. Furthermore, the dependence
on B4 (the left hand side of (6.4)) is introduced as a property of the adsorption
kinetics, namely that the dependence of the sticking probability on the coverage
should be proportional to 1 — @,4, which is rarely if ever the case. Furthermore,
according to this "derivation", the isotherm would depend on the coverage de-
pendence of the sticking probability, which is incorrect.

Solving (6.4) for the coverage @, yields

(K () ©5)
U (K () ) '
The equilibrium constant K.q(7) is
E,—0E, 3 a
K T)=e b7 h ! Zvibaa (6.6)

kyT 2umkgT)'? Z,  Z,

Figure 6.7 displays the isotherms for &= 1 and 2. For non-dissociative adsorption,
the coverage rises linearly with the pressures in the small coverage/pressure re-
gime to level off as the coverage increases. For dissociative adsorption of a di-
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Fig. 6.7. Adsorption isotherms in the non-interacting lattice gas model for non-dissociative
adsorption (Langmuir Isotherm) and the dissociative adsorption of a diatomic molecule.

atomic molecule, the coverage initially increases proportional to the square root of
the pressure, and levels off more quickly. Full coverage may not be reached at all
for kinetic reasons. As a rule, dissociative adsorption requires two empty nearest-
neighbor sites rather than two empty sites somewhere on the surface. As the cov-
erage approaches unity, the number of nearest neighbor pairs reduces more rapidly
than the number of pairs at some arbitrary distance. Eventually, only single sites
with no nearest-neighbor empty site around will remain on the surface. The full
coverage is therefore not reached at all. Rather the adsorption stops at about 95%
coverage [6.11]. Note, however, that this is a kinetic argument stating that equilib-
rium may not be reached; it does not concern the equilibrium itself. Given enough
diffusion and long enough time, the dispersed empty sites will disappear.

6.2.2 Lattice Gas with Mean Field Interactions —
the Fowler-Frumkin Isotherm

Experimental isotherms rarely conform to the Langmuir Isotherms because of the
lateral interactions between adsorbed species. Figure 6.8 shows three isobars for
the molecular adsorption of CO on a Ni(111)-surface as an example [6.12]. The
pressure is varied by an order of magnitude. The decay of the coverage with in-
creasing temperature is much slower than for the Langmuir Isotherm (dotted line).
The slower decay can be interpreted in various ways. The binding energy of CO to
the Ni-substrate might decrease when neighboring sites become occupied, differ-
ent sites may become occupied, or there may be a direct repulsive interaction
between the CO-molecules. Isotherms do not distinguish between these possibili-
ties.
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To account for a variation of the mean adsorption energy with coverage one may
write an additional coverage dependent term into the chemical potential of a lattice
gas (5.96).

Uy = a[Ead +kgT In ; @2 —kgT1n zvib,adJ +W(By). (6.7)
~ Mad

The factor «zis o= 1 for atom adsorption and &= 2 for the dissociative adsorption
of diatomic homonuclear molecules. The expression is easily generalized to dia-
tomic molecules consisting two different atoms. The term W(6,4) describes the
change in the adsorption energy with coverage. It can also be understood as a
mean field approach to describe lateral interaction between the adsorbed species.
In the context of adsorption, this mean field approximation is called Bragg-
Williams approximation (cf. Sect. 5.4.1). The approximation is equivalent to the
molecular field approximation in magnetism (Sect. 9.5)

04 e, X T T T

CO on Ni(111) I
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Fig. 6.8. Adsorption isobars for CO on Ni(111) [6.12]. The decay of the coverage is much
slower than in the Langmuir Isotherm since the effective binding energy increases as the
coverage becomes smaller. The coverage is here defined as the number of CO-molecules
per surface atom.
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With the mean field interaction added, the isotherm assumes the form

a W(O)
Cad kgT
— € =K, (T . 6.8
(l—@adj ()P ©9

The equilibrium constant K.(7T) is as in (6.6). A positive W(68,q) stands for an
increasing energy level of the adsorbed state for larger coverages, hence for repul-
sive interactions between the adsorbed species. Negative W(6,q) stand for
attractive interactions. Equation (6.8) holds for arbitrary analytical forms of
W(6B,q). Consider for example repulsive dipole/dipole interactions: The dipoles
can be electric dipoles or elastic dipoles (3.81). The interaction energy scales with
the distance r as > and W(6,4) becomes

W(O,,)=wOl?. (6.9)

Dipole interactions are of the order of a few meV and are therefore small com-
pared to other interactions or to the variations in the adsorption energy. To account
for the latter, frequently a linear variation of W(&,y) with @4 is assumed,

W(By)=wO,,. (6.10)

Depending on the scientific community, the resulting isotherms are named
Fowler-isotherms (physics) [6.13] or Frumkin-isotherms (electrochemistry)
[6.14].

Figure 6.9 shows a set of isotherms for non-dissociative adsorption and various
values of w in units of kgT. The coverage is now plotted vs. the logarithm of the
pressure, which is proportional to the chemical potential of the gas-phase. The
case w = 0 represents the Langmuir Isotherm. For positive values of w, the equilib-
rium pressure is higher for a given coverage, the coverage increases more slowly
with rising pressure. For w < 0, the isotherm is steeper. All isotherms are symmet-
ric around @,y = 0.5. The slope at this point is

a@ad _ 1
dlnp 4+w/kgT

6.11)

A rough estimate of the interaction energy is therefore obtained from the slope at
@ad = 05,

-1
w=kpT| 90 — 4k, T . (6.12)
B omp B
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Fig. 6.9. Adsorption isotherms with lateral interactions between adsorbates in the Bragg-
Williams approximation. The coverage is plotted vs. the logarithm of the pressure, i.e. vs.
the chemical potential of the gas phase. The thin solid line (w =0) is the Langmuir Iso-
therm. For w > 0, the coverage rise more gradually with In p ; the chemical potential of the
gas phase has to be larger to overcome the repulsive interactions in the adsorbed phase. For
attractive interactions, the uptake is faster. Eventually, the adsorbate phase condenses into a
"lattice liquid". The thick solid lines separates stable from instable regions.

Similarly, from the slope of isobars at &,q = 0.5 the lateral interaction is obtained
as

-1
w= —Q(Taa@—zﬁ‘d) —4kgT . (6.13)

At a critical value w.=—4kgT the slope of the isotherm becomes infinite at
O, =0.5, and below —4kgT one obtains formally three different coverages for a
given pressure. This means that the system is instable and not adequately de-
scribed by the continuous curves. As in the case of the van-der-Waals gas, the true
curve is given by the Maxwell construction of a vertical line leaving the same area
to the calculated curves on both sides of the line (thin solid lines in Fig. 6.9). The
resulting isotherms then call for an increasing coverage in the low-pressure re-
gime. At a particular critical pressure, which corresponds to the critical coverage
given by the fat solid line in Fig. 6.9, more atoms are adsorbed without a pressure
increase until an upper coverage limit given by the same fat line is reached. From
thereon the coverage increases again according to the rising pressure. The system
behaves very much like a condensation into a liquid state, although the adsorbate
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remains in a lattice gas state. We remark that negative values of w stand for attrac-
tive interactions between the adsorbed species. The microscopic structure of the
condensed adsorbed phase consists therefore of (large) close-packed adsorbate
islands and uncovered areas on the surface.

The interesting isotherms produced by attractive interactions are typical for
rare-gas adsorption, where the adsorbed atoms attract each other through van-der-
Waals forces. As discussed in Sect. 6.1 this attraction may be partly balanced by
repulsive chemical interactions. However, even then the interaction remains at-
tractive. Figure 6.10 shows the adsorption isotherms of xenon on graphite for three
different temperatures as measured by Suzanne et al. [6.15]. Beyond a particular
pressure, which depends on the temperature, the coverage rises abruptly from a
lower to an upper critical value (compare Fig. 6.9). The process repeats for further
monolayers at higher pressures until the effect of the substrate vanishes and the
condensed phase grows indefinitely. From the isotherms, one obtains a heat of
adsorption of about 0.24 eV/atom. This value is comparable to the heat of adsorp-
tion of xenon on platinum [6.2]. This and the fact that further layers condense at
higher pressures is indicative of a chemical interaction between graphite and xe-
non as discussed in Sect. 6.1 for xenon on platinum.

1.0 —— o —
Xe on
Graphite
88 K 91K 95K
0.5 s

Coverage 6,4

L ol

10% 10
Pressure / Torr

Fig. 6.10 Isotherms at three different temperatures for the first layer adsorption of xenon on
graphite (after ref. [6.15]). Above a particular pressure, the coverage rises abruptly from the
lower critical coverage to the higher critical coverage. The curve repeats itself for the sec-
ond and further monolayers until the influence of the substrate vanishes and the condensed
phase grows infinitely. A heat of adsorption of about 0.24 eV/atom is derived from the
isotherms.
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Lateral interactions between chemisorbed species are frequently attractive at long
distances and always repulsive at short distances. However, the attractive part
does not necessarily show up in the isotherms, as in that case the chemisorbed
species tend to grow in islands of a particular structure. For denser layers, the
adsorption energy typically decreases as more substrate surface bonds become
engaged in the bonding to the adsorbate. While this effect is not a lateral interac-
tion between adsorbates, it has the effect that the energy level of the adsorbate
rises with the coverage. Isotherms, which are less steep than the Langmuir Iso-
therm, are therefore typical for chemisorption. In terms of the Bragg-Williams
model, this means positive values of w. With a proper choice of w, or at least with
a particular function W(6&,) a quantitative agreement with experimental isotherms
or isobars is nearly always obtained. Since isotherms represent an integral prop-
erty of the gas-surface interactions, fine details of the lateral interactions such as
phase transitions in adsorbed layers are hardly visible in the experimental data due
to the limited precision of the measurements.

6.2.3 Experimental Determination of the Heat of Adsorption

Experimentally, the ambient pressure is not as easily varied as the temperature.
Adsorption equilibria are therefore mostly investigated with isobars: Here, the
coverage is measured as a function of the surface temperature while the ambient
pressure is held constant. Figure 6.11 displays a set of isobars that were calculated
from the Langmuir Isotherms. The parameters are chosen such that the curves
could represent very crudely CO-adsorption on transition metals in ambient pres-
sures ranging from 10~ to 107 mbar. The temperature dependence of the
vibrational and rotational partition functions is neglected. From curve to curve, the
pressure is varied by one order of magnitude. If it were not for the temperature
dependent prefactor factors in (6.4), each order of magnitude in the pressure
would displace the isotherm by the same amount. Experimental data on a set of
isobars as displayed in Fig. 6.11 can be used to calculate the isosteric heat of ad-
sorption Q(6O,q) by employing the Clausius-Clapeyron equation,

dln p,,

0. =377y

(6.14)

This heat of adsorption is nearly but not completely equal to the difference in
ground state energy of the gas-phase E, and E,y. Neglecting again the contribu-
tions from the rotational and vibrational partition functions in (6.4) one obtains

5
QO,4)=Ey=Eyg+kyT - (6.15)
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Fig. 6.11. A set of Langmuir Isobars for pressures varying by an order of magnitude. Be-
cause of the temperature dependent prefactor in (6.4) the Langmuir Isobars are shifted by
an amount which increases with the temperature.

For chemisorbed systems, the energy of adsorption AE,q = E, — E,q is of the order
of one eV or more, so that the difference between the heat of adsorption Q and
AE,4 becomes marginal. For weakly chemisorbed species and isobars obtained at
higher pressures, and comparatively high temperatures, the difference could mat-
ter. In principle, the temperature dependence of the heat of adsorption could also
be determined from the isobars using the Clausius-Clapeyron equation. In reality,
the data rarely cover a sufficiently large p/T-range to do so. Figure 6.12 displays
the typical Arrhenius-plot for Inpe,(G,q) vs. T~ that would be used to determine
the heat of adsorption. Even for the pseudo-experimental data calculated from the
Langmuir Isotherm, which is free of experimental errors, the deviations of the data
points from a straight line (solid line in Fig. 6.12) are hardly visible. Therefore,
experiments cannot resolve the temperature dependence of the prefactor and of the
heat of adsorption.

It is important to realize in this context that nominal equilibrium experiments
on single crystal surfaces in vacuum are strictly speaking not completely in equi-
librium insofar as only the temperature of the sample is varied. The temperature of
the gas phase is determined by the walls of the vacuum chamber and therefore
remains at about 300 K. This means that only the temperature in the temperature
dependent terms of the chemical potential of the adsorbed state is varied [6.16].
With respect to the isotherms, these are the temperatures in the exponential term
and in the vibrational partition function of the adsorbed state.
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Fig. 6.12. Arrhenius plot of the equilibrium pressure for which the coverage is @,y = 0.5 as
calculated from the Langmuir Isotherm (6.4) (Fig. 6.11). The variation in the slope caused
by the temperature dependent prefactor is hardly visible, despite the fact that the pressure
range covers four orders of magnitude. Given the experimental errors, the temperature
dependence of the heat of adsorption and therefore the temperature dependence of the
prefactor cannot be obtained from experimental data.

Neglecting the vibrational excitations, the heat of adsorption obtained from iso-
bars measured in an UHV-chamber is

Ounv (On) = E; —Eyq - (6.16)

As an example we show the heat of adsorption of Xe on Pt(111) as a function of
coverage in Fig. 6.13. The coverage was measured using the elastic scattered in-
tensity of a thermal beam of He-atoms [6.2]. The method is extremely sensitive
and does not perturb the adsorbed layer. Up to a coverage of about @ = 1/3 the
heat of adsorption rises because of the attractive interactions between the Xe-
atoms. After that, the hard-core repulsion reduces the heat of adsorption.

For a long time, Arrhenius-plots as shown in Fig. 6.12 and thermal desorption
spectra (Sect. 6.3) were the only way to obtain information on the heat of adsorp-
tion on well-defined single crystal surfaces. Direct calorimetric measurements
were not feasible because of the very small heat released in an adsorption process
in relation to the heat capacity of a bulk crystal. The development of an extremely
sensitive single crystal calorimeter in combination with a molecular beam adsorp-
tion by D. A. King and collaborators was a major step forward [6.17, 18]. The
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Fig. 6.13. Isosteric heat of adsorption of Xe on Pt(111) (after Kern et al. [6.2]). The cover-
age O is the fractional coverage in relation to the number of surface atoms. For small
coverages, the heat of adsorption increases with coverage due to attractive interactions. At
about @= 1/3, the hard-core repulsion sets in and the heat of adsorption drops sharply. The
solid line is a heuristic fit with Q/meV =267 +650"% —2x10'°0 . The fit is used later

in the context of thermal desorption.

equipment is shown schematically in Fig. 6.14. The metal single crystals have a
thickness of merely 0.2 um. The crystal is prepared by epitaxial growth on a water
dissolvable single crystal salt (e.g. NaCl). The supporting crystal is dissolved af-
terwards to obtain a freestanding film, which is then mounted on a support ring.
The gas is dosed from a molecular beam source. The source is calibrated employ-
ing the spinning rotor gauge (Sect. 2.2.1). The gauge sits in a housing featuring a
small tubular orifice, which can be moved into the beam. The equilibrium pressure
inside the housing when the beam is directed into the tubular orifice can be con-
verted into the number of particles in the beam per second, since the pressure and
the conductance of the tube yield the flux out of the housing. The sticking coeffi-
cient on the sample is measured by observing the signal of reflected molecules
from the beam using a mass spectrometer. If the signal is as high as when an inert
gold surface is moved into the beam instead of the sample then the sticking coeffi-
cient is zero. It is one, when no beam molecules are reflected from the sample.
The heat of adsorption increases temporarily the temperature of the sample. The
increase is measured by an infrared detector. Light pulses of defined energy from
a He-Ne Laser calibrate the IR-bolometer. The results for the heat of adsorption
obtained by the direct measurements agree in general rather well with data ob-
tained from isobars [6.18].
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Fig. 6.14. Set-up for a direct measurement of the heat of adsorption after Stuck et al. [6.18].

6.2.4 Underpotential Deposition

The term underpotential deposition (upd) refers to the deposition of metal ions
with a charge of +ze (Mef;' ) on a substrate of a different material, mostly another

metal Mes. If the equilibrium potential at which this deposition occurs is positive
of the equilibrium potential for the formation of the solid phase of the deposited
metal, then this phenomenon is called underpotential deposition and the corre-
sponding difference is the upd-shift. The reason for the existence of upd is the
same as for the filling of a first monolayer (or the sequential filling of more layers)
of a rare-gas on a substrate at a pressure below the equilibrium pressure of its solid
phase. The binding energy between the rare-gas atoms and the substrate is larger
than the binding energy in a kink site of the crystalline phase of the rare-gas. For
rare-gas/solid interactions, the difference in the binding energy could amount to a
factor of two. For metal-on-metal deposition, the differences are smaller. Because
of this smallness, other factors such as the structure of the upd-layer as a function
of the density, or a possible stabilization of the layer by ions from the electrolyte
play an important role for the magnitude of the upd-shift and as to whether upd
occurs at all.

The processes, which are compared, are illustrated in Fig. 6.15. The equilib-
rium between the solid phase and the electrolyte concerns the equilibrium between
a metal atom at a Halbkristallage (kink site in half crystal position, see Sect. 1.3.2)
and the metal-ion in the electrolyte (Fig. 6.15a). The reaction between the two
states of the metal atom can be written as

Me & Me™" +ze~ (6.17)
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The energies involved in the reaction are the cohesive energy, the energy required
to remove an electron from the bare atom, the energy to bring the electron from
the vacuum level into the solid, and the solvation energy of the metal ion. The
electrode potential at which this reaction is in equilibrium is the Nernst-potential.

Mez+ Mez*

@ & T

Fig. 6.15. (a) Electrochemical deposition of bulk material A and (b) of a layer of the mate-
rial A on a substrate S of a different material. If the latter case (b) occurs at a potential that
is positive of the Nernst-potential of material A it is called underpotential deposition (upd).
The upd-layer is stable in the potential range between the upd-potential and the Nernst-
potential. Underpotential deposition requires that the mean binding energy for an atom in
the upd-layer of material A is larger than the cohesive energy (binding energy to a kink
site) of material A.

The upd-reaction can be written as
Meg + Me, < Meg + Me’y" +ze~ (6.18)

The equilibrium electrode potential depends on the structure of the substrate and
the adsorbed layer. Because of the lateral interactions in the upd-layer, the equilib-
rium potential also depends on the coverage. Phase transitions in the upd-layer
affect the upd-potential as well as the possible co-adsorption of anions from the
electrolyte and the formation of a compound structure with these anions. In other
words, upd-layers are even more complex than the typical adsorbate layers in
UHV-physics. However, just as for adsorbates in vacuum one does not need to
have the full understanding of the complexity of upd-layers to obtain a qualitative
picture of the behavior of isotherms.

In order to describe the equilibrium thermodynamics of upd we need expres-
sions for the chemical potentials of the various phases involved. We begin with
the electrolyte. We assume that the electrolyte is sufficiently dilute so that ions do
not interact with each other. In that case, their partition function is that of inde-
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pendent particles like for the ideal gas. From the free energy F of the ideal gas
(5.9) one obtains for the chemical potential in terms of the density p,

1=ty + kT In{p(h? 1 20mky TV (Z gy Zoo) |= o (D) + kT p . (6.19)

Here, we are interested only in the concentration dependence. We have therefore
stored all other terms in a temperature dependent chemical potential t4(7). For
sufficiently dilute electrolytes, the chemical potential of the ions is therefore pro-
portional to the logarithm of their concentration. The concentration is now defined
by the molar ratio with respect to the solvent. In terms of this concentration o/ ..

the chemical potential of the ions Me”" in a dilute electrolyte is
My = Hygere g (T)+kgT In P - (6.20)

For larger concentrations, (6.20) is no longer valid and the chemical potential
becomes a complex function of the concentration of the ions, the concentration of
all other ions in the electrolyte and the properties of the solvent. Debye and
Hiickel [6.19] derived a mean field solution to the problem. However, in general
the chemical potential can only be determined experimentally via reaction equilib-
ria. Chemists like to keep the simple functional form of (6.20) and hide the
complexity of the functional dependence on the concentration by introducing an
activity a(py .+,...) thatis defined by the chemical potential of ions of a particu-

lar concentration.
Hyger (Ppger ) = 'uMe”,()(T) +kgT Ina(py . »-.) (6.21)

Underpotential deposition is defined with respect to the equilibrium electrode
potential for bulk deposition. We therefore consider this case first. In Sect. 5.1.3
the chemical potential of the solid phase with reference to the vacuum level was
derived as (5.16)

Uy =—E o, —3kgTIn(T/6). (6.22)

As in (6.20) we put terms arising from vibrational partition function into a tem-
perature dependent ground state chemical potential to(7). In the course of the
reaction (6.17) z-electrons are left behind at the Fermi-level of the metal. To con-
sider equilibrium of the reaction (6.17) their energy can either be added to the
chemical potential of the electrolyte or be subtracted from the chemical potential
of the solid. We choose the latter option to stress the point that the electrons sit on
the metal. Subtracting the energy of z-electrons —ze(¢—¢,,) with reference to an
arbitrary reference potential @.¢ one obtains
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s =t o(T)+ze(p— e ) - (6.23)
Equilibrium between the ions in the electrolyte and the solid requires that
/uMeZ‘r = /us :’uMe”,O (T) + kBT In /OMCH = /us,O (T) + Ze(¢eq - ¢ref ) . (624)

The equilibrium potential is therefore

My o (1) =t o (T) L KsT

¢eq = ¢ref +
ze ze

In Py 0 - (6.25)

Apart from a constant that is characteristic for the system, the equilibrium elec-
trode potential is therefore proportional to the logarithm of the ion concentration.
For each order of magnitude in the concentration the equilibrium potential shifts
by

Ay, =k;—:1n10=58.2/z meV at 20°C. (6.26)

The corresponding equilibrium condition for an upd-layer can be obtained if one
hides the complexity of a real system in a mean field approach (Sect. 6.2.2) and
writes for the upd-phase

1)
Hupa = Ho.upa (T) + WO, +z8(¢ =B ) + kT In . g ) (6.27)

ad

The coverage @ is defined as the fraction of the saturation coverage in the upd-
layer. The equilibrium potential is now

’uMe” 0 (T) - /uupd,O (T)

ze

¢eq,upd = ¢ref +
(6.28)

kgT
B lane” .

ze

—L[w@ad +kgT In O j+
ze -6,

In experiments, the temperature and the electrolyte concentration is kept fixed.
Equation (6.28) then relates potential and the coverage in the upd-layer. Fig-
ure 6.16 shows isotherms for the upd of a Me”* metal as a function of the potential
for various values of w/kgT. In all cases the potential is referred to the potential at
which 6,4 = 0.5. Depending on the sign and magnitude of the interaction constant
w one has a steep or a gradual transition region. For w/kgT < —4 one obtains a
sudden change in the coverage as indicated by the vertical short-dotted line in
Fig. 6.16. From general reasoning, one would expect the interaction between the
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atoms in a metal upd-layer to be strongly attractive. STM studies show that metal
upd-layers grow as a dense layer in islands or from steps. An abrupt change in the
coverage at a particular electrode potential is therefore expected for metal upd.
However, because of the experimental difficulty to measure static charges, upd is
almost never studied in equilibrium. Rather one uses voltammograms, where the
potential is swept at a particular rate (Sect. 2.3.2). A few equilibrium isotherms on
single crystal surfaces of silver and copper were reported in the late seventies
[6.20]. They show abrupt as well as smooth transitions within a potential range of
50 mV. A smooth transition, however, can also result from surface inhomogenei-
ties. As these early studies had not STM-control over the surface quality and since
it does not take much of structural inhomogeneity to produce a 50 mV shift in
binding energy, it remains open whether upd-isotherms of metals are abrupt or
smooth.
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Fig. 6.16. Model isotherms for underpotential deposition. Parameter is the mean-field inter-
action constant w. For metal upd, one would expect strong attractive lateral interactions
since the atoms in the upd-layer are densely packed even at partial coverages. The upd-
transition should therefore be sharp as indicated by the dotted vertical line.

According to the model, the upd-deposition saturates for negative potentials, since
the chemical potential becomes infinitely large at @= 1. Real isotherms tend to
display a slow further uptake of atoms as the upd-layer becomes compressed. At
more negative electrode potentials equilibrium with bulk crystal deposition is
eventually reached. Then, the growth continues indefinitely if the concentration of
ions is kept constant.
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From (6.28) and (6.25) one obtains the difference in the equilibrium potentials for
upd and bulk deposition, which is noted as the upd-shift Ag,yq It is convenient to
define the upd-potential as the potential at the point of inflection (= 0.5) and
take as the ground state chemical potential #4,40(T) the chemical potential of the
upd-layer at that coverage.

A¢upd = ¢eq,upd - ¢eq = (/us,O (- /uupd,O (T, Qad = 05)) (6.29)

1
ze
Equation (6.29) is the recipe to calculate, at least approximately, the upd-shift
Agypa: Lacking better knowledge, one disregards the vibrational partition functions
and calculates the difference in the ground state energies per atom for the bulk of
the deposit (the negative of the cohesive energy) and the ground state energy of a
surface covered with the deposit. This way the problem is amenable to treatment
by standard total energy calculations. If the structure of the upd-layer is known at
a particular coverage, e.g. to be a compressed layer at saturation, one may fur-
thermore neglect the entropic factors from site occupation and calculate the upd-
shift directly for the particular structure [6.21, 22].

6.2.5 Specific Adsorption of lons

The term specific adsorption of ions refers to a situation where ions from an elec-
trolyte form a chemical bond with the surface as an adsorbed layer, in the same
way as atoms or molecules chemisorbed from the gas phase might do. As for
chemisorption, the term specific adsorption implies that a surface compound and
not a bulk compound is formed in the process. Hence, specific adsorption and
chemisorption concern the same final product, a layer of molecules or atoms
chemically bonded to the substrate surface. The difference is in the initial state,
which is more complex in the case of an electrolyte as it consists of an ensemble
of solvent molecules, the solvation shells of the ions and counter ions in the elec-
trolyte. The process of specific adsorption therefore involves at least a partial
stripping of the solvation shell. Some kind of a solvation shell may remain as the
chemisorbed layer may include H-bonded water molecules, OH", or H'. The ions
in the electrolyte carry a positive or negative charge that is quantized in units of
the elementary charge. In forming the chemical bond with the surface, the charge
is transferred to the solid. The bond may retain a partial ionic character
(Sect. 3.1.3); However, this merely means that the bond with the substrate atoms
is polarized, not ionic as a whole. Insofar the term "specific adsorption of ions" is
somewhat misleading, especially when the adsorbed species is addressed in the
notation for ions, e.g. as SO?{ or HSO, . Specific adsorption of ions is a ubiqui-
tous phenomenon, which has been studied extensively using the traditional
methods of electrochemistry such as voltametry and chronocoulometry
(Sect. 4.2.4) as well as infrared spectroscopy, x-ray diffraction and tunneling mi-
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croscopy. Well studied is the relatively simple adsorption of halogens on the coin-
age metals, in particular gold.

The adsorption isotherms for specific adsorption are derived the same way as
the isotherms for underpotential deposition. The adsorbed phase is treated in the
mean field approximation. The relation between the coverage @, and the elec-
trode potential ¢,, the Frumkin-isotherm, is obtained by equating the chemical
potential of the adsorbed phase with the chemical potential of the ions in solution.

O =&y ¢i w6,y +kgTIn O +kB—T1n Py - (6.30)
ze 1-6, ze

The reference potential ¢, is a function of the binding energy of the ions at the
surface and the solvation energy. The sign of the second term depends on the
charge of the ions in solution, negative for a positively charge ions, and vice versa.
As an example, Fig. 6.17 shows the adsorption isotherm for iodine on a gold film
[6.23]. The coverage was determined by chronocoulometry and, ex situ, by x-ray
photoemission spectroscopy (XPS). The coverage vs. potential fit to the Frumkin-
isotherm (6.30) with w/kgT = 12, which indicates a relatively strong repulsive
interaction between the iodine atoms. Figure 6.17 seems to indicate a complete
saturation at ¢, =—0.2 V. By applying more positive potentials on the electrode,
one may nevertheless compress the iodine layer even against the Pauli-repulsion
between the ions because of the large energy e(¢— @) per atom provided by the
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Fig. 6.17. Fractional coverage of iodine on a Gold film. The coverages where determined

using chronocoulometry and x-ray photoemission (XPS) (after Bravo et al. [6.23]). The
solid line is a fit to the Frumkin-isotherm with w/kzT = 12.
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Fig. 6.18. Coverage of electrodeposited bromine on Au(111) (after Magnussen et al. [6.25].
The coverage is in Br-atoms per surface Au-atoms. The solid lines are Frumkin-isotherms
shifted with respect to each other by kg7/e In10.

electrode potential. This electrocompression can lead to a sequence of phases as a
function of coverage [6.24]. Electrocompression of compact halogen layers was
studied by Magnussen et al. [6.25]. Figure 6.18 shows the Br-coverage of a
Au(111)-surface in the regime of a uniformly compressed hexagonal bromine
layer. The layer is incommensurate with the substrate in the entire range. The solid
lines in Fig. 6.18 are Frumkin-isotherms that are displaced along the x-axis with
respect to each other according to the change in the concentration of Br -ions in
the solution by

A¢=kB—T1n10 6.31)
ze

with z = 1. The fact that the charge of one electron appears in the shift is consis-
tent with the reasoning above that the ions of the solution have to give up one
electron in forming the surface bond. Experimentally the observed shift with con-
centration do not always conform to (6.31) with integer multiples of the electron
charge. This happens if the chemisorbed layer of ions involves the incorporation
of a fractional monolayer of other ions e.g., OH", or H". To describe this effect
heuristically by conventional thermodynamics the term electrosorption valency
¥’ was introduced. With reference to (6.30) ¥’ can be defined as
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,_kB_T[ 99

-1
= 6.32
e |dlnp @J (632)

The incorporation of non-stoichiometric amounts of OH™ and H is presumably
the reason why the isotherms for sulfate adsorption display a non-integer electro-
sorption valency. Figure 6.19 shows isotherms for sulfate adsorption on Au(111)
as reported by Shi et al. [6.26]. The data was already discussed in Sect. 4.2.4
(Fig. 4.8) in the context of Maxwell relations and chronocoulometry. The solid
lines in Fig. 6.19 are again fits to the Frumkin-isotherm, now with w = 13.5kgT.
The curves are rigidly shifted with respect to each other assuming an electrosorp-
tion valency of one. For low coverages, this shift is approximately in agreement
with experiment, indicating that sulfate ions in aqueous solution are monovalent,

solvated HSO, -ions. The experimental data deviate substantially for larger poten-

tials and non-saturated coverages. A convincing interpretation in terms of a
structural model for the disordered sulfate adlayer is still lacking.
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Fig. 6.19. Surface coverage of Au(111) with SO, (after Shi et al. [6.26]) for various con-
centrations of sulfate in a supporting electrolyte (0.05M KCl04+0,02M HCIO4+xM
K,S0,). The solid lines are Frumkin-isotherms with w = 13.5kgT. The isotherms are shifted
with respect to each other assuming an electrosorption valency of one.
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6.3 Desorption

6.3.1 Desorption Spectroscopy

Thermal Desorption Spectroscopy (TDS) is one of the oldest techniques in surface
science [6.27, 28]. In early work, it was used to study desorption from ribbon-
shaped tungsten filaments which were rapidly heated by passing an electric cur-
rent through the filament. Differently strong adsorbed species would thereby
desorb in the sequence of their binding energies, giving rise to pressure bursts that
were detected by a pressure gauge. TDS is therefore a spectroscopy of the activa-
tion energies for desorption. If the adsorption process does not involve an
activation energy, as is frequently the case, then the activation energies for desorp-
tion roughly correspond to the heats of adsorption (Fig. 6.5 and eqgs. (6.15, 16)).
TDS is then a spectroscopy of the heats of adsorption. Because of the use of fila-
ments, the method was also named flash filament technique.

Modern versions of the technique use quadrupole mass spectrometers
(Sect. 2.2.1) for detection and simultaneous chemical analysis of the desorbing
species. Single crystal surfaces other than tungsten are not easily prepared as rib-
bons. Rather they come in the form of disks or as bead crystals (Sect. 2.1).
Heating such a crystal in vacuum, inevitably causes desorption also from those
surface areas that are neither properly prepared nor of the desired crystallographic
orientation. It is therefore necessary to ensure that only the species desorbing from
the surface of interest are probed. This is best achieved by placing the mass spec-
trometer into a separately pumped housing that is connected to the main chamber
via a tube with a diameter smaller than the single crystal surface area. The orifice
of the tube is brought close to the crystal, so that the species desorbing from the
sides of the crystal are not in line-of-sight of the mass spectrometer. The desorp-
tion-signals from these species are sufficiently suppressed if the pumping speed of

—=p
SH= Mass spectrometer
— TN
Filament ﬂ
for
heating Cap

Fig. 6.20. To avoid interference from species desorbing from the sides of the crystal the
entrance of the mass spectrometer is covered by a glass cap. The inside of the cap should be
gold plated and electrically grounded to prevent distortion of the electric fields inside the
mass spectrometer.
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the main chamber is high enough so that the pressure increase during desorption is
small. Simple, but rather effective is also to cover the opening of the ionization
chamber of the mass spectrometer with a glass cap that ends into a tube pointing
towards the sample (Fig. 6.20). The cap should be gold-coated on the inside with
the gold film electrically grounded to avoid charging of the inner walls. Alterna-
tively, the cap can be made from stainless steel [6.29].

In 1962 Redhead proposed to turn flash desorption into a quantitative method
for the determination of activation energies for desorption [6.30] by raising the
temperature linearly in time.

T(t)=T,+ot (6.33)

This has become the standard procedure in TDS. Since the temperature is in-
creased according to a certain program, thermal desorption spectroscopy is
occasionally also called Temperature Programmed Desorption (TPD). To calcu-
late the pressure increase as function temperature Redhead made a simple ansatz
for the desorption rate

E

_ Lact

Fes = Mg Oy voe ©o7 . (6.34)

Here, r4 is number of desorbing species per time and surface area, E, is the acti-
vation energy for desorption, n, is the number of adsorbate sites per area, 14 is a
rate constant, n is the "order of the reaction" and @, is again the fractional cover-
age of adsorbate sites. The order is n =1 for the direct desorption of the adsorbed
species. If the desorption requires a recombination of two adsorbed atoms then it
seems reasonable to assume that the rate is proportional to @2, hence desorption
should be of second order. Zero order desorption should occur if the desorption
product results from an autocatalytic surface reaction. However, we shall see
shortly that this interpretation of experimentally determined exponents is too sim-
plistic.

With rising temperature, the desorption-rate increases exponentially as long as
the coverage is not significantly reduced. For zero-order desorption, the rate drops
to zero when the surface is void of adsorbates. For first and second order desorp-
tion, the rate passes through a smooth maximum to become eventually zero when
the surface is depleted of adsorbates. The maximum of the desorption-rate is eas-
ily calculated. The coverage changes with time as

46ug _ _Taes (6.35)
dl nad

The maximum in the desorption rate corresponds to the point of zero slope of rye
and therefore to the zero of the second derivative of the coverage. After inserting
(6.33) and (6.35) in (6.34) and solving for the zero of the second derivative of G4
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with respect to time one obtains an implicit solution for the temperature T, at
which the maximum occurs

Eput

kg,
Vye Kol for n=1
£ .

act

T,
V020, me m for n=2

ak,,

act

P (6.36)
B m

Here, ©,q,, is the coverage at the maximum of the desorption rate which is ap-
proximately equal to half the initial coverage @,q;,. For second order desorption,
the maximum shifts with the initial coverage (to lower temperatures), while the
maximum is independent of coverage for first order desorption. The numerical
solution to (6.36) is well described by

T /K= 10+{347—201g(10“31<v0@"‘1 /a)}E /eV . (6.37)

ad,in act

The equation can be used to roughly estimate the activation energy for desorption
by assuming a value for the rate constant 1. Both, the rate constant and activation
energy can be determined from experiment if desorption spectra are measured
with different heating rates. A variation of the rate by two orders of magnitude is
however required to keep the error reasonably low. Figure 6.21 displays the com-
plete desorption spectra calculated from the Redhead-ansatz (6.34) for n =0, 1, 2.
The heating rate is set to o= 1 K/s. The activation energy and rate constant were
chosen as 1.5 eV and 10" s™', respectively, and the initial coverage is varied from
©=0.1to 1.0 in steps of 0.1. Zero order spectra are characterized by an exponen-
tial increase in the rate, followed by a sudden drop to zero. The drop-off occurs
the earlier the smaller the coverage is. First order desorption spectra are also
somewhat skewed to the low temperature side. The peak position is independent
of coverage. In second order desorption, the peak position shifts to lower tempera-
tures with increasing initial coverage. Common to all spectra is that the peak
position depends essentially linear on the activation energy and somewhat on the
rate of the temperature increase.

With his ansatz for the desorption rate, Redhead made three assumptions, nei-
ther one is fulfilled in reality. Most importantly, the activation energy changes
with coverage. The rate constant 14 is to be replaced by a temperature dependent
prefactor, and the coverage dependence of the rate can be significantly more com-
plicated than assumed in (6.34). The most important consequence of these
complications is that the simple classification of the spectra according to the order
of desorption cannot be upheld. To understand these effects, we need to develop a
more detailed understanding of the desorption process.
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Fig. 6.21. Desorption spectra for the desorption order n =0, 1, 2 calculated from (6.34)
under the assumption of a constant heating rate o= 1 K/s, a rate constant vo = 10" s™', and
an activation energy E,, = 1.5 eV. The initial coverage is varied from 0.1 to 1 in steps of
0.1.

6.3.2 Theory of Desorption Rates

The theory of kinetic processes is significantly more sophisticated than the theory
of equilibria, because of the many channels, which couple the degrees of freedom
of the adsorbed species to the degrees of freedom of the desorbing species. It is
however, possible to derive an expression for the rate of desorption that contains
mostly equilibrium properties of the adsorbed phase and the gas phase and a single
parameter, which account for the kinetics. This parameter is the sticking probabil-
ity for a gas phase species (see also Sect. 6.1). This quantity is amenable to
experimental determination, and is often near unity. The calculation of the desorp-
tion rate is based on the fact that in equilibrium the adsorption and desorption rates
per area are equal. The flux F of molecules impinging on the surface from the gas
phase is known from kinetic gas theory (2.3) as
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p
F=—+——. (6.38)
(27tkaT)%

The adsorption rate per area r,q is then

Fg = s(@ad,T)%. (6.39)
QumkgT)"?

The sticking probability s(6G,q, T) depends on the surface coverage @, and the
temperature 7. In equilibrium, the rate of desorption and the rate of adsorption are
equal and the pressure is the equilibrium pressure pe,.

Deq

Tdes =Tad = S(Qad’T) y :
QumkgT)"?

(6.40)

The equilibrium pressure can be expressed in terms of the chemical potential of
the gas phase (5.15), and in equilibrium this is equal to the chemical potential of
the adsorbed phase £4,4( G4, T). The desorption rate is therefore

_ Eg —Had (@ud T)

kB_TMZ Zyip © kgT . (6.41)
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While this is the desorption rate in equilibrium one can argue that the rate is not
affected when the gas phase is taken away: adsorption and desorption rates per
atom site are of the order of 1s™'. The internal relaxation times of a solid-state
system are at most of the order of picoseconds. Therefore removing the gas phase
cannot lead to a redistribution of energy over the internal degrees of freedom of a
solid-state system and hence does not lead to a change in its thermodynamic prop-
erties. Equation (6.41) therefore describes the desorption rate even when no gas
phase is present.

The rate contains an exponential term and various temperature dependent
prefactors. The first one is the sticking coefficient, which contains all kinetic as-
pects of the problem. In particular, the sticking coefficient may involve an
activation energy. We note that, the temperature in (6.41) is the crystal tempera-
ture, even if in an actual desorption experiment the crystal temperature differs
from the temperature of the ambient gas phase. This follows from the fact that
(6.41) was derived from an equilibrium situation. The temperature dependence of
the sticking coefficient as an experimental quantity must be measured also in an
equilibrium situation. In reality, the sticking coefficient is mostly measured with
the gas phase at room temperature and the crystal at higher or lower temperature.
In the case of activated adsorption, this so-measured sticking coefficient could
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deviate substantially from the sticking coefficient in equilibrium, since the prob-
ability to overcome the activation barrier should depend mostly on the kinetic
energy of the molecules in the gas phase. The second term kg7/h is familiar from
transition state theory (Sect. 10.1.3). It has the dimension of a frequency and
amounts to 6.25 10'*s™" at 300 K. This frequency is often, erroneously, confused
with the vibration frequency of an atom in the potential well and misinterpreted as
an "attempt frequency". The third term is the ratio of density of the atoms in the
phase space in vacuum and on the surface. Depending on the mass of the desorb-
ing species and the density of sites on the surface, it can amount to a factor of
hundred or thousand. Even for atom desorption the prefactor can therefore be as
large as of 10", Of the gas phase partition functions Zy, and Z,, only the latter
contributes a larger factor. For CO, e.g., the rotational partition function is 120 at
300K.

In order to discuss (6.41) further we insert the mean field solution (6.7) for the
chemical potential of the adsorbed phase. We consider explicitly three cases, (I)
desorption of rare-gases, (II) desorption of diatomic molecules with particular
attention to CO, and (III) desorption of a diatomic molecule that is dissociated in
the adsorbed state.

Case I: desorption of rare-gases

The partition function in the gas phase contains only translations. The vibrational
frequencies in the adsorbed state are low, so that there is a contribution from there.
The rate of desorption is

E,~Ey-W(Oy)
O, kgT 2nmkgT 1 . knT

_@ad h nadh2 Zv,ad

Y 4O _ g 1)
Mg dt @t

. (6.42)

We discuss this equation with the system Xe on Pt(111) in mind, for which the
thermodynamic data as well as vibration frequencies have been measured [6.2].
The heat of adsorption was shown in Fig. 6.13 and was fitted by a heuristic func-
tion. To conform to (6.42) the coverages in Fig. 6.13 have to be scaled to a
saturation coverage for which we take @, =0.37. To calculate the desorption
spectrum one needs the sticking coefficient. As an approximation, we assume that
5(0,y,T)=s5,(1-6,4) with so=1. This cancels the (1-B,4)-term in the denomi-

nator of (6.42). The vibration quantum #%@ for the vertical motion is about
3.5 meV [6.2]. We assume that the parallel vibration frequencies have the same
value, so that the vibration partition function for the adsorbed state becomes (zero

point energy neglected).
3
kgT Y
Zib,ad :[_B j . (6.43)
hw
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Finally, we convert the difference E, — E,q into the heat of adsorption by using the
definition (6.14) and the equilibrium condition between the chemical potential of
the gas-phase (5.15) and the adsorbate phase (6.7).

1
Ey=Fy =0+ kgT (6.44)

Equation (6.42) then becomes

-9
Taes = MO qvo (T) e kHT, with 645
3 15 .
_ 5.6x10 _
Zm—a)e 2 L 2920 ol
4n n, kgT T

vo(T) =
The resulting desorption spectra for a heating rate of or=1Ks™' are displayed in
Fig. 6.22 for the coverages 0.1 to 1.0 (solid lines). The compressive interaction
between the adsorbed Xe-atoms at full coverage cause the early desorption at low
temperatures. The low temperature tail vanishes for @,3 = 0.9 and lower. Without
that tail, the spectra resemble those of zero-order desorption (Fig. 6.21) although
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Fig. 6.22. Desorption spectra calculated for Xe on Pt(111) for coverages @,g=0.1 to 1 in
steps of 0.1. The spectra are typical for rare-gas desorption from transition metals. The
spectra look as if the desorption were of zero order (Fig. 6.21) because of the attractive
interaction between the adsorbate atoms. The long tail at low temperatures marks the early
desorption of species from the compressed layer when repulsive interactions prevail. With-
out interaction the full coverage desorption spectrum would look as indicated by the dotted
line.
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the desorption is first order. This seeming zero-order shape results from the attrac-
tive interactions between the adsorbed Xe-atoms. The dashed line in Fig. 6.22 is
the spectrum calculated for zero interactions, with the heat of adsorption set to its
maximum value of 310 meV (Fig. 6.13).

Case II: desorption of CO

Thermodynamics and kinetics of adsorption and desorption of carbon monoxide
has been studied on many surfaces, in particular on the transition metals. There is
consensus that the heat of adsorption decreases with coverage, although different
studies come to different conclusions concerning the magnitude and the functional
dependence on the coverage. For adsorption of CO on Pd(100), e.g., Behm et al.
find that the heat of adsorption stays nearly constant almost up to saturation cov-
erage and then drops sharply to 2/3 of its initial value [6.31]. Yeo et al. find a
continuous, almost linear decrease [6.32]. The authors furthermore disagree on the
coverage dependence of the sticking coefficient. This may be an indication that
the method matters by which a result is obtained. Behm et al. measured the stick-
ing coefficient by exposing the surface from the gas phase ambient pressure at
350 K and the heat of adsorption via isobars. Yeo et al. measured the sticking
coefficient using a normal incidence CO beam, and the heat of adsorption was
determined by calorimetry at 300 K. The sticking coefficient may depend on the
orientation of the incoming CO molecules and the coverage dependence of the
heat of adsorption could depend on whether the CO-layer is ordered (Yeo et al.) or
disordered because of the higher temperature (Behm et al.).

For a survey on the qualitative features of CO-desorption spectra, these subtle-
ties need not be taken into account. We model the spectra by assuming a heat of
adsorption of 1.65 eV and a linear decrease down to 2/3 of the initial value at satu-
ration coverage. This corresponds roughly to the coverage dependence of the heat
of adsorption measured by Yeo et al. [6.32]. The saturation coverage on Pd(100) is
0.56 CO atoms per surface atom [6.31]. For our purpose, the sticking coefficient is
sufficiently well described by s(6,4,T)=1-60,4 [6.31, 32]. The prefactor con-

tains the rotational partition function of the gas phase molecule. CO on Pd adsorbs
in a bridge site. The species has therefore one low lying vibrational mode from the
hindered translation. We assume the frequency to be as for Ni(100)
(hw=3.7 meV, Sect. 5.4.1). The desorption rate is then

0(1-2/36,)

Yo - 9O _g yumye BT (6.46)
Ny dr

Here the conversion of the difference E, — E,q into the heat of adsorption by using
the definition (6.14) and the equilibrium condition (6.4) adds a factor exp(—5/2) to
the prefactor 14(7), which thereby becomes
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The calculated value is in reasonable agreement with the measured value of Behm
etal. (3x10'" s™" at 500 K [6.31]).

The calculated desorption spectra for a heating rate of 14 K/s are displayed in
Fig. 6.23. Because of the reduction of the heat of adsorption, the spectra shift to-
wards lower energies for higher coverages. The overall width of the individual
spectra reflects the amount by which the heat of adsorption changes with coverage
for a given initial coverage. According to Fig. 6.23, desorption from a fully cov-
ered surface begins already below 300 K. A surface dosed at 350 K with CO with
the CO-gas pumped off afterwards would therefore not display the low tempera-
ture part of the set of spectra shown in Fig. 6.23 [6.31]. CO-desorption spectra
obtained after dosing a Pt(111) surface with CO at 100 K are very similar to the
spectra shown in Fig. 6.23 [6.29].
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Fig. 6.23. Calculated desorption spectra for CO-desorption from a Pd(100) surface for
coverages ©,q = 0.1-1 in steps of 0.1. The insert shows the assumed dependence of the heat
of adsorption on the coverage. The broad appearance of the peak for high coverages is
caused by the dependence of the heat of adsorption on the coverage.

It is also instructive to look at a set of desorption spectra calculated with the as-
sumption that the heat of adsorption drops sharply beyond a particular coverage,
e.g. because sites with a lower binding energy becomes occupied. Figure 6.24
displays a set of desorption spectra for that case. The heat of adsorption is as-
sumed to drop down to 90% of its initial value at G,y =2/3 (see insert in
Fig. 6.24). Otherwise, the data are as for Fig. 6.23.
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Case III: desorption of a dissociated diatomic molecule

Diatomic molecules like N,, O,, H,, CO and NO, frequently dissociate upon ad-
sorption. On transition metals, oxygen and hydrogen dissociate without an
activation barrier. Desorption is therefore again determined by the heat of adsorp-
tion. As the molecules recombine in the process, desorption should be of second
order. A second order process also follows from the simplest possible ansatz for

the chemical potential of the adsorbed phase (5.97). Using (5.97) one obtains for
the desorption rate

40 o 2 _Q-W(©)
T = _SP0 _ 50,. 1) —2— | vy(T)e kT | (6.48)
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Fig. 6.24. Desorption spectra when the adsorbate fills sequentially two different sites of
different binding energy. The coverages is varied between @,,=0.1 and 0.9 in steps of 0.1.
The insert shows the assumed shape of the functional dependence of the heat of adsorption
on the coverage. Otherwise, the data are as for Fig. 6.23.

As an example we consider desorption of H, from a Pd(100)-surface. Adsorption
and desorption of hydrogen, the sticking coefficient and the heat of adsorption for
this surface has been studied by Behm et al. [6.33]. The vibration levels of H in
the adsorbed state are too high to contribute to the partition function. The same
holds for the molecular vibration in the gas phase. The prefactor vy(7T) is now

kT 2mmkgT 20kgT 7/ _ 8x10"s7'7?
h o ngh* 1 (300K)’

vo(T) = (6.49)
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Fig. 6.25. Calculated desorption spectra for hydrogen on Pd(100) for coverages ©,q = 0.1-1
in steps of 0.1. The coverage dependence of the heat of adsorption (solid line in insert) is
taken from the experimental data (open squares [6.33])

The heat of adsorption stays constant up to about 70% of the saturation coverage
which is at @= 1.3 hydrogen atoms per Pd-surface atoms (see insert in Fig. 6.25).
The zero coverage sticking coefficient is sy = 0.5 which indicates non-activated
adsorption. The sticking coefficient decreases for higher coverages. For our pur-
pose, the decrease is well enough described by s(6,4,7)=1-6,;. Behm et al.

find for the prefactor in desorption at about 400 K the value 1.4x10" s™' [6.33].
Our calculated value 1.9x10" s™" at 400 K compares well with that experimental
value. The calculated desorption spectra are displayed in Fig. 6.25. The desorption
temperature and the overall shape of the curves agree favorable with the experi-
ment [6.33], but the hump around 250 K carries more weight in the experiment.
This weight depends on the shape of curve describing the heat of adsorption vs.
coverage (see insert in Fig. 6.25). If the heat of adsorption falls off at a lower cov-
erage, then the fraction of molecules desorbing in the low temperature regime
increases. If the spectra display a hump, then the heat of adsorption stays ap-
proximately constant in a certain coverage range (compare Fig. 6.24).

Summary

In the early days of surface physics the various humps and peaks in desorption
spectra were addressed as "states". These states were denoted by Greek letters and
numbered in the sequence of their position on the temperature scale; &, o, ...
would denote weakly bound, e.g. physisorbed species, [ [, ...would denote
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chemisorbed species. The understanding was that the peaks should correspond to
individual species of different nature, for example species adsorbed in different
sites. We have seen in the preceding section that humps and peaks can also arise
from lateral interactions between the adsorbed species, which may or may not be
concomitant with a change in the adsorption sites or a restructuring of the surface.
Hydrogen on Pd(100), e.g. occupies only bridge sites [6.33]. Carbon monoxide on
the other hand frequently changes the preferred site on the surface as a function of
coverage. An example is CO on Pt(111) where CO first adsorbs in the atop sites
and later in bridge sites. Despite the change in site, the desorption spectra look
very similar to the set of curves displayed in Fig. 6.22 [6.34]. On the other hand